1 | /*
|
---|
2 | * Copyright (c) 2005 Josef Cejka
|
---|
3 | * Copyright (c) 2011 Petr Koupy
|
---|
4 | * All rights reserved.
|
---|
5 | *
|
---|
6 | * Redistribution and use in source and binary forms, with or without
|
---|
7 | * modification, are permitted provided that the following conditions
|
---|
8 | * are met:
|
---|
9 | *
|
---|
10 | * - Redistributions of source code must retain the above copyright
|
---|
11 | * notice, this list of conditions and the following disclaimer.
|
---|
12 | * - Redistributions in binary form must reproduce the above copyright
|
---|
13 | * notice, this list of conditions and the following disclaimer in the
|
---|
14 | * documentation and/or other materials provided with the distribution.
|
---|
15 | * - The name of the author may not be used to endorse or promote products
|
---|
16 | * derived from this software without specific prior written permission.
|
---|
17 | *
|
---|
18 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
---|
19 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
---|
20 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
---|
21 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
---|
22 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
---|
23 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
---|
24 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
---|
25 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
---|
26 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
---|
27 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
---|
28 | */
|
---|
29 |
|
---|
30 | /** @addtogroup softfloat
|
---|
31 | * @{
|
---|
32 | */
|
---|
33 | /** @file Conversion of precision and conversion between integers and floats.
|
---|
34 | */
|
---|
35 |
|
---|
36 | #include "conversion.h"
|
---|
37 | #include "comparison.h"
|
---|
38 | #include "common.h"
|
---|
39 |
|
---|
40 | float64 float32_to_float64(float32 a)
|
---|
41 | {
|
---|
42 | float64 result;
|
---|
43 | uint64_t frac;
|
---|
44 |
|
---|
45 | result.parts.sign = a.parts.sign;
|
---|
46 | result.parts.fraction = a.parts.fraction;
|
---|
47 | result.parts.fraction <<= (FLOAT64_FRACTION_SIZE - FLOAT32_FRACTION_SIZE);
|
---|
48 |
|
---|
49 | if ((is_float32_infinity(a)) || (is_float32_nan(a))) {
|
---|
50 | result.parts.exp = FLOAT64_MAX_EXPONENT;
|
---|
51 | // TODO; check if its correct for SigNaNs
|
---|
52 | return result;
|
---|
53 | }
|
---|
54 |
|
---|
55 | result.parts.exp = a.parts.exp + ((int) FLOAT64_BIAS - FLOAT32_BIAS);
|
---|
56 | if (a.parts.exp == 0) {
|
---|
57 | /* normalize denormalized numbers */
|
---|
58 |
|
---|
59 | if (result.parts.fraction == 0) { /* fix zero */
|
---|
60 | result.parts.exp = 0;
|
---|
61 | return result;
|
---|
62 | }
|
---|
63 |
|
---|
64 | frac = result.parts.fraction;
|
---|
65 |
|
---|
66 | while (!(frac & FLOAT64_HIDDEN_BIT_MASK)) {
|
---|
67 | frac <<= 1;
|
---|
68 | --result.parts.exp;
|
---|
69 | }
|
---|
70 |
|
---|
71 | ++result.parts.exp;
|
---|
72 | result.parts.fraction = frac;
|
---|
73 | }
|
---|
74 |
|
---|
75 | return result;
|
---|
76 | }
|
---|
77 |
|
---|
78 | float128 float32_to_float128(float32 a)
|
---|
79 | {
|
---|
80 | float128 result;
|
---|
81 | uint64_t frac_hi, frac_lo;
|
---|
82 | uint64_t tmp_hi, tmp_lo;
|
---|
83 |
|
---|
84 | result.parts.sign = a.parts.sign;
|
---|
85 | result.parts.frac_hi = 0;
|
---|
86 | result.parts.frac_lo = a.parts.fraction;
|
---|
87 | lshift128(result.parts.frac_hi, result.parts.frac_lo,
|
---|
88 | (FLOAT128_FRACTION_SIZE - FLOAT32_FRACTION_SIZE),
|
---|
89 | &frac_hi, &frac_lo);
|
---|
90 | result.parts.frac_hi = frac_hi;
|
---|
91 | result.parts.frac_lo = frac_lo;
|
---|
92 |
|
---|
93 | if ((is_float32_infinity(a)) || (is_float32_nan(a))) {
|
---|
94 | result.parts.exp = FLOAT128_MAX_EXPONENT;
|
---|
95 | // TODO; check if its correct for SigNaNs
|
---|
96 | return result;
|
---|
97 | }
|
---|
98 |
|
---|
99 | result.parts.exp = a.parts.exp + ((int) FLOAT128_BIAS - FLOAT32_BIAS);
|
---|
100 | if (a.parts.exp == 0) {
|
---|
101 | /* normalize denormalized numbers */
|
---|
102 |
|
---|
103 | if (eq128(result.parts.frac_hi,
|
---|
104 | result.parts.frac_lo, 0x0ll, 0x0ll)) { /* fix zero */
|
---|
105 | result.parts.exp = 0;
|
---|
106 | return result;
|
---|
107 | }
|
---|
108 |
|
---|
109 | frac_hi = result.parts.frac_hi;
|
---|
110 | frac_lo = result.parts.frac_lo;
|
---|
111 |
|
---|
112 | and128(frac_hi, frac_lo,
|
---|
113 | FLOAT128_HIDDEN_BIT_MASK_HI, FLOAT128_HIDDEN_BIT_MASK_LO,
|
---|
114 | &tmp_hi, &tmp_lo);
|
---|
115 | while (!lt128(0x0ll, 0x0ll, tmp_hi, tmp_lo)) {
|
---|
116 | lshift128(frac_hi, frac_lo, 1, &frac_hi, &frac_lo);
|
---|
117 | --result.parts.exp;
|
---|
118 | }
|
---|
119 |
|
---|
120 | ++result.parts.exp;
|
---|
121 | result.parts.frac_hi = frac_hi;
|
---|
122 | result.parts.frac_lo = frac_lo;
|
---|
123 | }
|
---|
124 |
|
---|
125 | return result;
|
---|
126 | }
|
---|
127 |
|
---|
128 | float128 float64_to_float128(float64 a)
|
---|
129 | {
|
---|
130 | float128 result;
|
---|
131 | uint64_t frac_hi, frac_lo;
|
---|
132 | uint64_t tmp_hi, tmp_lo;
|
---|
133 |
|
---|
134 | result.parts.sign = a.parts.sign;
|
---|
135 | result.parts.frac_hi = 0;
|
---|
136 | result.parts.frac_lo = a.parts.fraction;
|
---|
137 | lshift128(result.parts.frac_hi, result.parts.frac_lo,
|
---|
138 | (FLOAT128_FRACTION_SIZE - FLOAT64_FRACTION_SIZE),
|
---|
139 | &frac_hi, &frac_lo);
|
---|
140 | result.parts.frac_hi = frac_hi;
|
---|
141 | result.parts.frac_lo = frac_lo;
|
---|
142 |
|
---|
143 | if ((is_float64_infinity(a)) || (is_float64_nan(a))) {
|
---|
144 | result.parts.exp = FLOAT128_MAX_EXPONENT;
|
---|
145 | // TODO; check if its correct for SigNaNs
|
---|
146 | return result;
|
---|
147 | }
|
---|
148 |
|
---|
149 | result.parts.exp = a.parts.exp + ((int) FLOAT128_BIAS - FLOAT64_BIAS);
|
---|
150 | if (a.parts.exp == 0) {
|
---|
151 | /* normalize denormalized numbers */
|
---|
152 |
|
---|
153 | if (eq128(result.parts.frac_hi,
|
---|
154 | result.parts.frac_lo, 0x0ll, 0x0ll)) { /* fix zero */
|
---|
155 | result.parts.exp = 0;
|
---|
156 | return result;
|
---|
157 | }
|
---|
158 |
|
---|
159 | frac_hi = result.parts.frac_hi;
|
---|
