Changeset ccc3debf in mainline for uspace/lib/posix/time.c


Ignore:
Timestamp:
2012-09-17T13:18:41Z (12 years ago)
Author:
Jakub Jermar <jakub@…>
Branches:
lfn, master, serial, ticket/834-toolchain-update, topic/msim-upgrade, topic/simplify-dev-export
Children:
619e6d56
Parents:
00b4a68 (diff), 289fa65 (diff)
Note: this is a merge changeset, the changes displayed below correspond to the merge itself.
Use the (diff) links above to see all the changes relative to each parent.
Message:

Merge from lp:rtc-helenos.

File:
1 edited

Legend:

Unmodified
Added
Removed
  • uspace/lib/posix/time.c

    r00b4a68 rccc3debf  
    6161 */
    6262
    63 
    64 
    65 /* Helper functions ***********************************************************/
    66 
    67 #define HOURS_PER_DAY (24)
    68 #define MINS_PER_HOUR (60)
    69 #define SECS_PER_MIN (60)
    70 #define MINS_PER_DAY (MINS_PER_HOUR * HOURS_PER_DAY)
    71 #define SECS_PER_HOUR (SECS_PER_MIN * MINS_PER_HOUR)
    72 #define SECS_PER_DAY (SECS_PER_HOUR * HOURS_PER_DAY)
    73 
    74 /**
    75  * Checks whether the year is a leap year.
    76  *
    77  * @param year Year since 1900 (e.g. for 1970, the value is 70).
    78  * @return true if year is a leap year, false otherwise
    79  */
    80 static bool _is_leap_year(time_t year)
    81 {
    82         year += 1900;
    83 
    84         if (year % 400 == 0)
    85                 return true;
    86         if (year % 100 == 0)
    87                 return false;
    88         if (year % 4 == 0)
    89                 return true;
    90         return false;
    91 }
    92 
    93 /**
    94  * Returns how many days there are in the given month of the given year.
    95  * Note that year is only taken into account if month is February.
    96  *
    97  * @param year Year since 1900 (can be negative).
    98  * @param mon Month of the year. 0 for January, 11 for December.
    99  * @return Number of days in the specified month.
    100  */
    101 static int _days_in_month(time_t year, time_t mon)
    102 {
    103         assert(mon >= 0 && mon <= 11);
    104 
    105         static int month_days[] =
    106                 { 31, 0, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
    107 
    108         if (mon == 1) {
    109                 year += 1900;
    110                 /* february */
    111                 return _is_leap_year(year) ? 29 : 28;
    112         } else {
    113                 return month_days[mon];
    114         }
    115 }
    116 
    117 /**
    118  * For specified year, month and day of month, returns which day of that year
    119  * it is.
    120  *
    121  * For example, given date 2011-01-03, the corresponding expression is:
    122  *     _day_of_year(111, 0, 3) == 2
    123  *
    124  * @param year Year (year 1900 = 0, can be negative).
    125  * @param mon Month (January = 0).
    126  * @param mday Day of month (First day is 1).
    127  * @return Day of year (First day is 0).
    128  */
    129 static int _day_of_year(time_t year, time_t mon, time_t mday)
    130 {
    131         static int mdays[] =
    132             { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
    133         static int leap_mdays[] =
    134             { 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335 };
    135 
    136         return (_is_leap_year(year) ? leap_mdays[mon] : mdays[mon]) + mday - 1;
    137 }
    138 
    139 /**
    140  * Integer division that rounds to negative infinity.
    141  * Used by some functions in this file.
    142  *
    143  * @param op1 Divident.
    144  * @param op2 Divisor.
    145  * @return Rounded quotient.
    146  */
    147 static time_t _floor_div(time_t op1, time_t op2)
    148 {
    149         if (op1 >= 0 || op1 % op2 == 0) {
    150                 return op1 / op2;
    151         } else {
    152                 return op1 / op2 - 1;
    153         }
    154 }
    155 
    156 /**
    157  * Modulo that rounds to negative infinity.
    158  * Used by some functions in this file.
    159  *
    160  * @param op1 Divident.
    161  * @param op2 Divisor.
    162  * @return Remainder.
    163  */
    164 static time_t _floor_mod(time_t op1, time_t op2)
    165 {
    166         int div = _floor_div(op1, op2);
    167 
    168         /* (a / b) * b + a % b == a */
    169         /* thus, a % b == a - (a / b) * b */
    170 
    171         int result = op1 - div * op2;
