1 | /*
|
---|
2 | * Copyright (c) 2005 Josef Cejka
|
---|
3 | * Copyright (c) 2011 Petr Koupy
|
---|
4 | * All rights reserved.
|
---|
5 | *
|
---|
6 | * Redistribution and use in source and binary forms, with or without
|
---|
7 | * modification, are permitted provided that the following conditions
|
---|
8 | * are met:
|
---|
9 | *
|
---|
10 | * - Redistributions of source code must retain the above copyright
|
---|
11 | * notice, this list of conditions and the following disclaimer.
|
---|
12 | * - Redistributions in binary form must reproduce the above copyright
|
---|
13 | * notice, this list of conditions and the following disclaimer in the
|
---|
14 | * documentation and/or other materials provided with the distribution.
|
---|
15 | * - The name of the author may not be used to endorse or promote products
|
---|
16 | * derived from this software without specific prior written permission.
|
---|
17 | *
|
---|
18 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
---|
19 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
---|
20 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
---|
21 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
---|
22 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
---|
23 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
---|
24 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
---|
25 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
---|
26 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
---|
27 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
---|
28 | */
|
---|
29 |
|
---|
30 | /** @addtogroup softfloat
|
---|
31 | * @{
|
---|
32 | */
|
---|
33 | /** @file Conversion of precision and conversion between integers and floats.
|
---|
34 | */
|
---|
35 |
|
---|
36 | #include <sftypes.h>
|
---|
37 | #include <conversion.h>
|
---|
38 | #include <comparison.h>
|
---|
39 | #include <common.h>
|
---|
40 |
|
---|
41 | float64 convertFloat32ToFloat64(float32 a)
|
---|
42 | {
|
---|
43 | float64 result;
|
---|
44 | uint64_t frac;
|
---|
45 |
|
---|
46 | result.parts.sign = a.parts.sign;
|
---|
47 | result.parts.fraction = a.parts.fraction;
|
---|
48 | result.parts.fraction <<= (FLOAT64_FRACTION_SIZE - FLOAT32_FRACTION_SIZE);
|
---|
49 |
|
---|
50 | if ((isFloat32Infinity(a)) || (isFloat32NaN(a))) {
|
---|
51 | result.parts.exp = FLOAT64_MAX_EXPONENT;
|
---|
52 | /* TODO; check if its correct for SigNaNs*/
|
---|
53 | return result;
|
---|
54 | }
|
---|
55 |
|
---|
56 | result.parts.exp = a.parts.exp + ((int) FLOAT64_BIAS - FLOAT32_BIAS);
|
---|
57 | if (a.parts.exp == 0) {
|
---|
58 | /* normalize denormalized numbers */
|
---|
59 |
|
---|
60 | if (result.parts.fraction == 0) { /* fix zero */
|
---|
61 | result.parts.exp = 0;
|
---|
62 | return result;
|
---|
63 | }
|
---|
64 |
|
---|
65 | frac = result.parts.fraction;
|
---|
66 |
|
---|
67 | while (!(frac & FLOAT64_HIDDEN_BIT_MASK)) {
|
---|
68 | frac <<= 1;
|
---|
69 | --result.parts.exp;
|
---|
70 | }
|
---|
71 |
|
---|
72 | ++result.parts.exp;
|
---|
73 | result.parts.fraction = frac;
|
---|
74 | }
|
---|
75 |
|
---|
76 | return result;
|
---|
77 | }
|
---|
78 |
|
---|
79 | float128 convertFloat32ToFloat128(float32 a)
|
---|
80 | {
|
---|
81 | float128 result;
|
---|
82 | uint64_t frac_hi, frac_lo;
|
---|
83 | uint64_t tmp_hi, tmp_lo;
|
---|
84 |
|
---|
85 | result.parts.sign = a.parts.sign;
|
---|
86 | result.parts.frac_hi = 0;
|
---|
87 | result.parts.frac_lo = a.parts.fraction;
|
---|
88 | lshift128(result.parts.frac_hi, result.parts.frac_lo,
|
---|
89 | (FLOAT128_FRACTION_SIZE - FLOAT32_FRACTION_SIZE),
|
---|
90 | &frac_hi, &frac_lo);
|
---|
91 | result.parts.frac_hi = frac_hi;
|
---|
92 | result.parts.frac_lo = frac_lo;
|
---|
93 |
|
---|
94 | if ((isFloat32Infinity(a)) || (isFloat32NaN(a))) {
|
---|
95 | result.parts.exp = FLOAT128_MAX_EXPONENT;
|
---|
96 | /* TODO; check if its correct for SigNaNs*/
|
---|
97 | return result;
|
---|
98 | }
|
---|
99 |
|
---|
100 | result.parts.exp = a.parts.exp + ((int) FLOAT128_BIAS - FLOAT32_BIAS);
|
---|
101 | if (a.parts.exp == 0) {
|
---|
102 | /* normalize denormalized numbers */
|
---|
103 |
|
---|
104 | if (eq128(result.parts.frac_hi,
|
---|
105 | result.parts.frac_lo, 0x0ll, 0x0ll)) { /* fix zero */
|
---|
106 | result.parts.exp = 0;
|
---|
107 | return result;
|
---|
108 | }
|
---|
109 |
|
---|
110 | frac_hi = result.parts.frac_hi;
|
---|
111 | frac_lo = result.parts.frac_lo;
|
---|
112 |
|
---|
113 | and128(frac_hi, frac_lo,
|
---|
114 | FLOAT128_HIDDEN_BIT_MASK_HI, FLOAT128_HIDDEN_BIT_MASK_LO,
|
---|
115 | &tmp_hi, &tmp_lo);
|
---|
116 | while (!lt128(0x0ll, 0x0ll, tmp_hi, tmp_lo)) {
|
---|
117 | lshift128(frac_hi, frac_lo, 1, &frac_hi, &frac_lo);
|
---|
118 | --result.parts.exp;
|
---|
119 | }