160 | frac_lo = result.parts.frac_lo;
|
---|
161 |
|
---|
162 | and128(frac_hi, frac_lo,
|
---|
163 | FLOAT128_HIDDEN_BIT_MASK_HI, FLOAT128_HIDDEN_BIT_MASK_LO,
|
---|
164 | &tmp_hi, &tmp_lo);
|
---|
165 | while (!lt128(0x0ll, 0x0ll, tmp_hi, tmp_lo)) {
|
---|
166 | lshift128(frac_hi, frac_lo, 1, &frac_hi, &frac_lo);
|
---|
167 | --result.parts.exp;
|
---|
168 | }
|
---|
169 |
|
---|
170 | ++result.parts.exp;
|
---|
171 | result.parts.frac_hi = frac_hi;
|
---|
172 | result.parts.frac_lo = frac_lo;
|
---|
173 | }
|
---|
174 |
|
---|
175 | return result;
|
---|
176 | }
|
---|
177 |
|
---|
178 | float32 float64_to_float32(float64 a)
|
---|
179 | {
|
---|
180 | float32 result;
|
---|
181 | int32_t exp;
|
---|
182 | uint64_t frac;
|
---|
183 |
|
---|
184 | result.parts.sign = a.parts.sign;
|
---|
185 |
|
---|
186 | if (is_float64_nan(a)) {
|
---|
187 | result.parts.exp = FLOAT32_MAX_EXPONENT;
|
---|
188 |
|
---|
189 | if (is_float64_signan(a)) {
|
---|
190 | /* set first bit of fraction nonzero */
|
---|
191 | result.parts.fraction = FLOAT32_HIDDEN_BIT_MASK >> 1;
|
---|
192 | return result;
|
---|
193 | }
|
---|
194 |
|
---|
195 | /* fraction nonzero but its first bit is zero */
|
---|
196 | result.parts.fraction = 0x1;
|
---|
197 | return result;
|
---|
198 | }
|
---|
199 |
|
---|
200 | if (is_float64_infinity(a)) {
|
---|
201 | result.parts.fraction = 0;
|
---|
202 | result.parts.exp = FLOAT32_MAX_EXPONENT;
|
---|
203 | return result;
|
---|
204 | }
|
---|
205 |
|
---|
206 | exp = (int) a.parts.exp - FLOAT64_BIAS + FLOAT32_BIAS;
|
---|
207 |
|
---|
208 | if (exp >= FLOAT32_MAX_EXPONENT) {
|
---|
209 | /* FIXME: overflow */
|
---|
210 | result.parts.fraction = 0;
|
---|
211 | result.parts.exp = FLOAT32_MAX_EXPONENT;
|
---|
212 | return result;
|
---|
213 | } else if (exp <= 0) {
|
---|
214 | /* underflow or denormalized */
|
---|
215 |
|
---|
216 | result.parts.exp = 0;
|
---|
217 |
|
---|
218 | exp *= -1;
|
---|
219 | if (exp > FLOAT32_FRACTION_SIZE) {
|
---|
220 | /* FIXME: underflow */
|
---|
221 | result.parts.fraction = 0;
|
---|
222 | return result;
|
---|
223 | }
|
---|
224 |
|
---|
225 | /* denormalized */
|
---|
226 |
|
---|
227 | frac = a.parts.fraction;
|
---|
228 | frac |= FLOAT64_HIDDEN_BIT_MASK; /* denormalize and set hidden bit */
|
---|
229 |
|
---|
230 | frac >>= (FLOAT64_FRACTION_SIZE - FLOAT32_FRACTION_SIZE + 1);
|
---|
231 |
|
---|
232 | while (exp > 0) {
|
---|
233 | --exp;
|
---|
234 | frac >>= 1;
|
---|
235 | }
|
---|
236 | result.parts.fraction = frac;
|
---|
237 |
|
---|
238 | return result;
|
---|
239 | }
|
---|
240 |
|
---|
241 | result.parts.exp = exp;
|
---|
242 | result.parts.fraction =
|
---|
243 | a.parts.fraction >> (FLOAT64_FRACTION_SIZE - FLOAT32_FRACTION_SIZE);
|
---|
244 | return result;
|
---|
245 | }
|
---|
246 |
|
---|
247 | float32 float128_to_float32(float128 a)
|
---|
248 | {
|
---|
249 | float32 result;
|
---|
250 | int32_t exp;
|
---|
251 | uint64_t frac_hi, frac_lo;
|
---|
252 |
|
---|
253 | result.parts.sign = a.parts.sign;
|
---|
254 |
|
---|
255 | if (is_float128_nan(a)) {
|
---|
256 | result.parts.exp = FLOAT32_MAX_EXPONENT;
|
---|
257 |
|
---|
258 | if (is_float128_signan(a)) {
|
---|
259 | /* set first bit of fraction nonzero */
|
---|
260 | result.parts.fraction = FLOAT32_HIDDEN_BIT_MASK >> 1;
|
---|
261 | return result;
|
---|
262 | }
|
---|
263 |
|
---|
264 | /* fraction nonzero but its first bit is zero */
|
---|
265 | result.parts.fraction = 0x1;
|
---|
266 | return result;
|
---|
267 | }
|
---|
268 |
|
---|
269 | if (is_float128_infinity(a)) {
|
---|
270 | result.parts.fraction = 0;
|
---|
271 | result.parts.exp = FLOAT32_MAX_EXPONENT;
|
---|
272 | return result;
|
---|
273 | }
|
---|
274 |
|
---|
275 | exp = (int) a.parts.exp - FLOAT128_BIAS + FLOAT32_BIAS;
|
---|
276 |
|
---|
277 | if (exp >= FLOAT32_MAX_EXPONENT) {
|
---|
278 | /* FIXME: overflow */
|
---|
279 | result.parts.fraction = 0;
|
---|
280 | result.parts.exp = FLOAT32_MAX_EXPONENT;
|
---|
281 | return result;
|
---|
282 | } else if (exp <= 0) {
|
---|
283 | /* underflow or denormalized */
|
---|
284 |
|
---|
285 | result.parts.exp = 0;
|
---|
286 |
|
---|
287 | exp *= -1;
|
---|
288 | if (exp > FLOAT32_FRACTION_SIZE) {
|
---|
289 | /* FIXME: underflow */
|
---|
290 | result.parts.fraction = 0;
|
---|
291 | return result;
|
---|
292 | }
|
---|
293 |
|
---|
294 | /* denormalized */
|
---|
295 |
|
---|
296 | frac_hi = a.parts.frac_hi;
|
---|
297 | frac_lo = a.parts.frac_lo;
|
---|
298 |
|
---|
299 | /* denormalize and set hidden bit */
|
---|
300 | frac_hi |= FLOAT128_HIDDEN_BIT_MASK_HI;
|
---|
301 |
|
---|
302 | rshift128(frac_hi, frac_lo,
|
---|
303 | (FLOAT128_FRACTION_SIZE - FLOAT32_FRACTION_SIZE + 1),
|
---|
304 | &frac_hi, &frac_lo);
|
---|
305 |
|
---|
306 | while (exp > 0) {
|
---|
307 | --exp;
|
---|
308 | rshift128(frac_hi, frac_lo, 1, &frac_hi, &frac_lo);
|
---|
309 | }
|
---|
310 | result.parts.fraction = frac_lo;
|
---|
311 |
|
---|
312 | return result;
|
---|
313 | }
|
---|
314 |
|
---|
315 | result.parts.exp = exp;
|
---|
316 | frac_hi = a.parts.frac_hi;
|
---|
317 | frac_lo = a.parts.frac_lo;
|
---|
318 | rshift128(frac_hi, frac_lo,
|
---|
319 | (FLOAT128_FRACTION_SIZE - FLOAT32_FRACTION_SIZE + 1),
|
---|
320 | &frac_hi, &frac_lo);
|
---|
321 | result.parts.fraction = frac_lo;
|
---|
322 | return result;
|
---|
323 | }
|
---|
324 |
|
---|
325 | float64 float128_to_float64(float128 a)
|
---|
326 | {
|
---|
327 | float64 result;
|
---|
328 | int32_t exp;
|
---|
329 | uint64_t frac_hi, frac_lo;
|
---|
330 |
|
---|
331 | result.parts.sign = a.parts.sign;
|
---|
332 |
|
---|
333 | if (is_float128_nan(a)) {
|
---|
334 | result.parts.exp = FLOAT64_MAX_EXPONENT;
|
---|
335 |
|
---|
336 | if (is_float128_signan(a)) {
|
---|
337 | /* set first bit of fraction nonzero */
|
---|
338 | result.parts.fraction = FLOAT64_HIDDEN_BIT_MASK >> 1;
|
---|
339 | return result;
|
---|
340 | }
|
---|
341 |
|
---|
342 | /* fraction nonzero but its first bit is zero */
|
---|
343 | result.parts.fraction = 0x1;
|
---|
344 | return result;
|
---|
345 | }
|
---|
346 |
|
---|
347 | if (is_float128_infinity(a)) {
|
---|
348 | result.parts.fraction = 0;
|
---|
349 | result.parts.exp = FLOAT64_MAX_EXPONENT;
|
---|
350 | return result;