    172        
    173         /* Some paranoid checking to ensure I didn't make a mistake here. */
    174         assert(result >= 0);
    175         assert(result < op2);
    176         assert(div * op2 + result == op1);
    177        
    178         return result;
    179 }
    180 
    181 /**
    182  * Number of days since the Epoch.
    183  * Epoch is 1970-01-01, which is also equal to day 0.
    184  *
    185  * @param year Year (year 1900 = 0, may be negative).
    186  * @param mon Month (January = 0).
    187  * @param mday Day of month (first day = 1).
    188  * @return Number of days since the Epoch.
    189  */
    190 static time_t _days_since_epoch(time_t year, time_t mon, time_t mday)
    191 {
    192         return (year - 70) * 365 + _floor_div(year - 69, 4) -
    193             _floor_div(year - 1, 100) + _floor_div(year + 299, 400) +
    194             _day_of_year(year, mon, mday);
    195 }
    196 
    197 /**
    198  * Seconds since the Epoch. see also _days_since_epoch().
    199  *
    200  * @param tm Normalized broken-down time.
    201  * @return Number of seconds since the epoch, not counting leap seconds.
    202  */
    203 static time_t _secs_since_epoch(const struct posix_tm *tm)
    204 {
    205         return _days_since_epoch(tm->tm_year, tm->tm_mon, tm->tm_mday) *
    206             SECS_PER_DAY + tm->tm_hour * SECS_PER_HOUR +
    207             tm->tm_min * SECS_PER_MIN + tm->tm_sec;
    208 }
    209 
    210 /**
    211  * Which day of week the specified date is.
    212  *
    213  * @param year Year (year 1900 = 0).
    214  * @param mon Month (January = 0).
    215  * @param mday Day of month (first = 1).
    216  * @return Day of week (Sunday = 0).
    217  */
    218 static int _day_of_week(time_t year, time_t mon, time_t mday)
    219 {
    220         /* 1970-01-01 is Thursday */
    221         return _floor_mod((_days_since_epoch(year, mon, mday) + 4), 7);
    222 }
    223 
    224 /**
    225  * Normalizes the broken-down time and optionally adds specified amount of
    226  * seconds.
    227  *
    228  * @param tm Broken-down time to normalize.
    229  * @param sec_add Seconds to add.
    230  * @return 0 on success, -1 on overflow
    231  */
    232 static int _normalize_time(struct posix_tm *tm, time_t sec_add)
    233 {
    234         // TODO: DST correction
    235 
    236         /* Set initial values. */
    237         time_t sec = tm->tm_sec + sec_add;
    238         time_t min = tm->tm_min;
    239         time_t hour = tm->tm_hour;
    240         time_t day = tm->tm_mday - 1;
    241         time_t mon = tm->tm_mon;
    242         time_t year = tm->tm_year;
    243 
    244         /* Adjust time. */
    245         min += _floor_div(sec, SECS_PER_MIN);
    246         sec = _floor_mod(sec, SECS_PER_MIN);
    247         hour += _floor_div(min, MINS_PER_HOUR);
    248         min = _floor_mod(min, MINS_PER_HOUR);
    249         day += _floor_div(hour, HOURS_PER_DAY);
    250         hour = _floor_mod(hour, HOURS_PER_DAY);
    251 
    252         /* Adjust month. */
    253         year += _floor_div(mon, 12);
    254         mon = _floor_mod(mon, 12);
    255 
    256         /* Now the difficult part - days of month. */
    257        
    258         /* First, deal with whole cycles of 400 years = 146097 days. */
    259         year += _floor_div(day, 146097) * 400;
    260         day = _floor_mod(day, 146097);
    261        
    262         /* Then, go in one year steps. */
    263         if (mon <= 1) {
    264                 /* January and February. */
    265                 while (day > 365) {
    266                         day -= _is_leap_year(year) ? 366 : 365;
    267                         year++;
    268                 }
    269         } else {
    270                 /* Rest of the year. */
    271                 while (day > 365) {
    272                         day -= _is_leap_year(year + 1) ? 366 : 365;
    273                         year++;
    274                 }
    275         }
    276        
    277         /* Finally, finish it off month per month. */
    278         while (day >= _days_in_month(year, mon)) {
    279                 day -= _days_in_month(year, mon);
    280                 mon++;
    281                 if (mon >= 12) {
    282                         mon -= 12;
    283                         year++;
    284                 }
    285         }