|
---|
120 |
|
---|
121 | ++result.parts.exp;
|
---|
122 | result.parts.frac_hi = frac_hi;
|
---|
123 | result.parts.frac_lo = frac_lo;
|
---|
124 | }
|
---|
125 |
|
---|
126 | return result;
|
---|
127 | }
|
---|
128 |
|
---|
129 | float128 convertFloat64ToFloat128(float64 a)
|
---|
130 | {
|
---|
131 | float128 result;
|
---|
132 | uint64_t frac_hi, frac_lo;
|
---|
133 | uint64_t tmp_hi, tmp_lo;
|
---|
134 |
|
---|
135 | result.parts.sign = a.parts.sign;
|
---|
136 | result.parts.frac_hi = 0;
|
---|
137 | result.parts.frac_lo = a.parts.fraction;
|
---|
138 | lshift128(result.parts.frac_hi, result.parts.frac_lo,
|
---|
139 | (FLOAT128_FRACTION_SIZE - FLOAT64_FRACTION_SIZE),
|
---|
140 | &frac_hi, &frac_lo);
|
---|
141 | result.parts.frac_hi = frac_hi;
|
---|
142 | result.parts.frac_lo = frac_lo;
|
---|
143 |
|
---|
144 | if ((isFloat64Infinity(a)) || (isFloat64NaN(a))) {
|
---|
145 | result.parts.exp = FLOAT128_MAX_EXPONENT;
|
---|
146 | /* TODO; check if its correct for SigNaNs*/
|
---|
147 | return result;
|
---|
148 | }
|
---|
149 |
|
---|
150 | result.parts.exp = a.parts.exp + ((int) FLOAT128_BIAS - FLOAT64_BIAS);
|
---|
151 | if (a.parts.exp == 0) {
|
---|
152 | /* normalize denormalized numbers */
|
---|
153 |
|
---|
154 | if (eq128(result.parts.frac_hi,
|
---|
155 | result.parts.frac_lo, 0x0ll, 0x0ll)) { /* fix zero */
|
---|
156 | result.parts.exp = 0;
|
---|
157 | return result;
|
---|
158 | }
|
---|
159 |
|
---|
160 | frac_hi = result.parts.frac_hi;
|
---|
161 | frac_lo = result.parts.frac_lo;
|
---|
162 |
|
---|
163 | and128(frac_hi, frac_lo,
|
---|
164 | FLOAT128_HIDDEN_BIT_MASK_HI, FLOAT128_HIDDEN_BIT_MASK_LO,
|
---|
165 | &tmp_hi, &tmp_lo);
|
---|
166 | while (!lt128(0x0ll, 0x0ll, tmp_hi, tmp_lo)) {
|
---|
167 | lshift128(frac_hi, frac_lo, 1, &frac_hi, &frac_lo);
|
---|
168 | --result.parts.exp;
|
---|
169 | }
|
---|
170 |
|
---|
171 | ++result.parts.exp;
|
---|
172 | result.parts.frac_hi = frac_hi;
|
---|
173 | result.parts.frac_lo = frac_lo;
|
---|
174 | }
|
---|
175 |
|
---|
176 | return result;
|
---|
177 | }
|
---|
178 |
|
---|
179 | float32 convertFloat64ToFloat32(float64 a)
|
---|
180 | {
|
---|
181 | float32 result;
|
---|
182 | int32_t exp;
|
---|
183 | uint64_t frac;
|
---|
184 |
|
---|
185 | result.parts.sign = a.parts.sign;
|
---|
186 |
|
---|
187 | if (isFloat64NaN(a)) {
|
---|
188 | result.parts.exp = FLOAT32_MAX_EXPONENT;
|
---|
189 |
|
---|
190 | if (isFloat64SigNaN(a)) {
|
---|
191 | /* set first bit of fraction nonzero */
|
---|
192 | result.parts.fraction = FLOAT32_HIDDEN_BIT_MASK >> 1;
|
---|
193 | return result;
|
---|
194 | }
|
---|
195 |
|
---|
196 | /* fraction nonzero but its first bit is zero */
|
---|
197 | result.parts.fraction = 0x1;
|
---|
198 | return result;
|
---|
199 | }
|
---|
200 |
|
---|
201 | if (isFloat64Infinity(a)) {
|
---|
202 | result.parts.fraction = 0;
|
---|
203 | result.parts.exp = FLOAT32_MAX_EXPONENT;
|
---|
204 | return result;
|
---|
205 | }
|
---|
206 |
|
---|
207 | exp = (int) a.parts.exp - FLOAT64_BIAS + FLOAT32_BIAS;
|
---|
208 |
|
---|
209 | if (exp >= FLOAT32_MAX_EXPONENT) {
|
---|
210 | /* FIXME: overflow */
|
---|
211 | result.parts.fraction = 0;
|
---|
212 | result.parts.exp = FLOAT32_MAX_EXPONENT;
|
---|
213 | return result;
|
---|
214 | } else if (exp <= 0) {
|
---|
215 | /* underflow or denormalized */
|
---|
216 |
|
---|
217 | result.parts.exp = 0;
|
---|
218 |
|
---|
219 | exp *= -1;
|
---|
220 | if (exp > FLOAT32_FRACTION_SIZE) {
|
---|
221 | /* FIXME: underflow */
|
---|
222 | result.parts.fraction = 0;
|
---|
223 | return result;
|
---|
224 | }
|
---|
225 |
|
---|
226 | /* denormalized */
|
---|
227 |
|
---|
228 | frac = a.parts.fraction;
|
---|
229 | frac |= FLOAT64_HIDDEN_BIT_MASK; /* denormalize and set hidden bit */
|
---|
230 |
|
---|
231 | frac >>= (FLOAT64_FRACTION_SIZE - FLOAT32_FRACTION_SIZE + 1);
|
---|
232 |
|
---|
233 | while (exp > 0) {
|
---|
234 | --exp;
|
---|
235 | frac >>= 1;
|
---|
236 | }
|
---|
237 | result.parts.fraction = frac;
|
---|
238 |
|
---|
239 | return result;
|
---|
240 | }
|
---|
241 |
|
---|
242 | result.parts.exp = exp;
|
---|
243 | result.parts.fraction =
|
---|
244 | a.parts.fraction >> (FLOAT64_FRACTION_SIZE - FLOAT32_FRACTION_SIZE);
|
---|
245 | return result;
|
---|
246 | }
|
---|
247 |
|
---|
248 | float32 convertFloat128ToFloat32(float128 a)
|
---|
249 | {
|
---|
250 | float32 result;
|
---|
251 | int32_t exp;
|
---|
252 | uint64_t frac_hi, frac_lo;
|
---|
253 |
|
---|
254 | result.parts.sign = a.parts.sign;
|
---|
255 |
|
---|
256 | if (isFloat128NaN(a)) {
|
---|
257 | result.parts.exp = FLOAT32_MAX_EXPONENT;
|
---|
258 |
|
---|
259 | if (isFloat128SigNaN(a)) {
|
---|
260 | /* set first bit of fraction nonzero */
|
---|