|
---|
351 | }
|
---|
352 |
|
---|
353 | exp = (int) a.parts.exp - FLOAT128_BIAS + FLOAT64_BIAS;
|
---|
354 |
|
---|
355 | if (exp >= FLOAT64_MAX_EXPONENT) {
|
---|
356 | /* FIXME: overflow */
|
---|
357 | result.parts.fraction = 0;
|
---|
358 | result.parts.exp = FLOAT64_MAX_EXPONENT;
|
---|
359 | return result;
|
---|
360 | } else if (exp <= 0) {
|
---|
361 | /* underflow or denormalized */
|
---|
362 |
|
---|
363 | result.parts.exp = 0;
|
---|
364 |
|
---|
365 | exp *= -1;
|
---|
366 | if (exp > FLOAT64_FRACTION_SIZE) {
|
---|
367 | /* FIXME: underflow */
|
---|
368 | result.parts.fraction = 0;
|
---|
369 | return result;
|
---|
370 | }
|
---|
371 |
|
---|
372 | /* denormalized */
|
---|
373 |
|
---|
374 | frac_hi = a.parts.frac_hi;
|
---|
375 | frac_lo = a.parts.frac_lo;
|
---|
376 |
|
---|
377 | /* denormalize and set hidden bit */
|
---|
378 | frac_hi |= FLOAT128_HIDDEN_BIT_MASK_HI;
|
---|
379 |
|
---|
380 | rshift128(frac_hi, frac_lo,
|
---|
381 | (FLOAT128_FRACTION_SIZE - FLOAT64_FRACTION_SIZE + 1),
|
---|
382 | &frac_hi, &frac_lo);
|
---|
383 |
|
---|
384 | while (exp > 0) {
|
---|
385 | --exp;
|
---|
386 | rshift128(frac_hi, frac_lo, 1, &frac_hi, &frac_lo);
|
---|
387 | }
|
---|
388 | result.parts.fraction = frac_lo;
|
---|
389 |
|
---|
390 | return result;
|
---|
391 | }
|
---|
392 |
|
---|
393 | result.parts.exp = exp;
|
---|
394 | frac_hi = a.parts.frac_hi;
|
---|
395 | frac_lo = a.parts.frac_lo;
|
---|
396 | rshift128(frac_hi, frac_lo,
|
---|
397 | (FLOAT128_FRACTION_SIZE - FLOAT64_FRACTION_SIZE + 1),
|
---|
398 | &frac_hi, &frac_lo);
|
---|
399 | result.parts.fraction = frac_lo;
|
---|
400 | return result;
|
---|
401 | }
|
---|
402 |
|
---|
403 | /** Helper procedure for converting float32 to uint32.
|
---|
404 | *
|
---|
405 | * @param a Floating point number in normalized form
|
---|
406 | * (NaNs or Inf are not checked).
|
---|
407 | * @return Converted unsigned integer.
|
---|
408 | */
|
---|
409 | static uint32_t _float32_to_uint32_helper(float32 a)
|
---|
410 | {
|
---|
411 | uint32_t frac;
|
---|
412 |
|
---|
413 | if (a.parts.exp < FLOAT32_BIAS) {
|
---|
414 | /* TODO: rounding */
|
---|
415 | return 0;
|
---|
416 | }
|
---|
417 |
|
---|
418 | frac = a.parts.fraction;
|
---|
419 |
|
---|
420 | frac |= FLOAT32_HIDDEN_BIT_MASK;
|
---|
421 | /* shift fraction to left so hidden bit will be the most significant bit */
|
---|
422 | frac <<= 32 - FLOAT32_FRACTION_SIZE - 1;
|
---|
423 |
|
---|
424 | frac >>= 32 - (a.parts.exp - FLOAT32_BIAS) - 1;
|
---|
425 | if ((a.parts.sign == 1) && (frac != 0)) {
|
---|
426 | frac = ~frac;
|
---|
427 | ++frac;
|
---|
428 | }
|
---|
429 |
|
---|
430 | return frac;
|
---|
431 | }
|
---|
432 |
|
---|
433 | /*
|
---|
434 | * FIXME: Im not sure what to return if overflow/underflow happens
|
---|
435 | * - now its the biggest or the smallest int
|
---|
436 | */
|
---|
437 | uint32_t float32_to_uint32(float32 a)
|
---|
438 | {
|
---|
439 | if (is_float32_nan(a))
|
---|
440 | return UINT32_MAX;
|
---|
441 |
|
---|
442 | if (is_float32_infinity(a) || (a.parts.exp >= (32 + FLOAT32_BIAS))) {
|
---|
443 | if (a.parts.sign)
|
---|
444 | return UINT32_MIN;
|
---|
445 |
|
---|
446 | return UINT32_MAX;
|
---|
447 | }
|
---|
448 |
|
---|
449 | return _float32_to_uint32_helper(a);
|
---|
450 | }
|
---|
451 |
|
---|
452 | /*
|
---|
453 | * FIXME: Im not sure what to return if overflow/underflow happens
|
---|
454 | * - now its the biggest or the smallest int
|
---|
455 | */
|
---|
456 | int32_t float32_to_int32(float32 a)
|
---|
457 | {
|
---|
458 | if (is_float32_nan(a))
|
---|
459 | return INT32_MAX;
|
---|
460 |
|
---|
461 | if (is_float32_infinity(a) || (a.parts.exp >= (32 + FLOAT32_BIAS))) {
|
---|
462 | if (a.parts.sign)
|
---|
463 | return INT32_MIN;
|
---|
464 |
|
---|
465 | return INT32_MAX;
|
---|
466 | }
|
---|
467 |
|
---|
468 | return _float32_to_uint32_helper(a);
|
---|
469 | }
|
---|
470 |
|
---|
471 | /** Helper procedure for converting float32 to uint64.
|
---|
472 | *
|
---|
473 | * @param a Floating point number in normalized form
|
---|
474 | * (NaNs or Inf are not checked).
|
---|
475 | * @return Converted unsigned integer.
|
---|
476 | */
|
---|
477 | static uint64_t _float32_to_uint64_helper(float32 a)
|
---|
478 | {
|
---|
479 | uint64_t frac;
|
---|
480 |
|
---|
481 | if (a.parts.exp < FLOAT32_BIAS) {
|
---|
482 | // TODO: rounding
|
---|
483 | return 0;
|
---|
484 | }
|
---|
485 |
|
---|
486 | frac = a.parts.fraction;
|
---|
487 |
|
---|
488 | frac |= FLOAT32_HIDDEN_BIT_MASK;
|
---|
489 | /* shift fraction to left so hidden bit will be the most significant bit */
|
---|
490 | frac <<= 64 - FLOAT32_FRACTION_SIZE - 1;
|
---|
491 |
|
---|
492 | frac >>= 64 - (a.parts.exp - FLOAT32_BIAS) - 1;
|
---|
493 | if ((a.parts.sign == 1) && (frac != 0)) {
|
---|
494 | frac = ~frac;
|
---|
495 | ++frac;
|
---|
496 | }
|
---|
497 |
|
---|
498 | return frac;
|
---|
499 | }
|
---|
500 |
|
---|
501 | /*
|
---|
502 | * FIXME: Im not sure what to return if overflow/underflow happens
|
---|
503 | * - now its the biggest or the smallest int
|
---|
504 | */
|
---|
505 | uint64_t float32_to_uint64(float32 a)
|
---|
506 | {
|
---|
507 | if (is_float32_nan(a))
|
---|
508 | return UINT64_MAX;
|
---|
509 |
|
---|
510 | if (is_float32_infinity(a) || (a.parts.exp >= (64 + FLOAT32_BIAS))) {
|
---|
511 | if (a.parts.sign)
|
---|
512 | return UINT64_MIN;
|
---|
513 |
|
---|
514 | return UINT64_MAX;
|
---|
515 | }
|
---|
516 |
|
---|
517 | return _float32_to_uint64_helper(a);
|
---|
518 | }
|
---|
519 |
|
---|
520 | /*
|
---|
521 | * FIXME: Im not sure what to return if overflow/underflow happens
|
---|
522 | * - now its the biggest or the smallest int
|
---|
523 | */
|
---|
524 | int64_t float32_to_int64(float32 a)
|
---|
525 | {
|
---|
526 | if (is_float32_nan(a))
|
---|
527 | return INT64_MAX;
|
---|
528 |
|
---|
529 | if (is_float32_infinity(a) || (a.parts.exp >= (64 + FLOAT32_BIAS))) {
|
---|
530 | if (a.parts.sign)
|
---|
531 | return INT64_MIN;
|
---|
532 |
|
---|
533 | return INT64_MAX;
|
---|
534 | }
|
---|
535 |
|
---|
536 | return _float32_to_uint64_helper(a);
|
---|
537 | }
|
---|
538 |
|
---|
539 | /** Helper procedure for converting float64 to uint64.