    286        
    287         /* Calculate the remaining two fields. */
    288         tm->tm_yday = _day_of_year(year, mon, day + 1);
    289         tm->tm_wday = _day_of_week(year, mon, day + 1);
    290        
    291         /* And put the values back to the struct. */
    292         tm->tm_sec = (int) sec;
    293         tm->tm_min = (int) min;
    294         tm->tm_hour = (int) hour;
    295         tm->tm_mday = (int) day + 1;
    296         tm->tm_mon = (int) mon;
    297        
    298         /* Casts to work around libc brain-damage. */
    299         if (year > ((int)INT_MAX) || year < ((int)INT_MIN)) {
    300                 tm->tm_year = (year < 0) ? ((int)INT_MIN) : ((int)INT_MAX);
    301                 return -1;
    302         }
    303        
    304         tm->tm_year = (int) year;
    305         return 0;
    306 }
    307 
    308 /**
    309  * Which day the week-based year starts on, relative to the first calendar day.
    310  * E.g. if the year starts on December 31st, the return value is -1.
    311  *
    312  * @param Year since 1900.
    313  * @return Offset of week-based year relative to calendar year.
    314  */
    315 static int _wbyear_offset(int year)
    316 {
    317         int start_wday = _day_of_week(year, 0, 1);
    318         return _floor_mod(4 - start_wday, 7) - 3;
    319 }
    320 
    321 /**
    322  * Returns week-based year of the specified time.
    323  *
    324  * @param tm Normalized broken-down time.
    325  * @return Week-based year.
    326  */
    327 static int _wbyear(const struct posix_tm *tm)
    328 {
    329         int day = tm->tm_yday - _wbyear_offset(tm->tm_year);
    330         if (day < 0) {
    331                 /* Last week of previous year. */
    332                 return tm->tm_year - 1;
    333         }
    334         if (day > 364 + _is_leap_year(tm->tm_year)) {
    335                 /* First week of next year. */
    336                 return tm->tm_year + 1;
    337         }
    338         /* All the other days are in the calendar year. */
    339         return tm->tm_year;
    340 }
    341 
    342 /**
    343  * Week number of the year, assuming weeks start on sunday.
    344  * The first Sunday of January is the first day of week 1;
    345  * days in the new year before this are in week 0.
    346  *
    347  * @param tm Normalized broken-down time.
    348  * @return The week number (0 - 53).
    349  */
    350 static int _sun_week_number(const struct posix_tm *tm)
    351 {
    352         int first_day = (7 - _day_of_week(tm->tm_year, 0, 1)) % 7;
    353         return (tm->tm_yday - first_day + 7) / 7;
    354 }
    355 
    356 /**
    357  * Week number of the year, assuming weeks start on monday.
    358  * If the week containing January 1st has four or more days in the new year,
    359  * then it is considered week 1. Otherwise, it is the last week of the previous
    360  * year, and the next week is week 1. Both January 4th and the first Thursday
    361  * of January are always in week 1.
    362  *
    363  * @param tm Normalized broken-down time.
    364  * @return The week number (1 - 53).
    365  */
    366 static int _iso_week_number(const struct posix_tm *tm)
    367 {
    368         int day = tm->tm_yday - _wbyear_offset(tm->tm_year);
    369         if (day < 0) {
    370                 /* Last week of previous year. */
    371                 return 53;
    372         }
    373         if (day > 364 + _is_leap_year(tm->tm_year)) {
    374                 /* First week of next year. */
    375                 return 1;
    376         }
    377         /* All the other days give correct answer. */
    378         return (day / 7 + 1);
    379 }
    380 
    381 /**
    382  * Week number of the year, assuming weeks start on monday.
    383  * The first Monday of January is the first day of week 1;
    384  * days in the new year before this are in week 0.
    385  *
    386  * @param tm Normalized broken-down time.
    387  * @return The week number (0 - 53).
    388  */
    389 static int _mon_week_number(const struct posix_tm *tm)
    390 {
    391         int first_day = (1 - _day_of_week(tm->tm_year, 0, 1)) % 7;
    392         return (tm->tm_yday - first_day + 7) / 7;
    393 }
    394 
    395 /******************************************************************************/
    396 
    39763int posix_daylight;
    39864long posix_timezone;
     