261 | result.parts.fraction = FLOAT32_HIDDEN_BIT_MASK >> 1;
|
---|
262 | return result;
|
---|
263 | }
|
---|
264 |
|
---|
265 | /* fraction nonzero but its first bit is zero */
|
---|
266 | result.parts.fraction = 0x1;
|
---|
267 | return result;
|
---|
268 | }
|
---|
269 |
|
---|
270 | if (isFloat128Infinity(a)) {
|
---|
271 | result.parts.fraction = 0;
|
---|
272 | result.parts.exp = FLOAT32_MAX_EXPONENT;
|
---|
273 | return result;
|
---|
274 | }
|
---|
275 |
|
---|
276 | exp = (int) a.parts.exp - FLOAT128_BIAS + FLOAT32_BIAS;
|
---|
277 |
|
---|
278 | if (exp >= FLOAT32_MAX_EXPONENT) {
|
---|
279 | /* FIXME: overflow */
|
---|
280 | result.parts.fraction = 0;
|
---|
281 | result.parts.exp = FLOAT32_MAX_EXPONENT;
|
---|
282 | return result;
|
---|
283 | } else if (exp <= 0) {
|
---|
284 | /* underflow or denormalized */
|
---|
285 |
|
---|
286 | result.parts.exp = 0;
|
---|
287 |
|
---|
288 | exp *= -1;
|
---|
289 | if (exp > FLOAT32_FRACTION_SIZE) {
|
---|
290 | /* FIXME: underflow */
|
---|
291 | result.parts.fraction = 0;
|
---|
292 | return result;
|
---|
293 | }
|
---|
294 |
|
---|
295 | /* denormalized */
|
---|
296 |
|
---|
297 | frac_hi = a.parts.frac_hi;
|
---|
298 | frac_lo = a.parts.frac_lo;
|
---|
299 |
|
---|
300 | /* denormalize and set hidden bit */
|
---|
301 | frac_hi |= FLOAT128_HIDDEN_BIT_MASK_HI;
|
---|
302 |
|
---|
303 | rshift128(frac_hi, frac_lo,
|
---|
304 | (FLOAT128_FRACTION_SIZE - FLOAT32_FRACTION_SIZE + 1),
|
---|
305 | &frac_hi, &frac_lo);
|
---|
306 |
|
---|
307 | while (exp > 0) {
|
---|
308 | --exp;
|
---|
309 | rshift128(frac_hi, frac_lo, 1, &frac_hi, &frac_lo);
|
---|
310 | }
|
---|
311 | result.parts.fraction = frac_lo;
|
---|
312 |
|
---|
313 | return result;
|
---|
314 | }
|
---|
315 |
|
---|
316 | result.parts.exp = exp;
|
---|
317 | frac_hi = a.parts.frac_hi;
|
---|
318 | frac_lo = a.parts.frac_lo;
|
---|
319 | rshift128(frac_hi, frac_lo,
|
---|
320 | (FLOAT128_FRACTION_SIZE - FLOAT32_FRACTION_SIZE + 1),
|
---|
321 | &frac_hi, &frac_lo);
|
---|
322 | result.parts.fraction = frac_lo;
|
---|
323 | return result;
|
---|
324 | }
|
---|
325 |
|
---|
326 | float64 convertFloat128ToFloat64(float128 a)
|
---|
327 | {
|
---|
328 | float64 result;
|
---|
329 | int32_t exp;
|
---|
330 | uint64_t frac_hi, frac_lo;
|
---|
331 |
|
---|
332 | result.parts.sign = a.parts.sign;
|
---|
333 |
|
---|
334 | if (isFloat128NaN(a)) {
|
---|
335 | result.parts.exp = FLOAT64_MAX_EXPONENT;
|
---|
336 |
|
---|
337 | if (isFloat128SigNaN(a)) {
|
---|
338 | /* set first bit of fraction nonzero */
|
---|
339 | result.parts.fraction = FLOAT64_HIDDEN_BIT_MASK >> 1;
|
---|
340 | return result;
|
---|
341 | }
|
---|
342 |
|
---|
343 | /* fraction nonzero but its first bit is zero */
|
---|
344 | result.parts.fraction = 0x1;
|
---|
345 | return result;
|
---|
346 | }
|
---|
347 |
|
---|
348 | if (isFloat128Infinity(a)) {
|
---|
349 | result.parts.fraction = 0;
|
---|
350 | result.parts.exp = FLOAT64_MAX_EXPONENT;
|
---|
351 | return result;
|
---|
352 | }
|
---|
353 |
|
---|
354 | exp = (int) a.parts.exp - FLOAT128_BIAS + FLOAT64_BIAS;
|
---|
355 |
|
---|
356 | if (exp >= FLOAT64_MAX_EXPONENT) {
|
---|
357 | /* FIXME: overflow */
|
---|
358 | result.parts.fraction = 0;
|
---|
359 | result.parts.exp = FLOAT64_MAX_EXPONENT;
|
---|
360 | return result;
|
---|
361 | } else if (exp <= 0) {
|
---|
362 | /* underflow or denormalized */
|
---|
363 |
|
---|
364 | result.parts.exp = 0;
|
---|
365 |
|
---|
366 | exp *= -1;
|
---|
367 | if (exp > FLOAT64_FRACTION_SIZE) {
|
---|
368 | /* FIXME: underflow */
|
---|
369 | result.parts.fraction = 0;
|
---|
370 | return result;
|
---|
371 | }
|
---|
372 |
|
---|
373 | /* denormalized */
|
---|
374 |
|
---|
375 | frac_hi = a.parts.frac_hi;
|
---|
376 | frac_lo = a.parts.frac_lo;
|
---|
377 |
|
---|
378 | /* denormalize and set hidden bit */
|
---|
379 | frac_hi |= FLOAT128_HIDDEN_BIT_MASK_HI;
|
---|
380 |
|
---|
381 | rshift128(frac_hi, frac_lo,
|
---|
382 | (FLOAT128_FRACTION_SIZE - FLOAT64_FRACTION_SIZE + 1),
|
---|
383 | &frac_hi, &frac_lo);
|
---|
384 |
|
---|
385 | while (exp > 0) {
|
---|
386 | --exp;
|
---|
387 | rshift128(frac_hi, frac_lo, 1, &frac_hi, &frac_lo);
|
---|
388 | }
|
---|
389 | result.parts.fraction = frac_lo;
|
---|
390 |
|
---|
391 | return result;
|
---|
392 | }
|
---|
393 |
|
---|
394 | result.parts.exp = exp;
|
---|
395 | frac_hi = a.parts.frac_hi;
|
---|
396 | frac_lo = a.parts.frac_lo;
|
---|
397 | rshift128(frac_hi, frac_lo,
|
---|
398 | (FLOAT128_FRACTION_SIZE - FLOAT64_FRACTION_SIZE + 1),
|
---|
399 | &frac_hi, &frac_lo);
|
---|
400 | result.parts.fraction = frac_lo;
|
---|
401 | return result;
|
---|
402 | }
|
---|
403 |
|
---|
404 |
|
---|
405 | /**
|
---|
406 | * Helping procedure for converting float32 to uint32.