|
---|
540 | *
|
---|
541 | * @param a Floating point number in normalized form
|
---|
542 | * (NaNs or Inf are not checked).
|
---|
543 | * @return Converted unsigned integer.
|
---|
544 | */
|
---|
545 | static uint64_t _float64_to_uint64_helper(float64 a)
|
---|
546 | {
|
---|
547 | uint64_t frac;
|
---|
548 |
|
---|
549 | if (a.parts.exp < FLOAT64_BIAS) {
|
---|
550 | // TODO: rounding
|
---|
551 | return 0;
|
---|
552 | }
|
---|
553 |
|
---|
554 | frac = a.parts.fraction;
|
---|
555 |
|
---|
556 | frac |= FLOAT64_HIDDEN_BIT_MASK;
|
---|
557 | /* shift fraction to left so hidden bit will be the most significant bit */
|
---|
558 | frac <<= 64 - FLOAT64_FRACTION_SIZE - 1;
|
---|
559 |
|
---|
560 | frac >>= 64 - (a.parts.exp - FLOAT64_BIAS) - 1;
|
---|
561 | if ((a.parts.sign == 1) && (frac != 0)) {
|
---|
562 | frac = ~frac;
|
---|
563 | ++frac;
|
---|
564 | }
|
---|
565 |
|
---|
566 | return frac;
|
---|
567 | }
|
---|
568 |
|
---|
569 | /*
|
---|
570 | * FIXME: Im not sure what to return if overflow/underflow happens
|
---|
571 | * - now its the biggest or the smallest int
|
---|
572 | */
|
---|
573 | uint32_t float64_to_uint32(float64 a)
|
---|
574 | {
|
---|
575 | if (is_float64_nan(a))
|
---|
576 | return UINT32_MAX;
|
---|
577 |
|
---|
578 | if (is_float64_infinity(a) || (a.parts.exp >= (32 + FLOAT64_BIAS))) {
|
---|
579 | if (a.parts.sign)
|
---|
580 | return UINT32_MIN;
|
---|
581 |
|
---|
582 | return UINT32_MAX;
|
---|
583 | }
|
---|
584 |
|
---|
585 | return (uint32_t) _float64_to_uint64_helper(a);
|
---|
586 | }
|
---|
587 |
|
---|
588 | /*
|
---|
589 | * FIXME: Im not sure what to return if overflow/underflow happens
|
---|
590 | * - now its the biggest or the smallest int
|
---|
591 | */
|
---|
592 | int32_t float64_to_int32(float64 a)
|
---|
593 | {
|
---|
594 | if (is_float64_nan(a))
|
---|
595 | return INT32_MAX;
|
---|
596 |
|
---|
597 | if (is_float64_infinity(a) || (a.parts.exp >= (32 + FLOAT64_BIAS))) {
|
---|
598 | if (a.parts.sign)
|
---|
599 | return INT32_MIN;
|
---|
600 |
|
---|
601 | return INT32_MAX;
|
---|
602 | }
|
---|
603 |
|
---|
604 | return (int32_t) _float64_to_uint64_helper(a);
|
---|
605 | }
|
---|
606 |
|
---|
607 | /*
|
---|
608 | * FIXME: Im not sure what to return if overflow/underflow happens
|
---|
609 | * - now its the biggest or the smallest int
|
---|
610 | */
|
---|
611 | uint64_t float64_to_uint64(float64 a)
|
---|
612 | {
|
---|
613 | if (is_float64_nan(a))
|
---|
614 | return UINT64_MAX;
|
---|
615 |
|
---|
616 | if (is_float64_infinity(a) || (a.parts.exp >= (64 + FLOAT64_BIAS))) {
|
---|
617 | if (a.parts.sign)
|
---|
618 | return UINT64_MIN;
|
---|
619 |
|
---|
620 | return UINT64_MAX;
|
---|
621 | }
|
---|
622 |
|
---|
623 | return _float64_to_uint64_helper(a);
|
---|
624 | }
|
---|
625 |
|
---|
626 | /*
|
---|
627 | * FIXME: Im not sure what to return if overflow/underflow happens
|
---|
628 | * - now its the biggest or the smallest int
|
---|
629 | */
|
---|
630 | int64_t float64_to_int64(float64 a)
|
---|
631 | {
|
---|
632 | if (is_float64_nan(a))
|
---|
633 | return INT64_MAX;
|
---|
634 |
|
---|
635 | if (is_float64_infinity(a) || (a.parts.exp >= (64 + FLOAT64_BIAS))) {
|
---|
636 | if (a.parts.sign)
|
---|
637 | return INT64_MIN;
|
---|
638 |
|
---|
639 | return INT64_MAX;
|
---|
640 | }
|
---|
641 |
|
---|
642 | return _float64_to_uint64_helper(a);
|
---|
643 | }
|
---|
644 |
|
---|
645 | /** Helper procedure for converting float128 to uint64.
|
---|
646 | *
|
---|
647 | * @param a Floating point number in normalized form
|
---|
648 | * (NaNs or Inf are not checked).
|
---|
649 | * @return Converted unsigned integer.