    41278
    41379/**
    414  * Calculate the difference between two times, in seconds.
    415  *
    416  * @param time1 First time.
    417  * @param time0 Second time.
    418  * @return Time in seconds.
    419  */
    420 double posix_difftime(time_t time1, time_t time0)
    421 {
    422         return (double) (time1 - time0);
    423 }
    424 
    425 /**
    426  * This function first normalizes the provided broken-down time
    427  * (moves all values to their proper bounds) and then tries to
    428  * calculate the appropriate time_t representation.
    429  *
    430  * @param tm Broken-down time.
    431  * @return time_t representation of the time, undefined value on overflow.
    432  */
    433 time_t posix_mktime(struct posix_tm *tm)
    434 {
    435         // TODO: take DST flag into account
    436         // TODO: detect overflow
    437 
    438         _normalize_time(tm, 0);
    439         return _secs_since_epoch(tm);
    440 }
    441 
    442 /**
    443  * Converts a time value to a broken-down UTC time.
    444  *
    445  * @param timer Time to convert.
    446  * @return Normalized broken-down time in UTC, NULL on overflow.
    447  */
    448 struct posix_tm *posix_gmtime(const time_t *timer)
    449 {
    450         assert(timer != NULL);
    451 
    452         static struct posix_tm result;
    453         return posix_gmtime_r(timer, &result);
    454 }
    455 
    456 /**
    45780 * Converts a time value to a broken-down UTC time.
    45881 *
     