|
---|
407 | *
|
---|
408 | * @param a Floating point number in normalized form
|
---|
409 | * (NaNs or Inf are not checked).
|
---|
410 | * @return Converted unsigned integer.
|
---|
411 | */
|
---|
412 | static uint32_t _float32_to_uint32_helper(float32 a)
|
---|
413 | {
|
---|
414 | uint32_t frac;
|
---|
415 |
|
---|
416 | if (a.parts.exp < FLOAT32_BIAS) {
|
---|
417 | /* TODO: rounding */
|
---|
418 | return 0;
|
---|
419 | }
|
---|
420 |
|
---|
421 | frac = a.parts.fraction;
|
---|
422 |
|
---|
423 | frac |= FLOAT32_HIDDEN_BIT_MASK;
|
---|
424 | /* shift fraction to left so hidden bit will be the most significant bit */
|
---|
425 | frac <<= 32 - FLOAT32_FRACTION_SIZE - 1;
|
---|
426 |
|
---|
427 | frac >>= 32 - (a.parts.exp - FLOAT32_BIAS) - 1;
|
---|
428 | if ((a.parts.sign == 1) && (frac != 0)) {
|
---|
429 | frac = ~frac;
|
---|
430 | ++frac;
|
---|
431 | }
|
---|
432 |
|
---|
433 | return frac;
|
---|
434 | }
|
---|
435 |
|
---|
436 | /*
|
---|
437 | * FIXME: Im not sure what to return if overflow/underflow happens
|
---|
438 | * - now its the biggest or the smallest int
|
---|
439 | */
|
---|
440 | uint32_t float32_to_uint32(float32 a)
|
---|
441 | {
|
---|
442 | if (isFloat32NaN(a))
|
---|
443 | return UINT32_MAX;
|
---|
444 |
|
---|
445 | if (isFloat32Infinity(a) || (a.parts.exp >= (32 + FLOAT32_BIAS))) {
|
---|
446 | if (a.parts.sign)
|
---|
447 | return UINT32_MIN;
|
---|
448 |
|
---|
449 | return UINT32_MAX;
|
---|
450 | }
|
---|
451 |
|
---|
452 | return _float32_to_uint32_helper(a);
|
---|
453 | }
|
---|
454 |
|
---|
455 | /*
|
---|
456 | * FIXME: Im not sure what to return if overflow/underflow happens
|
---|
457 | * - now its the biggest or the smallest int
|
---|
458 | */
|
---|
459 | int32_t float32_to_int32(float32 a)
|
---|
460 | {
|
---|
461 | if (isFloat32NaN(a))
|
---|
462 | return INT32_MAX;
|
---|
463 |
|
---|
464 | if (isFloat32Infinity(a) || (a.parts.exp >= (32 + FLOAT32_BIAS))) {
|
---|
465 | if (a.parts.sign)
|
---|
466 | return INT32_MIN;
|
---|
467 |
|
---|
468 | return INT32_MAX;
|
---|
469 | }
|
---|
470 |
|
---|
471 | return _float32_to_uint32_helper(a);
|
---|
472 | }
|
---|
473 |
|
---|
474 |
|
---|
475 | /**
|
---|
476 | * Helping procedure for converting float32 to uint64.
|
---|
477 | *
|
---|
478 | * @param a Floating point number in normalized form
|
---|
479 | * (NaNs or Inf are not checked).
|
---|
480 | * @return Converted unsigned integer.