|
---|
650 | */
|
---|
651 | static uint64_t _float128_to_uint64_helper(float128 a)
|
---|
652 | {
|
---|
653 | uint64_t frac_hi, frac_lo;
|
---|
654 |
|
---|
655 | if (a.parts.exp < FLOAT128_BIAS) {
|
---|
656 | // TODO: rounding
|
---|
657 | return 0;
|
---|
658 | }
|
---|
659 |
|
---|
660 | frac_hi = a.parts.frac_hi;
|
---|
661 | frac_lo = a.parts.frac_lo;
|
---|
662 |
|
---|
663 | frac_hi |= FLOAT128_HIDDEN_BIT_MASK_HI;
|
---|
664 | /* shift fraction to left so hidden bit will be the most significant bit */
|
---|
665 | lshift128(frac_hi, frac_lo,
|
---|
666 | (128 - FLOAT128_FRACTION_SIZE - 1), &frac_hi, &frac_lo);
|
---|
667 |
|
---|
668 | rshift128(frac_hi, frac_lo,
|
---|
669 | (128 - (a.parts.exp - FLOAT128_BIAS) - 1), &frac_hi, &frac_lo);
|
---|
670 | if ((a.parts.sign == 1) && !eq128(frac_hi, frac_lo, 0x0ll, 0x0ll)) {
|
---|
671 | not128(frac_hi, frac_lo, &frac_hi, &frac_lo);
|
---|
672 | add128(frac_hi, frac_lo, 0x0ll, 0x1ll, &frac_hi, &frac_lo);
|
---|
673 | }
|
---|
674 |
|
---|
675 | return frac_lo;
|
---|
676 | }
|
---|
677 |
|
---|
678 | /*
|
---|
679 | * FIXME: Im not sure what to return if overflow/underflow happens
|
---|
680 | * - now its the biggest or the smallest int
|
---|
681 | */
|
---|
682 | uint32_t float128_to_uint32(float128 a)
|
---|
683 | {
|
---|
684 | if (is_float128_nan(a))
|
---|
685 | return UINT32_MAX;
|
---|
686 |
|
---|
687 | if (is_float128_infinity(a) || (a.parts.exp >= (32 + FLOAT128_BIAS))) {
|
---|
688 | if (a.parts.sign)
|
---|
689 | return UINT32_MIN;
|
---|
690 |
|
---|
691 | return UINT32_MAX;
|
---|
692 | }
|
---|
693 |
|
---|
694 | return (uint32_t) _float128_to_uint64_helper(a);
|
---|
695 | }
|
---|
696 |
|
---|
697 | /*
|
---|
698 | * FIXME: Im not sure what to return if overflow/underflow happens
|
---|
699 | * - now its the biggest or the smallest int
|
---|
700 | */
|
---|
701 | int32_t float128_to_int32(float128 a)
|
---|
702 | {
|
---|
703 | if (is_float128_nan(a))
|
---|
704 | return INT32_MAX;
|
---|
705 |
|
---|
706 | if (is_float128_infinity(a) || (a.parts.exp >= (32 + FLOAT128_BIAS))) {
|
---|
707 | if (a.parts.sign)
|
---|
708 | return INT32_MIN;
|
---|
709 |
|
---|
710 | return INT32_MAX;
|
---|
711 | }
|
---|
712 |
|
---|
713 | return (int32_t) _float128_to_uint64_helper(a);
|
---|
714 | }
|
---|
715 |
|
---|
716 | /*
|
---|
717 | * FIXME: Im not sure what to return if overflow/underflow happens
|
---|
718 | * - now its the biggest or the smallest int
|
---|
719 | */
|
---|
720 | uint64_t float128_to_uint64(float128 a)
|
---|
721 | {
|
---|
722 | if (is_float128_nan(a))
|
---|
723 | return UINT64_MAX;
|
---|
724 |
|
---|
725 | if (is_float128_infinity(a) || (a.parts.exp >= (64 + FLOAT128_BIAS))) {
|
---|
726 | if (a.parts.sign)
|
---|
727 | return UINT64_MIN;
|
---|
728 |
|
---|
729 | return UINT64_MAX;
|
---|
730 | }
|
---|
731 |
|
---|
732 | return _float128_to_uint64_helper(a);
|
---|
733 | }
|
---|
734 |
|
---|
735 | /*
|
---|
736 | * FIXME: Im not sure what to return if overflow/underflow happens
|
---|
737 | * - now its the biggest or the smallest int
|
---|
738 | */
|
---|
739 | int64_t float128_to_int64(float128 a)
|
---|
740 | {
|
---|
741 | if (is_float128_nan(a))
|
---|
742 | return INT64_MAX;
|
---|
743 |
|
---|
744 | if (is_float128_infinity(a) || (a.parts.exp >= (64 + FLOAT128_BIAS))) {
|
---|
745 | if (a.parts.sign)
|
---|
746 | return INT64_MIN;
|
---|
747 |
|
---|
748 | return INT64_MAX;
|
---|
749 | }
|
---|
750 |
|
---|
751 | return _float128_to_uint64_helper(a);
|
---|
752 | }
|
---|
753 |
|
---|
754 | float32 uint32_to_float32(uint32_t i)
|
---|
755 | {
|
---|
756 | int counter;
|
---|
757 | int32_t exp;
|
---|
758 | float32 result;
|
---|
759 |
|
---|
760 | result.parts.sign = 0;
|
---|
761 | result.parts.fraction = 0;
|
---|
762 |
|
---|
763 | counter = count_zeroes32(i);
|
---|
764 |
|
---|
765 | exp = FLOAT32_BIAS + 32 - counter - 1;
|
---|
766 |
|
---|
767 | if (counter == 32) {
|
---|
768 | result.bin = 0;
|
---|
769 | return result;
|
---|
770 | }
|
---|
771 |
|
---|
772 | if (counter > 0) {
|
---|
773 | i <<= counter - 1;
|
---|
774 | } else {
|
---|
775 | i >>= 1;
|
---|
776 | }
|
---|
777 |
|
---|
778 | round_float32(&exp, &i);
|
---|
779 |
|
---|
780 | result.parts.fraction = i >> (32 - FLOAT32_FRACTION_SIZE - 2);
|
---|
781 | result.parts.exp = exp;
|
---|
782 |
|
---|
783 | return result;
|
---|
784 | }
|
---|
785 |
|
---|
786 | float32 int32_to_float32(int32_t i)
|
---|
787 | {
|
---|
788 | float32 result;
|
---|
789 |
|
---|
790 | if (i < 0)
|
---|
791 | result = uint32_to_float32((uint32_t) (-i));
|
---|
792 | else
|
---|
793 | result = uint32_to_float32((uint32_t) i);
|
---|
794 |
|
---|
795 | result.parts.sign = i < 0;
|
---|
796 |
|
---|
797 | return result;
|
---|
798 | }
|
---|
799 |
|
---|
800 | float32 uint64_to_float32(uint64_t i)
|
---|
801 | {
|
---|
802 | int counter;
|
---|
803 | int32_t exp;
|
---|
804 | uint32_t j;
|
---|
805 | float32 result;
|
---|
806 |
|
---|
807 | result.parts.sign = 0;
|
---|
808 | result.parts.fraction = 0;
|
---|
809 |
|
---|
810 | counter = count_zeroes64(i);
|
---|
811 |
|
---|
812 | exp = FLOAT32_BIAS + 64 - counter - 1;
|
---|
813 |
|
---|
814 | if (counter == 64) {
|
---|
815 | result.bin = 0;
|
---|
816 | return result;
|
---|
817 | }
|
---|
818 |
|
---|
819 | /* Shift all to the first 31 bits (31st will be hidden 1) */
|
---|
820 | if (counter > 33) {
|
---|
821 | i <<= counter - 1 - 32;
|
---|
822 | } else {
|
---|
823 | i >>= 1 + 32 - counter;
|
---|
824 | }
|
---|
825 |
|
---|
826 | j = (uint32_t) i;
|
---|
827 | round_float32(&exp, &j);
|
---|
828 |
|
---|
829 | result.parts.fraction = j >> (32 - FLOAT32_FRACTION_SIZE - 2);
|
---|
830 | result.parts.exp = exp;
|
---|
831 | return result;
|
---|
832 | }
|
---|
833 |
|
---|
834 | float32 int64_to_float32(int64_t i)
|
---|
835 | {
|
---|
836 | float32 result;
|
---|
837 |
|
---|
838 | if (i < 0)
|
---|
839 | result = uint64_to_float32((uint64_t) (-i));
|
---|
840 | else
|
---|