    46184 * @return Value of result on success, NULL on overflow.
    46285 */
    463 struct posix_tm *posix_gmtime_r(const time_t *restrict timer,
    464     struct posix_tm *restrict result)
    465 {
    466         assert(timer != NULL);
    467         assert(result != NULL);
    468 
    469         /* Set result to epoch. */
    470         result->tm_sec = 0;
    471         result->tm_min = 0;
    472         result->tm_hour = 0;
    473         result->tm_mday = 1;
    474         result->tm_mon = 0;
    475         result->tm_year = 70; /* 1970 */
    476 
    477         if (_normalize_time(result, *timer) == -1) {
    478                 errno = EOVERFLOW;
     86struct tm *posix_gmtime_r(const time_t *restrict timer,
     87    struct tm *restrict result)
     88{
     89        int rc = time_utc2tm(*timer, result);
     90        if (rc != EOK) {
     91                errno = rc;
    47992                return NULL;
    48093        }
     
    48497
    48598/**
    486  * Converts a time value to a broken-down local time.
    487  *
    488  * @param timer Time to convert.
    489  * @return Normalized broken-down time in local timezone, NULL on overflow.
    490  */
    491 struct posix_tm *posix_localtime(const time_t *timer)
    492 {
    493         static struct posix_tm result;
    494         return posix_localtime_r(timer, &result);
     99 * Converts a time value to a broken-down UTC time.
     100 * (non reentrant version)
     101 *
     102 * @param timep  Time to convert
     103 * @return       Pointer to a statically allocated structure that stores
     104 *               the result, NULL in case of error.
     105 */
     106struct tm *posix_gmtime(const time_t *restrict timep)
     107{
     108        static struct tm result;
     109
     110        return posix_gmtime_r(timep, &result);
    495111}
    496112
     