|
---|
481 | */
|
---|
482 | static uint64_t _float32_to_uint64_helper(float32 a)
|
---|
483 | {
|
---|
484 | uint64_t frac;
|
---|
485 |
|
---|
486 | if (a.parts.exp < FLOAT32_BIAS) {
|
---|
487 | /*TODO: rounding*/
|
---|
488 | return 0;
|
---|
489 | }
|
---|
490 |
|
---|
491 | frac = a.parts.fraction;
|
---|
492 |
|
---|
493 | frac |= FLOAT32_HIDDEN_BIT_MASK;
|
---|
494 | /* shift fraction to left so hidden bit will be the most significant bit */
|
---|
495 | frac <<= 64 - FLOAT32_FRACTION_SIZE - 1;
|
---|
496 |
|
---|
497 | frac >>= 64 - (a.parts.exp - FLOAT32_BIAS) - 1;
|
---|
498 | if ((a.parts.sign == 1) && (frac != 0)) {
|
---|
499 | frac = ~frac;
|
---|
500 | ++frac;
|
---|
501 | }
|
---|
502 |
|
---|
503 | return frac;
|
---|
504 | }
|
---|
505 |
|
---|
506 | /*
|
---|
507 | * FIXME: Im not sure what to return if overflow/underflow happens
|
---|
508 | * - now its the biggest or the smallest int
|
---|
509 | */
|
---|
510 | uint64_t float32_to_uint64(float32 a)
|
---|
511 | {
|
---|
512 | if (isFloat32NaN(a))
|
---|
513 | return UINT64_MAX;
|
---|
514 |
|
---|
515 |
|
---|
516 | if (isFloat32Infinity(a) || (a.parts.exp >= (64 + FLOAT32_BIAS))) {
|
---|
517 | if (a.parts.sign)
|
---|
518 | return UINT64_MIN;
|
---|
519 |
|
---|
520 | return UINT64_MAX;
|
---|
521 | }
|
---|
522 |
|
---|
523 | return _float32_to_uint64_helper(a);
|
---|
524 | }
|
---|
525 |
|
---|
526 | /*
|
---|
527 | * FIXME: Im not sure what to return if overflow/underflow happens
|
---|
528 | * - now its the biggest or the smallest int
|
---|
529 | */
|
---|
530 | int64_t float32_to_int64(float32 a)
|
---|
531 | {
|
---|
532 | if (isFloat32NaN(a))
|
---|
533 | return INT64_MAX;
|
---|
534 |
|
---|
535 | if (isFloat32Infinity(a) || (a.parts.exp >= (64 + FLOAT32_BIAS))) {
|
---|
536 | if (a.parts.sign)
|
---|
537 | return INT64_MIN;
|
---|
538 |
|
---|
539 | return INT64_MAX;
|
---|
540 | }
|
---|
541 |
|
---|
542 | return _float32_to_uint64_helper(a);
|
---|
543 | }
|
---|
544 |
|
---|
545 |
|
---|
546 | /**
|
---|
547 | * Helping procedure for converting float64 to uint64.
|
---|
548 | *
|
---|
549 | * @param a Floating point number in normalized form
|
---|
550 | * (NaNs or Inf are not checked).
|
---|
551 | * @return Converted unsigned integer.
|
---|
552 | */
|
---|
553 | static uint64_t _float64_to_uint64_helper(float64 a)
|
---|
554 | {
|
---|
555 | uint64_t frac;
|
---|
556 |
|
---|
557 | if (a.parts.exp < FLOAT64_BIAS) {
|
---|
558 | /*TODO: rounding*/
|
---|
559 | return 0;
|
---|
560 | }
|
---|
561 |
|
---|
562 | frac = a.parts.fraction;
|
---|
563 |
|
---|
564 | frac |= FLOAT64_HIDDEN_BIT_MASK;
|
---|
565 | /* shift fraction to left so hidden bit will be the most significant bit */
|
---|
566 | frac <<= 64 - FLOAT64_FRACTION_SIZE - 1;
|
---|
567 |
|
---|
568 | frac >>= 64 - (a.parts.exp - FLOAT64_BIAS) - 1;
|
---|
569 | if ((a.parts.sign == 1) && (frac != 0)) {
|
---|
570 | frac = ~frac;
|
---|
571 | ++frac;
|
---|
572 | }
|
---|
573 |
|
---|
574 | return frac;
|
---|
575 | }
|
---|
576 |
|
---|
577 | /*
|
---|
578 | * FIXME: Im not sure what to return if overflow/underflow happens
|
---|
579 | * - now its the biggest or the smallest int
|
---|
580 | */
|
---|
581 | uint32_t float64_to_uint32(float64 a)
|
---|
582 | {
|
---|
583 | if (isFloat64NaN(a))
|
---|
584 | return UINT32_MAX;
|
---|
585 |
|
---|
586 | if (isFloat64Infinity(a) || (a.parts.exp >= (32 + FLOAT64_BIAS))) {
|
---|
587 | if (a.parts.sign)
|
---|
588 | return UINT32_MIN;
|
---|
589 |
|
---|
590 | return UINT32_MAX;
|
---|
591 | }
|
---|
592 |
|
---|
593 | return (uint32_t) _float64_to_uint64_helper(a);
|
---|
594 | }
|
---|
595 |
|
---|
596 | /*
|
---|
597 | * FIXME: Im not sure what to return if overflow/underflow happens
|
---|
598 | * - now its the biggest or the smallest int
|
---|
599 | */
|
---|
600 | int32_t float64_to_int32(float64 a)
|
---|
601 | {
|
---|
602 | if (isFloat64NaN(a))
|
---|
603 | return INT32_MAX;
|
---|
604 |
|
---|
605 | if (isFloat64Infinity(a) || (a.parts.exp >= (32 + FLOAT64_BIAS))) {
|
---|
606 | if (a.parts.sign)
|
---|
607 | return INT32_MIN;
|
---|
608 |
|
---|
609 | return INT32_MAX;
|
---|
610 | }
|
---|
611 |
|
---|
612 | return (int32_t) _float64_to_uint64_helper(a);
|
---|
613 | }
|
---|
614 |
|
---|
615 |
|
---|
616 | /*
|
---|
617 | * FIXME: Im not sure what to return if overflow/underflow happens
|
---|
618 | * - now its the biggest or the smallest int
|
---|
619 | */
|
---|
620 | uint64_t float64_to_uint64(float64 a)
|
---|
621 | {
|
---|
622 | if (isFloat64NaN(a))
|
---|
623 | return UINT64_MAX;
|
---|
624 |
|
---|
625 | if (isFloat64Infinity(a) || (a.parts.exp >= (64 + FLOAT64_BIAS))) {
|
---|
626 | if (a.parts.sign)
|
---|
627 | return UINT64_MIN;
|
---|
628 |
|
---|
629 | return UINT64_MAX;
|
---|
630 | }
|
---|
631 |
|
---|
632 | return _float64_to_uint64_helper(a);
|
---|
633 | }
|
---|
634 |
|
---|
635 | /*
|
---|
636 | * FIXME: Im not sure what to return if overflow/underflow happens
|
---|
637 | * - now its the biggest or the smallest int
|
---|
638 | */
|
---|
639 | int64_t float64_to_int64(float64 a)
|
---|
640 | {
|
---|
641 | if (isFloat64NaN(a))
|
---|
642 | return INT64_MAX;
|
---|
643 |
|
---|
644 | if (isFloat64Infinity(a) || (a.parts.exp >= (64 + FLOAT64_BIAS))) {
|
---|
645 | if (a.parts.sign)
|
---|
646 | return INT64_MIN;
|
---|
647 |
|
---|
648 | return INT64_MAX;
|
---|
649 | }
|
---|
650 |
|
---|
651 | return _float64_to_uint64_helper(a);
|
---|
652 | }
|
---|
653 |
|
---|
654 |
|
---|
655 | /**
|
---|
656 | * Helping procedure for converting float128 to uint64.