841 | result = uint64_to_float32((uint64_t) i);
|
---|
842 |
|
---|
843 | result.parts.sign = i < 0;
|
---|
844 |
|
---|
845 | return result;
|
---|
846 | }
|
---|
847 |
|
---|
848 | float64 uint32_to_float64(uint32_t i)
|
---|
849 | {
|
---|
850 | int counter;
|
---|
851 | int32_t exp;
|
---|
852 | float64 result;
|
---|
853 | uint64_t frac;
|
---|
854 |
|
---|
855 | result.parts.sign = 0;
|
---|
856 | result.parts.fraction = 0;
|
---|
857 |
|
---|
858 | counter = count_zeroes32(i);
|
---|
859 |
|
---|
860 | exp = FLOAT64_BIAS + 32 - counter - 1;
|
---|
861 |
|
---|
862 | if (counter == 32) {
|
---|
863 | result.bin = 0;
|
---|
864 | return result;
|
---|
865 | }
|
---|
866 |
|
---|
867 | frac = i;
|
---|
868 | frac <<= counter + 32 - 1;
|
---|
869 |
|
---|
870 | round_float64(&exp, &frac);
|
---|
871 |
|
---|
872 | result.parts.fraction = frac >> (64 - FLOAT64_FRACTION_SIZE - 2);
|
---|
873 | result.parts.exp = exp;
|
---|
874 |
|
---|
875 | return result;
|
---|
876 | }
|
---|
877 |
|
---|
878 | float64 int32_to_float64(int32_t i)
|
---|
879 | {
|
---|
880 | float64 result;
|
---|
881 |
|
---|
882 | if (i < 0)
|
---|
883 | result = uint32_to_float64((uint32_t) (-i));
|
---|
884 | else
|
---|
885 | result = uint32_to_float64((uint32_t) i);
|
---|
886 |
|
---|
887 | result.parts.sign = i < 0;
|
---|
888 |
|
---|
889 | return result;
|
---|
890 | }
|
---|
891 |
|
---|
892 | float64 uint64_to_float64(uint64_t i)
|
---|
893 | {
|
---|
894 | int counter;
|
---|
895 | int32_t exp;
|
---|
896 | float64 result;
|
---|
897 |
|
---|
898 | result.parts.sign = 0;
|
---|
899 | result.parts.fraction = 0;
|
---|
900 |
|
---|
901 | counter = count_zeroes64(i);
|
---|
902 |
|
---|
903 | exp = FLOAT64_BIAS + 64 - counter - 1;
|
---|
904 |
|
---|
905 | if (counter == 64) {
|
---|
906 | result.bin = 0;
|
---|
907 | return result;
|
---|
908 | }
|
---|
909 |
|
---|
910 | if (counter > 0) {
|
---|
911 | i <<= counter - 1;
|
---|
912 | } else {
|
---|
913 | i >>= 1;
|
---|
914 | }
|
---|
915 |
|
---|
916 | round_float64(&exp, &i);
|
---|
917 |
|
---|
918 | result.parts.fraction = i >> (64 - FLOAT64_FRACTION_SIZE - 2);
|
---|
919 | result.parts.exp = exp;
|
---|
920 | return result;
|
---|
921 | }
|
---|
922 |
|
---|
923 | float64 int64_to_float64(int64_t i)
|
---|
924 | {
|
---|
925 | float64 result;
|
---|
926 |
|
---|
927 | if (i < 0)
|
---|
928 | result = uint64_to_float64((uint64_t) (-i));
|
---|
929 | else
|
---|
930 | result = uint64_to_float64((uint64_t) i);
|
---|
931 |
|
---|
932 | result.parts.sign = i < 0;
|
---|
933 |
|
---|
934 | return result;
|
---|
935 | }
|
---|
936 |
|
---|
937 | float128 uint32_to_float128(uint32_t i)
|
---|
938 | {
|
---|
939 | int counter;
|
---|
940 | int32_t exp;
|
---|
941 | float128 result;
|
---|
942 | uint64_t frac_hi, frac_lo;
|
---|
943 |
|
---|
944 | result.parts.sign = 0;
|
---|
945 | result.parts.frac_hi = 0;
|
---|
946 | result.parts.frac_lo = 0;
|
---|
947 |
|
---|
948 | counter = count_zeroes32(i);
|
---|
949 |
|
---|
950 | exp = FLOAT128_BIAS + 32 - counter - 1;
|
---|
951 |
|
---|
952 | if (counter == 32) {
|
---|
953 | result.bin.hi = 0;
|
---|
954 | result.bin.lo = 0;
|
---|
955 | return result;
|
---|
956 | }
|
---|
957 |
|
---|
958 | frac_hi = 0;
|
---|
959 | frac_lo = i;
|
---|
960 | lshift128(frac_hi, frac_lo, (counter + 96 - 1), &frac_hi, &frac_lo);
|
---|
961 |
|
---|
962 | round_float128(&exp, &frac_hi, &frac_lo);
|
---|
963 |
|
---|
964 | rshift128(frac_hi, frac_lo,
|
---|
965 | (128 - FLOAT128_FRACTION_SIZE - 2), &frac_hi, &frac_lo);
|
---|
966 | result.parts.frac_hi = frac_hi;
|
---|
967 | result.parts.frac_lo = frac_lo;
|
---|
968 | result.parts.exp = exp;
|
---|
969 |
|
---|
970 | return result;
|
---|
971 | }
|
---|
972 |
|
---|
973 | float128 int32_to_float128(int32_t i)
|
---|
974 | {
|
---|
975 | float128 result;
|
---|
976 |
|
---|
977 | if (i < 0)
|
---|
978 | result = uint32_to_float128((uint32_t) (-i));
|
---|
979 | else
|
---|
980 | result = uint32_to_float128((uint32_t) i);
|
---|
981 |
|
---|
982 | result.parts.sign = i < 0;
|
---|
983 |
|
---|
984 | return result;
|
---|
985 | }
|
---|
986 |
|
---|
987 |
|
---|
988 | float128 uint64_to_float128(uint64_t i)
|
---|
989 | {
|
---|
990 | int counter;
|
---|
991 | int32_t exp;
|
---|
992 | float128 result;
|
---|
993 | uint64_t frac_hi, frac_lo;
|
---|
994 |
|
---|
995 | result.parts.sign = 0;
|
---|
996 | result.parts.frac_hi = 0;
|
---|
997 | result.parts.frac_lo = 0;
|
---|
998 |
|
---|
999 | counter = count_zeroes64(i);
|
---|
1000 |
|
---|
1001 | exp = FLOAT128_BIAS + 64 - counter - 1;
|
---|
1002 |
|
---|
1003 | if (counter == 64) {
|
---|
1004 | result.bin.hi = 0;
|
---|
1005 | result.bin.lo = 0;
|
---|
1006 | return result;
|
---|
1007 | }
|
---|
1008 |
|
---|
1009 | frac_hi = 0;
|
---|
1010 | frac_lo = i;
|
---|
1011 | lshift128(frac_hi, frac_lo, (counter + 64 - 1), &frac_hi, &frac_lo);
|
---|
1012 |
|
---|
1013 | round_float128(&exp, &frac_hi, &frac_lo);
|
---|
1014 |
|
---|
1015 | rshift128(frac_hi, frac_lo,
|
---|
1016 | (128 - FLOAT128_FRACTION_SIZE - 2), &frac_hi, &frac_lo);
|
---|
1017 | result.parts.frac_hi = frac_hi;
|
---|
1018 | result.parts.frac_lo = frac_lo;
|
---|
1019 | result.parts.exp = exp;
|
---|
1020 |
|
---|
1021 | return result;
|
---|
1022 | }
|
---|
1023 |
|
---|
1024 | float128 int64_to_float128(int64_t i)
|
---|
1025 | {
|
---|
1026 | float128 result;
|
---|
1027 |
|
---|
1028 | if (i < 0)
|
---|
1029 | result = uint64_to_float128((uint64_t) (-i));
|
---|
1030 | else
|
---|
1031 | result = uint64_to_float128((uint64_t) i);
|
---|
1032 |
|
---|
1033 | result.parts.sign = i < 0;
|
---|
1034 |
|
---|
1035 | return result;
|
---|
1036 | }
|
---|
1037 |
|
---|
1038 | #ifdef float32_t
|
---|
1039 |
|
---|
1040 | float32_t __floatsisf(int32_t i)
|
---|
1041 | {
|
---|
1042 | float32_u res;
|
---|
1043 | res.data = int32_to_float32(i);
|
---|
1044 |
|
---|
1045 | return res.val;
|
---|
1046 | }
|
---|
1047 |
|
---|
1048 | float32_t __floatdisf(int64_t i)
|
---|