    502118 * @return Value of result on success, NULL on overflow.
    503119 */
    504 struct posix_tm *posix_localtime_r(const time_t *restrict timer,
    505     struct posix_tm *restrict result)
     120struct tm *posix_localtime_r(const time_t *restrict timer,
     121    struct tm *restrict result)
    506122{
    507123        // TODO: deal with timezone
     
    511127
    512128/**
    513  * Converts broken-down time to a string in format
    514  * "Sun Jan 1 00:00:00 1970\n". (Obsolete)
    515  *
    516  * @param timeptr Broken-down time structure.
    517  * @return Pointer to a statically allocated string.
    518  */
    519 char *posix_asctime(const struct posix_tm *timeptr)
    520 {
    521         static char buf[ASCTIME_BUF_LEN];
    522         return posix_asctime_r(timeptr, buf);
     129 * Converts a time value to a broken-down local time.
     130 * (non reentrant version)
     131 *
     132 * @param timep    Time to convert.
     133 * @return         Pointer to a statically allocated structure that stores
     134 *                 the result, NULL in case of error.
     135 */
     136struct tm *posix_localtime(const time_t *restrict timep)
     137{
     138        static struct tm result;
     139
     140        return posix_localtime_r(timep, &result);
    523141}
    524142
     
    532150 * @return Value of buf.
    533151 */
    534 char *posix_asctime_r(const struct posix_tm *restrict timeptr,
     152char *posix_asctime_r(const struct tm *restrict timeptr,
    535153    char *restrict buf)
    536154{
    537         assert(timeptr != NULL);
    538         assert(buf != NULL);
    539 
    540         static const char *wday[] = {
    541                 "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"
    542         };
    543         static const char *mon[] = {
    544                 "Jan", "Feb", "Mar", "Apr", "May", "Jun",
    545                 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
    546         };
    547 
    548         snprintf(buf, ASCTIME_BUF_LEN, "%s %s %2d %02d:%02d:%02d %d\n",
    549             wday[timeptr->tm_wday],
    550             mon[timeptr->tm_mon],
    551             timeptr->tm_mday, timeptr->tm_hour,
    552             timeptr->tm_min, timeptr->tm_sec,
    553             1900 + timeptr->tm_year);
    554 
     155        time_tm2str(timeptr, buf);
    555156        return buf;
    556157}
    557158
    558159/**
    559  * Equivalent to asctime(localtime(clock)).
    560  *
    561  * @param timer Time to convert.
    562  * @return Pointer to a statically allocated string holding the date.
    563  */
    564 char *posix_ctime(const time_t *timer)
    565 {
    566         struct posix_tm *loctime = posix_localtime(timer);
    567         if (loctime == NULL) {
    568                 return NULL;
    569         }
    570         return posix_asctime(loctime);
    571 }
    572 
    573 /**
    574  * Reentrant variant of ctime().
     160 * Convers broken-down time to a string in format
     161 * "Sun Jan 1 00:00:00 1970\n". (Obsolete)
     162 * (non reentrant version)
     163 *
     164 * @param timeptr    Broken-down time structure.
     165 * @return           Pointer to a statically allocated buffer that stores
     166 *                   the result, NULL in case of error.
     167 */
     168char *posix_asctime(const struct tm *restrict timeptr)
     169{
     170        static char buf[ASCTIME_BUF_LEN];
     171
     172        return posix_asctime_r(timeptr, buf);
     173}
     174
     175/**
     176 * Converts the calendar time to a string in format
     177 * "Sun Jan 1 00:00:00 1970\n" (Obsolete)
    575178 *
    576179 * @param timer Time to convert.
    577180 * @param buf Buffer to store string to. Must be at least ASCTIME_BUF_LEN
    578181 *     bytes long.
    579  * @return Pointer to buf on success, NULL on falure.
     182 * @return Pointer to buf on success, NULL on failure.
    580183 */
    581184char *posix_ctime_r(const time_t *timer, char *buf)
    582185{
    583         struct posix_tm loctime;
    584         if (posix_localtime_r(timer, &loctime) == NULL) {
     186        int r = time_local2str(*timer, buf);
     187        if (r != EOK) {
     188                errno = r;
    585189                return NULL;
    586190        }
    587         return posix_asctime_r(&loctime, buf);
    588 }
    589 
    590 /**
    591  * Convert time and date to a string, based on a specified format and
    592  * current locale.
    593  *
    594  * @param s Buffer to write string to.
    595  * @param maxsize Size of the buffer.
    596  * @param format Format of the output.
    597  * @param tm Broken-down time to format.
    598  * @return Number of bytes written.
    599  */
    600 size_t posix_strftime(char *restrict s, size_t maxsize,
    601     const char *restrict format, const struct posix_tm *restrict tm)
    602 {
    603         assert(s != NULL);
    604         assert(format != NULL);
    605         assert(tm != NULL);
    606 
    607         // TODO: use locale
    608         static const char *wday_abbr[] = {
    609                 "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"
    610         };
    611         static const char *wday[] = {
    612                 "Sunday", "Monday", "Tuesday", "Wednesday",
    613                 "Thursday", "Friday", "Saturday"
    614         };
    615         static const char *mon_abbr[] = {
    616                 "Jan", "Feb", "Mar", "Apr", "May", "Jun",
    617                 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
    618         };
    619         static const char *mon[] = {
    620                 "January", "February", "March", "April", "May", "June", "July",
    621                 "August", "September", "October", "November", "December"
    622         };
    623        
    624         if (maxsize < 1) {
    625                 return 0;
    626         }
    627        
    628         char *ptr = s;
    629         size_t consumed;
    630         size_t remaining = maxsize;
    631        
    632         #define append(...) { \
    633                 /* FIXME: this requires POSIX-correct snprintf */ \
    634                 /*        otherwise it won't work with non-ascii chars */ \
    635                 consumed = snprintf(ptr, remaining, __VA_ARGS__); \
    636                 if (consumed >= remaining) { \
    637                         return 0; \
    638                 } \
    639                 ptr += consumed; \
    640                 remaining -= consumed; \
    641         }
    642        
    643         #define recurse(fmt) { \
    644                 consumed = posix_strftime(ptr, remaining, fmt, tm); \
    645                 if (consumed == 0) { \
    646                         return 0; \
    647                 } \
    648                 ptr += consumed; \
    649                 remaining -= consumed; \
    650         }
    651        
    652         #define TO_12H(hour) (((hour) > 12) ? ((hour) - 12) : \
    653             (((hour) == 0) ? 12 : (hour)))