|
---|
657 | *
|
---|
658 | * @param a Floating point number in normalized form
|
---|
659 | * (NaNs or Inf are not checked).
|
---|
660 | * @return Converted unsigned integer.
|
---|
661 | */
|
---|
662 | static uint64_t _float128_to_uint64_helper(float128 a)
|
---|
663 | {
|
---|
664 | uint64_t frac_hi, frac_lo;
|
---|
665 |
|
---|
666 | if (a.parts.exp < FLOAT128_BIAS) {
|
---|
667 | /*TODO: rounding*/
|
---|
668 | return 0;
|
---|
669 | }
|
---|
670 |
|
---|
671 | frac_hi = a.parts.frac_hi;
|
---|
672 | frac_lo = a.parts.frac_lo;
|
---|
673 |
|
---|
674 | frac_hi |= FLOAT128_HIDDEN_BIT_MASK_HI;
|
---|
675 | /* shift fraction to left so hidden bit will be the most significant bit */
|
---|
676 | lshift128(frac_hi, frac_lo,
|
---|
677 | (128 - FLOAT128_FRACTION_SIZE - 1), &frac_hi, &frac_lo);
|
---|
678 |
|
---|
679 | rshift128(frac_hi, frac_lo,
|
---|
680 | (128 - (a.parts.exp - FLOAT128_BIAS) - 1), &frac_hi, &frac_lo);
|
---|
681 | if ((a.parts.sign == 1) && !eq128(frac_hi, frac_lo, 0x0ll, 0x0ll)) {
|
---|
682 | not128(frac_hi, frac_lo, &frac_hi, &frac_lo);
|
---|
683 | add128(frac_hi, frac_lo, 0x0ll, 0x1ll, &frac_hi, &frac_lo);
|
---|
684 | }
|
---|
685 |
|
---|
686 | return frac_lo;
|
---|
687 | }
|
---|
688 |
|
---|
689 | /*
|
---|
690 | * FIXME: Im not sure what to return if overflow/underflow happens
|
---|
691 | * - now its the biggest or the smallest int
|
---|
692 | */
|
---|
693 | uint32_t float128_to_uint32(float128 a)
|
---|
694 | {
|
---|
695 | if (isFloat128NaN(a))
|
---|
696 | return UINT32_MAX;
|
---|
697 |
|
---|
698 | if (isFloat128Infinity(a) || (a.parts.exp >= (32 + FLOAT128_BIAS))) {
|
---|
699 | if (a.parts.sign)
|
---|
700 | return UINT32_MIN;
|
---|
701 |
|
---|
702 | return UINT32_MAX;
|
---|
703 | }
|
---|
704 |
|
---|
705 | return (uint32_t) _float128_to_uint64_helper(a);
|
---|
706 | }
|
---|
707 |
|
---|
708 | /*
|
---|
709 | * FIXME: Im not sure what to return if overflow/underflow happens
|
---|
710 | * - now its the biggest or the smallest int
|
---|
711 | */
|
---|
712 | int32_t float128_to_int32(float128 a)
|
---|
713 | {
|
---|
714 | if (isFloat128NaN(a))
|
---|
715 | return INT32_MAX;
|
---|
716 |
|
---|
717 | if (isFloat128Infinity(a) || (a.parts.exp >= (32 + FLOAT128_BIAS))) {
|
---|
718 | if (a.parts.sign)
|
---|
719 | return INT32_MIN;
|
---|
720 |
|
---|
721 | return INT32_MAX;
|
---|
722 | }
|
---|
723 |
|
---|
724 | return (int32_t) _float128_to_uint64_helper(a);
|
---|
725 | }
|
---|
726 |
|
---|
727 |
|
---|
728 | /*
|
---|
729 | * FIXME: Im not sure what to return if overflow/underflow happens
|
---|
730 | * - now its the biggest or the smallest int
|
---|
731 | */
|
---|
732 | uint64_t float128_to_uint64(float128 a)
|
---|
733 | {
|
---|
734 | if (isFloat128NaN(a))
|
---|
735 | return UINT64_MAX;
|
---|
736 |
|
---|
737 | if (isFloat128Infinity(a) || (a.parts.exp >= (64 + FLOAT128_BIAS))) {
|
---|
738 | if (a.parts.sign)
|
---|
739 | return UINT64_MIN;
|
---|
740 |
|
---|
741 | return UINT64_MAX;
|
---|
742 | }
|
---|
743 |
|
---|
744 | return _float128_to_uint64_helper(a);
|
---|
745 | }
|
---|
746 |
|
---|
747 | /*
|
---|
748 | * FIXME: Im not sure what to return if overflow/underflow happens
|
---|
749 | * - now its the biggest or the smallest int
|
---|
750 | */
|
---|
751 | int64_t float128_to_int64(float128 a)
|
---|
752 | {
|
---|
753 | if (isFloat128NaN(a))
|
---|
754 | return INT64_MAX;
|
---|
755 |
|
---|
756 | if (isFloat128Infinity(a) || (a.parts.exp >= (64 + FLOAT128_BIAS))) {
|
---|
757 | if (a.parts.sign)
|
---|
758 | return INT64_MIN;
|
---|
759 |
|
---|
760 | return INT64_MAX;
|
---|
761 | }
|
---|
762 |
|
---|
763 | return _float128_to_uint64_helper(a);
|
---|
764 | }
|
---|
765 |
|
---|
766 |
|
---|
767 | float32 uint32_to_float32(uint32_t i)
|
---|
768 | {
|
---|
769 | int counter;
|
---|
770 | int32_t exp;
|
---|
771 | float32 result;
|
---|
772 |
|
---|
773 | result.parts.sign = 0;
|
---|
774 | result.parts.fraction = 0;
|
---|
775 |
|
---|
776 | counter = countZeroes32(i);
|
---|
777 |
|
---|