1049 | {
|
---|
1050 | float32_u res;
|
---|
1051 | res.data = int64_to_float32(i);
|
---|
1052 |
|
---|
1053 | return res.val;
|
---|
1054 | }
|
---|
1055 |
|
---|
1056 | float32_t __floatunsisf(uint32_t i)
|
---|
1057 | {
|
---|
1058 | float32_u res;
|
---|
1059 | res.data = uint32_to_float32(i);
|
---|
1060 |
|
---|
1061 | return res.val;
|
---|
1062 | }
|
---|
1063 |
|
---|
1064 | float32_t __floatundisf(uint64_t i)
|
---|
1065 | {
|
---|
1066 | float32_u res;
|
---|
1067 | res.data = uint64_to_float32(i);
|
---|
1068 |
|
---|
1069 | return res.val;
|
---|
1070 | }
|
---|
1071 |
|
---|
1072 | int32_t __fixsfsi(float32_t a)
|
---|
1073 | {
|
---|
1074 | float32_u ua;
|
---|
1075 | ua.val = a;
|
---|
1076 |
|
---|
1077 | return float32_to_int32(ua.data);
|
---|
1078 | }
|
---|
1079 |
|
---|
1080 | int64_t __fixsfdi(float32_t a)
|
---|
1081 | {
|
---|
1082 | float32_u ua;
|
---|
1083 | ua.val = a;
|
---|
1084 |
|
---|
1085 | return float32_to_int64(ua.data);
|
---|
1086 | }
|
---|
1087 |
|
---|
1088 | uint32_t __fixunssfsi(float32_t a)
|
---|
1089 | {
|
---|
1090 | float32_u ua;
|
---|
1091 | ua.val = a;
|
---|
1092 |
|
---|
1093 | return float32_to_uint32(ua.data);
|
---|
1094 | }
|
---|
1095 |
|
---|
1096 | uint64_t __fixunssfdi(float32_t a)
|
---|
1097 | {
|
---|
1098 | float32_u ua;
|
---|
1099 | ua.val = a;
|
---|
1100 |
|
---|
1101 | return float32_to_uint64(ua.data);
|
---|
1102 | }
|
---|
1103 |
|
---|
1104 | int32_t __aeabi_f2iz(float32_t a)
|
---|
1105 | {
|
---|
1106 | float32_u ua;
|
---|
1107 | ua.val = a;
|
---|
1108 |
|
---|
1109 | return float32_to_int32(ua.data);
|
---|
1110 | }
|
---|
1111 |
|
---|
1112 | int64_t __aeabi_f2lz(float32_t a)
|
---|
1113 | {
|
---|
1114 | float32_u ua;
|
---|
1115 | ua.val = a;
|
---|
1116 |
|
---|
1117 | return float32_to_int64(ua.data);
|
---|
1118 | }
|
---|
1119 |
|
---|
1120 | uint32_t __aeabi_f2uiz(float32_t a)
|
---|
1121 | {
|
---|
1122 | float32_u ua;
|
---|
1123 | ua.val = a;
|
---|
1124 |
|
---|
1125 | return float32_to_uint32(ua.data);
|
---|
1126 | }
|
---|
1127 |
|
---|
1128 | float32_t __aeabi_i2f(int32_t i)
|
---|
1129 | {
|
---|
1130 | float32_u res;
|
---|
1131 | res.data = int32_to_float32(i);
|
---|
1132 |
|
---|
1133 | return res.val;
|
---|
1134 | }
|
---|
1135 |
|
---|
1136 | float32_t __aeabi_l2f(int64_t i)
|
---|
1137 | {
|
---|
1138 | float32_u res;
|
---|
1139 | res.data = int64_to_float32(i);
|
---|
1140 |
|
---|
1141 | return res.val;
|
---|
1142 | }
|
---|
1143 |
|
---|
1144 | float32_t __aeabi_ui2f(uint32_t i)
|
---|
1145 | {
|
---|
1146 | float32_u res;
|
---|
1147 | res.data = uint32_to_float32(i);
|
---|
1148 |
|
---|
1149 | return res.val;
|
---|
1150 | }
|
---|
1151 |
|
---|
1152 | float32_t __aeabi_ul2f(uint64_t i)
|
---|
1153 | {
|
---|
1154 | float32_u res;
|
---|
1155 | res.data = uint64_to_float32(i);
|
---|
1156 |
|
---|
1157 | return res.val;
|
---|
1158 | }
|
---|
1159 |
|
---|
1160 | #endif
|
---|
1161 |
|
---|
1162 | #ifdef float64_t
|
---|
1163 |
|
---|
1164 | float64_t __floatsidf(int32_t i)
|
---|
1165 | {
|
---|
1166 | float64_u res;
|
---|
1167 | res.data = int32_to_float64(i);
|
---|
1168 |
|
---|
1169 | return res.val;
|
---|
1170 | }
|
---|
1171 |
|
---|
1172 | float64_t __floatdidf(int64_t i)
|
---|
1173 | {
|
---|
1174 | float64_u res;
|
---|
1175 | res.data = int64_to_float64(i);
|
---|
1176 |
|
---|
1177 | return res.val;
|
---|
1178 | }
|
---|
1179 |
|
---|
1180 | float64_t __floatunsidf(uint32_t i)
|
---|
1181 | {
|
---|
1182 | float64_u res;
|
---|
1183 | res.data = uint32_to_float64(i);
|
---|
1184 |
|
---|
1185 | return res.val;
|
---|
1186 | }
|
---|
1187 |
|
---|
1188 | float64_t __floatundidf(uint64_t i)
|
---|
1189 | {
|
---|
1190 | float64_u res;
|
---|
1191 | res.data = uint64_to_float64(i);
|
---|
1192 |
|
---|
1193 | return res.val;
|
---|
1194 | }
|
---|
1195 |
|
---|
1196 | uint32_t __fixunsdfsi(float64_t a)
|
---|
1197 | {
|
---|
1198 | float64_u ua;
|
---|
1199 | ua.val = a;
|
---|
1200 |
|
---|
1201 | return float64_to_uint32(ua.data);
|
---|
1202 | }
|
---|
1203 |
|
---|
1204 | uint64_t __fixunsdfdi(float64_t a)
|
---|
1205 | {
|
---|
1206 | float64_u ua;
|
---|
1207 | ua.val = a;
|
---|
1208 |
|
---|
1209 | return float64_to_uint64(ua.data);
|
---|
1210 | }
|
---|
1211 |
|
---|
1212 | int32_t __fixdfsi(float64_t a)
|
---|
1213 | {
|
---|
1214 | float64_u ua;
|
---|
1215 | ua.val = a;
|
---|
1216 |
|
---|
1217 | return float64_to_int32(ua.data);
|
---|
1218 | }
|
---|
1219 |
|
---|
1220 | int64_t __fixdfdi(float64_t a)
|
---|
1221 | {
|
---|
1222 | float64_u ua;
|
---|
1223 | ua.val = a;
|
---|
1224 |
|
---|
1225 | return float64_to_int64(ua.data);
|
---|
1226 | }
|
---|
1227 |
|
---|
1228 | float64_t __aeabi_i2d(int32_t i)
|
---|
1229 | {
|
---|
1230 | float64_u res;
|
---|
1231 | res.data = int32_to_float64(i);
|
---|
1232 |
|
---|
1233 | return res.val;
|
---|
1234 | }
|
---|
1235 |
|
---|
1236 | float64_t __aeabi_ui2d(uint32_t i)
|
---|
1237 | {
|
---|
1238 | float64_u res;
|
---|
1239 | res.data = uint32_to_float64(i);
|
---|
1240 |
|
---|
1241 | return res.val;
|
---|
1242 | }
|
---|
1243 |
|
---|
1244 | float64_t __aeabi_l2d(int64_t i)
|
---|
1245 | {
|
---|
1246 | float64_u res;
|
---|
1247 | res.data = int64_to_float64(i);
|
---|
1248 |
|
---|
1249 | return res.val;
|
---|
1250 | }
|
---|
1251 |
|
---|
1252 | int32_t __aeabi_d2iz(float64_t a)
|
---|
1253 | {
|
---|
1254 | float64_u ua;
|
---|
1255 | ua.val = a;
|
---|
1256 |
|
---|
1257 | return float64_to_int32(ua.data);
|
---|
1258 | }
|
---|
1259 |
|
---|
1260 | int64_t __aeabi_d2lz(float64_t a)
|
---|
1261 | {
|
---|
1262 | float64_u ua;
|
---|
1263 | ua.val = a;
|
---|
1264 |
|
---|
1265 | return float64_to_int64(ua.data);
|
---|
1266 | }
|
---|
1267 |
|
---|
1268 | uint32_t __aeabi_d2uiz(float64_t a)
|
---|
1269 | {
|
---|
1270 | float64_u ua;
|
---|
1271 | ua.val = a;
|
---|
1272 |
|
---|
1273 | return float64_to_uint32(ua.data);
|
---|
1274 | }
|
---|
1275 |
|
---|
1276 | #endif
|
---|
1277 |