    654        
    655         while (*format != '\0') {
    656                 if (*format != '%') {
    657                         append("%c", *format);
    658                         format++;
    659                         continue;
    660                 }
    661                
    662                 format++;
    663                 if (*format == '0' || *format == '+') {
    664                         // TODO: padding
    665                         format++;
    666                 }
    667                 while (isdigit(*format)) {
    668                         // TODO: padding
    669                         format++;
    670                 }
    671                 if (*format == 'O' || *format == 'E') {
    672                         // TODO: locale's alternative format
    673                         format++;
    674                 }
    675                
    676                 switch (*format) {
    677                 case 'a':
    678                         append("%s", wday_abbr[tm->tm_wday]); break;
    679                 case 'A':
    680                         append("%s", wday[tm->tm_wday]); break;
    681                 case 'b':
    682                         append("%s", mon_abbr[tm->tm_mon]); break;
    683                 case 'B':
    684                         append("%s", mon[tm->tm_mon]); break;
    685                 case 'c':
    686                         // TODO: locale-specific datetime format
    687                         recurse("%Y-%m-%d %H:%M:%S"); break;
    688                 case 'C':
    689                         append("%02d", (1900 + tm->tm_year) / 100); break;
    690                 case 'd':
    691                         append("%02d", tm->tm_mday); break;
    692                 case 'D':
    693                         recurse("%m/%d/%y"); break;
    694                 case 'e':
    695                         append("%2d", tm->tm_mday); break;
    696                 case 'F':
    697                         recurse("%+4Y-%m-%d"); break;
    698                 case 'g':
    699                         append("%02d", _wbyear(tm) % 100); break;
    700                 case 'G':
    701                         append("%d", _wbyear(tm)); break;
    702                 case 'h':
    703                         recurse("%b"); break;
    704                 case 'H':
    705                         append("%02d", tm->tm_hour); break;
    706                 case 'I':
    707                         append("%02d", TO_12H(tm->tm_hour)); break;
    708                 case 'j':
    709                         append("%03d", tm->tm_yday); break;
    710                 case 'k':
    711                         append("%2d", tm->tm_hour); break;
    712                 case 'l':
    713                         append("%2d", TO_12H(tm->tm_hour)); break;
    714                 case 'm':
    715                         append("%02d", tm->tm_mon); break;
    716                 case 'M':
    717                         append("%02d", tm->tm_min); break;
    718                 case 'n':
    719                         append("\n"); break;
    720                 case 'p':
    721                         append("%s", tm->tm_hour < 12 ? "AM" : "PM"); break;
    722                 case 'P':
    723                         append("%s", tm->tm_hour < 12 ? "am" : "PM"); break;
    724                 case 'r':
    725                         recurse("%I:%M:%S %p"); break;
    726                 case 'R':
    727                         recurse("%H:%M"); break;
    728                 case 's':
    729                         append("%ld", _secs_since_epoch(tm)); break;
    730                 case 'S':
    731                         append("%02d", tm->tm_sec); break;
    732                 case 't':
    733                         append("\t"); break;
    734                 case 'T':
    735                         recurse("%H:%M:%S"); break;
    736                 case 'u':
    737                         append("%d", (tm->tm_wday == 0) ? 7 : tm->tm_wday); break;
    738                 case 'U':
    739                         append("%02d", _sun_week_number(tm)); break;
    740                 case 'V':
    741                         append("%02d", _iso_week_number(tm)); break;
    742                 case 'w':
    743                         append("%d", tm->tm_wday); break;
    744                 case 'W':
    745                         append("%02d", _mon_week_number(tm)); break;
    746                 case 'x':
    747                         // TODO: locale-specific date format
    748                         recurse("%Y-%m-%d"); break;
    749                 case 'X':
    750                         // TODO: locale-specific time format
    751                         recurse("%H:%M:%S"); break;
    752                 case 'y':
    753                         append("%02d", tm->tm_year % 100); break;
    754                 case 'Y':
    755                         append("%d", 1900 + tm->tm_year); break;
    756                 case 'z':
    757                         // TODO: timezone
    758                         break;
    759                 case 'Z':
    760                         // TODO: timezone
    761                         break;
    762                 case '%':
    763                         append("%%");
    764                         break;
    765                 default:
    766                         /* Invalid specifier, print verbatim. */
    767                         while (*format != '%') {
    768                                 format--;
    769                         }
    770                         append("%%");
    771                         break;
    772                 }
    773                 format++;
    774         }
    775        
    776         #undef append
    777         #undef recurse
    778        
    779         return maxsize - remaining;
     191
     192        return buf;
     193}
     194
     195/**
     196 * Converts the calendar time to a string in format
     197 * "Sun Jan 1 00:00:00 1970\n" (Obsolete)
     198 * (non reentrant version)
     199 *
     200 * @param timep    Time to convert.
     201 * @return         Pointer to a statically allocated buffer that stores
     202 *                 the result, NULL in case of error.
     203 */
     204char *posix_ctime(const time_t *timep)
     205{
     206        static char buf[ASCTIME_BUF_LEN];
     207
     208        return posix_ctime_r(timep, buf);
    780209}
    781210
     
    894323        stats_task_t *task_stats = stats_get_task(task_get_id());
    895324        if (task_stats) {
    896                 total_cycles = (posix_clock_t) (task_stats->kcycles + task_stats->ucycles);
     325                total_cycles = (posix_clock_t) (task_stats->kcycles +
     326                    task_stats->ucycles);
    897327                free(task_stats);
    898328                task_stats = 0;
Note: See TracChangeset for help on using the changeset viewer.