778 | exp = FLOAT32_BIAS + 32 - counter - 1;
|
---|
779 |
|
---|
780 | if (counter == 32) {
|
---|
781 | result.binary = 0;
|
---|
782 | return result;
|
---|
783 | }
|
---|
784 |
|
---|
785 | if (counter > 0) {
|
---|
786 | i <<= counter - 1;
|
---|
787 | } else {
|
---|
788 | i >>= 1;
|
---|
789 | }
|
---|
790 |
|
---|
791 | roundFloat32(&exp, &i);
|
---|
792 |
|
---|
793 | result.parts.fraction = i >> (32 - FLOAT32_FRACTION_SIZE - 2);
|
---|
794 | result.parts.exp = exp;
|
---|
795 |
|
---|
796 | return result;
|
---|
797 | }
|
---|
798 |
|
---|
799 | float32 int32_to_float32(int32_t i)
|
---|
800 | {
|
---|
801 | float32 result;
|
---|
802 |
|
---|
803 | if (i < 0) {
|
---|
804 | result = uint32_to_float32((uint32_t) (-i));
|
---|
805 | } else {
|
---|
806 | result = uint32_to_float32((uint32_t) i);
|
---|
807 | }
|
---|
808 |
|
---|
809 | result.parts.sign = i < 0;
|
---|
810 |
|
---|
811 | return result;
|
---|
812 | }
|
---|
813 |
|
---|
814 |
|
---|
815 | float32 uint64_to_float32(uint64_t i)
|
---|
816 | {
|
---|
817 | int counter;
|
---|
818 | int32_t exp;
|
---|
819 | uint32_t j;
|
---|
820 | float32 result;
|
---|
821 |
|
---|
822 | result.parts.sign = 0;
|
---|
823 | result.parts.fraction = 0;
|
---|
824 |
|
---|
825 | counter = countZeroes64(i);
|
---|
826 |
|
---|
827 | exp = FLOAT32_BIAS + 64 - counter - 1;
|
---|
828 |
|
---|
829 | if (counter == 64) {
|
---|
830 | result.binary = 0;
|
---|
831 | return result;
|
---|
832 | }
|
---|
833 |
|
---|
834 | /* Shift all to the first 31 bits (31st will be hidden 1) */
|
---|
835 | if (counter > 33) {
|
---|
836 | i <<= counter - 1 - 32;
|
---|
837 | } else {
|
---|
838 | i >>= 1 + 32 - counter;
|
---|
839 | }
|
---|
840 |
|
---|
841 | j = (uint32_t) i;
|
---|
842 | roundFloat32(&exp, &j);
|
---|
843 |
|
---|
844 | result.parts.fraction = j >> (32 - FLOAT32_FRACTION_SIZE - 2);
|
---|
845 | result.parts.exp = exp;
|
---|
846 | return result;
|
---|
847 | }
|
---|
848 |
|
---|
849 | float32 int64_to_float32(int64_t i)
|
---|
850 | {
|
---|
851 | float32 result;
|
---|
852 |
|
---|
853 | if (i < 0) {
|
---|
854 | result = uint64_to_float32((uint64_t) (-i));
|
---|
855 | } else {
|
---|
856 | result = uint64_to_float32((uint64_t) i);
|
---|
857 | }
|
---|
858 |
|
---|
859 | result.parts.sign = i < 0;
|
---|
860 |
|
---|
861 | return result;
|
---|
862 | }
|
---|
863 |
|
---|
864 | float64 uint32_to_float64(uint32_t i)
|
---|
865 | {
|
---|
866 | int counter;
|
---|
867 | int32_t exp;
|
---|
868 | float64 result;
|
---|
869 | uint64_t frac;
|
---|
870 |
|
---|
871 | result.parts.sign = 0;
|
---|
872 | result.parts.fraction = 0;
|
---|
873 |
|
---|
874 | counter = countZeroes32(i);
|
---|
875 |
|
---|
876 | exp = FLOAT64_BIAS + 32 - counter - 1;
|
---|
877 |
|
---|
878 | if (counter == 32) {
|
---|
879 | result.binary = 0;
|
---|
880 | return result;
|
---|
881 | }
|
---|
882 |
|
---|
883 | frac = i;
|
---|
884 | frac <<= counter + 32 - 1;
|
---|
885 |
|
---|
886 | roundFloat64(&exp, &frac);
|
---|
887 |
|
---|
888 | result.parts.fraction = frac >> (64 - FLOAT64_FRACTION_SIZE - 2);
|
---|
889 | result.parts.exp = exp;
|
---|
890 |
|
---|
891 | return result;
|
---|
892 | }
|
---|
893 |
|
---|
894 | float64 int32_to_float64(int32_t i)
|
---|
895 | {
|
---|
896 | float64 result;
|
---|
897 |
|
---|
898 | if (i < 0) {
|
---|
899 | result = uint32_to_float64((uint32_t) (-i));
|
---|
900 | } else {
|
---|
901 | result = uint32_to_float64((uint32_t) i);
|
---|
902 | }
|
---|
903 |
|
---|
904 | result.parts.sign = i < 0;
|
---|
905 |
|
---|
906 | return result;
|
---|
907 | }
|
---|
908 |
|
---|
909 |
|
---|
910 | float64 uint64_to_float64(uint64_t i)
|
---|
911 | {
|
---|
912 | int counter;
|
---|
913 | int32_t exp;
|
---|
914 | float64 result;
|
---|
915 |
|
---|
916 | result.parts.sign = 0;
|
---|
917 | result.parts.fraction = 0;
|
---|
918 |
|
---|
919 | counter = countZeroes64(i);
|
---|
920 |
|
---|
921 | exp = FLOAT64_BIAS + 64 - counter - 1;
|
---|
922 |
|
---|
923 | if (counter == 64) {
|
---|
924 | result.binary = 0;
|
---|
925 | return result;
|
---|
926 | }
|
---|
927 |
|
---|
928 | if (counter > 0) {
|
---|
929 | i <<= counter - 1;
|
---|
930 | } else {
|
---|
931 | i >>= 1;
|
---|
932 | }
|
---|
933 |
|
---|
934 | roundFloat64(&exp, &i);
|
---|
935 |
|
---|
936 | result.parts.fraction = i >> (64 - FLOAT64_FRACTION_SIZE - 2);
|
---|
937 | result.parts.exp = exp;
|
---|
938 | return result;
|
---|
939 | }
|
---|
940 |
|
---|
941 | float64 int64_to_float64(int64_t i)
|
---|
942 | {
|
---|
943 | float64 result;
|
---|
944 |
|
---|
945 | if (i < 0) {
|
---|
946 | result = uint64_to_float64((uint64_t) (-i));
|
---|
947 | } else {
|
---|
948 | result = uint64_to_float64((uint64_t) i);
|
---|
949 | }
|
---|
950 |
|
---|
951 | result.parts.sign = i < 0;
|
---|
952 |
|
---|
953 | return result;
|
---|
954 | }
|
---|
955 |
|
---|
956 |
|
---|
957 | float128 uint32_to_float128(uint32_t i)
|
---|
958 | {
|
---|
959 | int counter;
|
---|
960 | int32_t exp;
|
---|
961 | float128 result;
|
---|
962 | uint64_t frac_hi, frac_lo;
|
---|
963 |
|
---|
964 | result.parts.sign = 0;
|
---|
965 | result.parts.frac_hi = 0;
|
---|
966 | result.parts.frac_lo = 0;
|
---|
967 |
|
---|
968 | counter = countZeroes32(i);
|
---|
969 |
|
---|
970 | exp = FLOAT128_BIAS + 32 - counter - 1;
|
---|
971 |
|
---|
972 | if (counter == 32) {
|
---|
973 | result.binary.hi = 0;
|
---|
974 | result.binary.lo = 0;
|
---|
975 | return result;
|
---|
976 | }
|
---|
977 |
|
---|
978 | frac_hi = 0;
|
---|
979 | frac_lo = i;
|
---|
980 | lshift128(frac_hi, frac_lo, (counter + 96 - 1), &frac_hi, &frac_lo);
|
---|
981 |
|
---|
982 | roundFloat128(&exp, &frac_hi, &frac_lo);
|
---|
983 |
|
---|
984 | rshift128(frac_hi, frac_lo,
|
---|
985 | (128 - FLOAT128_FRACTION_SIZE - 2), &frac_hi, &frac_lo);
|
---|
986 | result.parts.frac_hi = frac_hi;
|
---|
987 | result.parts.frac_lo = frac_lo;
|
---|
988 | result.parts.exp = exp;
|
---|
989 |
|
---|
990 | return result;
|
---|
991 | }
|
---|
992 |
|
---|
993 | float128 int32_to_float128(int32_t i)
|
---|
994 | {
|
---|
995 | float128 result;
|
---|
996 |
|
---|
997 | if (i < 0) {
|
---|
998 | result = uint32_to_float128((uint32_t) (-i));
|
---|
999 | } else {
|
---|
1000 | result = uint32_to_float128((uint32_t) i);
|
---|
1001 | }
|
---|
1002 |
|
---|
1003 | result.parts.sign = i < 0;
|
---|
1004 |
|
---|
1005 | return result;
|
---|
1006 | }
|
---|
1007 |
|
---|
1008 |
|
---|
1009 | float128 uint64_to_float128(uint64_t i)
|
---|
1010 | {
|
---|
1011 | int counter;
|
---|
1012 | int32_t exp;
|
---|
1013 | float128 result;
|
---|
1014 | uint64_t frac_hi, frac_lo;
|
---|
1015 |
|
---|
1016 | result.parts.sign = 0;
|
---|
1017 | result.parts.frac_hi = 0;
|
---|
1018 | result.parts.frac_lo = 0;
|
---|
1019 |
|
---|
1020 | counter = countZeroes64(i);
|
---|
1021 |
|
---|
1022 | exp = FLOAT128_BIAS + 64 - counter - 1;
|
---|
1023 |
|
---|
1024 | if (counter == 64) {
|
---|
1025 | result.binary.hi = 0;
|
---|
1026 | result.binary.lo = 0;
|
---|
1027 | return result;
|
---|
1028 | }
|
---|
1029 |
|
---|
1030 | frac_hi = 0;
|
---|
1031 | frac_lo = i;
|
---|
1032 | lshift128(frac_hi, frac_lo, (counter + 64 - 1), &frac_hi, &frac_lo);
|
---|
1033 |
|
---|
1034 | roundFloat128(&exp, &frac_hi, &frac_lo);
|
---|
1035 |
|
---|
1036 | rshift128(frac_hi, frac_lo,
|
---|
1037 | (128 - FLOAT128_FRACTION_SIZE - 2), &frac_hi, &frac_lo);
|
---|
1038 | result.parts.frac_hi = frac_hi;
|
---|
1039 | result.parts.frac_lo = frac_lo;
|
---|
1040 | result.parts.exp = exp;
|
---|
1041 |
|
---|
1042 | return result;
|
---|
1043 | }
|
---|
1044 |
|
---|
1045 | float128 int64_to_float128(int64_t i)
|
---|
1046 | {
|
---|
1047 | float128 result;
|
---|
1048 |
|
---|
1049 | if (i < 0) {
|
---|
1050 | result = uint64_to_float128((uint64_t) (-i));
|
---|
1051 | } else {
|
---|
1052 | result = uint64_to_float128((uint64_t) i);
|
---|
1053 | }
|
---|
1054 |
|
---|
1055 | result.parts.sign = i < 0;
|
---|
1056 |
|
---|
1057 | return result;
|
---|
1058 | }
|
---|
1059 |
|
---|
1060 | /** @}
|
---|
1061 | */
|
---|