|
---|
1278 | #ifdef float128_t
|
---|
1279 |
|
---|
1280 | float128_t __floatsitf(int32_t i)
|
---|
1281 | {
|
---|
1282 | float128_u res;
|
---|
1283 | res.data = int32_to_float128(i);
|
---|
1284 |
|
---|
1285 | return res.val;
|
---|
1286 | }
|
---|
1287 |
|
---|
1288 | float128_t __floatditf(int64_t i)
|
---|
1289 | {
|
---|
1290 | float128_u res;
|
---|
1291 | res.data = int64_to_float128(i);
|
---|
1292 |
|
---|
1293 | return res.val;
|
---|
1294 | }
|
---|
1295 |
|
---|
1296 | float128_t __floatunsitf(uint32_t i)
|
---|
1297 | {
|
---|
1298 | float128_u res;
|
---|
1299 | res.data = uint32_to_float128(i);
|
---|
1300 |
|
---|
1301 | return res.val;
|
---|
1302 | }
|
---|
1303 |
|
---|
1304 | float128_t __floatunditf(uint64_t i)
|
---|
1305 | {
|
---|
1306 | float128_u res;
|
---|
1307 | res.data = uint64_to_float128(i);
|
---|
1308 |
|
---|
1309 | return res.val;
|
---|
1310 | }
|
---|
1311 |
|
---|
1312 | int32_t __fixtfsi(float128_t a)
|
---|
1313 | {
|
---|
1314 | float128_u ua;
|
---|
1315 | ua.val = a;
|
---|
1316 |
|
---|
1317 | return float128_to_int32(ua.data);
|
---|
1318 | }
|
---|
1319 |
|
---|
1320 | int64_t __fixtfdi(float128_t a)
|
---|
1321 | {
|
---|
1322 | float128_u ua;
|
---|
1323 | ua.val = a;
|
---|
1324 |
|
---|
1325 | return float128_to_uint64(ua.data);
|
---|
1326 | }
|
---|
1327 |
|
---|
1328 | uint32_t __fixunstfsi(float128_t a)
|
---|
1329 | {
|
---|
1330 | float128_u ua;
|
---|
1331 | ua.val = a;
|
---|
1332 |
|
---|
1333 | return float128_to_uint32(ua.data);
|
---|
1334 | }
|
---|
1335 |
|
---|
1336 | uint64_t __fixunstfdi(float128_t a)
|
---|
1337 | {
|
---|
1338 | float128_u ua;
|
---|
1339 | ua.val = a;
|
---|
1340 |
|
---|
1341 | return float128_to_uint64(ua.data);
|
---|
1342 | }
|
---|
1343 |
|
---|
1344 | int32_t _Qp_qtoi(float128_t *a)
|
---|
1345 | {
|
---|
1346 | return __fixtfsi(*a);
|
---|
1347 | }
|
---|
1348 |
|
---|
1349 | int64_t _Qp_qtox(float128_t *a)
|
---|
1350 | {
|
---|
1351 | return __fixunstfdi(*a);
|
---|
1352 | }
|
---|
1353 |
|
---|
1354 | uint32_t _Qp_qtoui(float128_t *a)
|
---|
1355 | {
|
---|
1356 | return __fixunstfsi(*a);
|
---|
1357 | }
|
---|
1358 |
|
---|
1359 | uint64_t _Qp_qtoux(float128_t *a)
|
---|
1360 | {
|
---|
1361 | return __fixunstfdi(*a);
|
---|
1362 | }
|
---|
1363 |
|
---|
1364 | void _Qp_itoq(float128_t *c, int32_t a)
|
---|
1365 | {
|
---|
1366 | *c = __floatsitf(a);
|
---|
1367 | }
|
---|
1368 |
|
---|
1369 | void _Qp_xtoq(float128_t *c, int64_t a)
|
---|
1370 | {
|
---|
1371 | *c = __floatditf(a);
|
---|
1372 | }
|
---|
1373 |
|
---|
1374 | void _Qp_uitoq(float128_t *c, uint32_t a)
|
---|
1375 | {
|
---|
1376 | *c = __floatunsitf(a);
|
---|
1377 | }
|
---|
1378 |
|
---|
1379 | void _Qp_uxtoq(float128_t *c, uint64_t a)
|
---|
1380 | {
|
---|
1381 | *c = __floatunditf(a);
|
---|
1382 | }
|
---|
1383 |
|
---|
1384 | #endif
|
---|
1385 |
|
---|
1386 | #if (defined(float32_t) && defined(float64_t))
|
---|
1387 |
|
---|
1388 | float32_t __truncdfsf2(float64_t a)
|
---|
1389 | {
|
---|
1390 | float64_u ua;
|
---|
1391 | ua.val = a;
|
---|
1392 |
|
---|
1393 | float32_u res;
|
---|
1394 | res.data = float64_to_float32(ua.data);
|
---|
1395 |
|
---|
1396 | return res.val;
|
---|
1397 | }
|
---|
1398 |
|
---|
1399 | float64_t __extendsfdf2(float32_t a)
|
---|
1400 | {
|
---|
1401 | float32_u ua;
|
---|
1402 | ua.val = a;
|
---|
1403 |
|
---|
1404 | float64_u res;
|
---|
1405 | res.data = float32_to_float64(ua.data);
|
---|
1406 |
|
---|
1407 | return res.val;
|
---|
1408 | }
|
---|
1409 |
|
---|
1410 | float64_t __aeabi_f2d(float32_t a)
|
---|
1411 | {
|
---|
1412 | float32_u ua;
|
---|
1413 | ua.val = a;
|
---|
1414 |
|
---|
1415 | float64_u res;
|
---|
1416 | res.data = float32_to_float64(ua.data);
|
---|
1417 |
|
---|
1418 | return res.val;
|
---|
1419 | }
|
---|
1420 |
|
---|
1421 | float32_t __aeabi_d2f(float64_t a)
|
---|
1422 | {
|
---|
1423 | float64_u ua;
|
---|
1424 | ua.val = a;
|
---|
1425 |
|
---|
1426 | float32_u res;
|
---|
1427 | res.data = float64_to_float32(ua.data);
|
---|
1428 |
|
---|
1429 | return res.val;
|
---|
1430 | }
|
---|
1431 |
|
---|
1432 | #endif
|
---|
1433 |
|
---|
1434 | #if (defined(float32_t) && defined(float128_t))
|
---|
1435 |
|
---|
1436 | float32_t __trunctfsf2(float128_t a)
|
---|
1437 | {
|
---|
1438 | float128_u ua;
|
---|
1439 | ua.val = a;
|
---|
1440 |
|
---|
1441 | float32_u res;
|
---|
1442 | res.data = float128_to_float32(ua.data);
|
---|
1443 |
|
---|
1444 | return res.val;
|
---|
1445 | }
|
---|
1446 |
|
---|
1447 | float128_t __extendsftf2(float32_t a)
|
---|
1448 | {
|
---|
1449 | float32_u ua;
|
---|
1450 | ua.val = a;
|
---|
1451 |
|
---|
1452 | float128_u res;
|
---|
1453 | res.data = float32_to_float128(ua.data);
|
---|
1454 |
|
---|
1455 | return res.val;
|
---|
1456 | }
|
---|
1457 |
|
---|
1458 | void _Qp_stoq(float128_t *c, float32_t a)
|
---|
1459 | {
|
---|
1460 | *c = __extendsftf2(a);
|
---|
1461 | }
|
---|
1462 |
|
---|
1463 | float32_t _Qp_qtos(float128_t *a)
|
---|
1464 | {
|
---|
1465 | return __trunctfsf2(*a);
|
---|
1466 | }
|
---|
1467 |
|
---|
1468 | #endif
|
---|
1469 |
|
---|
1470 | #if (defined(float64_t) && defined(float128_t))
|
---|
1471 |
|
---|
1472 | float64_t __trunctfdf2(float128_t a)
|
---|
1473 | {
|
---|
1474 | float128_u ua;
|
---|
1475 | ua.val = a;
|
---|
1476 |
|
---|
1477 | float64_u res;
|
---|
1478 | res.data = float128_to_float64(ua.data);
|
---|
1479 |
|
---|
1480 | return res.val;
|
---|
1481 | }
|
---|
1482 |
|
---|
1483 | float128_t __extenddftf2(float64_t a)
|
---|
1484 | {
|
---|
1485 | float64_u ua;
|
---|
1486 | ua.val = a;
|
---|
1487 |
|
---|
1488 | float128_u res;
|
---|
1489 | res.data = float64_to_float128(ua.data);
|
---|
1490 |
|
---|
1491 | return res.val;
|
---|
1492 | }
|
---|
1493 |
|
---|
1494 | void _Qp_dtoq(float128_t *c, float64_t a)
|
---|
1495 | {
|
---|
1496 | *c = __extenddftf2(a);
|
---|
1497 | }
|
---|
1498 |
|
---|
1499 | float64_t _Qp_qtod(float128_t *a)
|
---|
1500 | {
|
---|
1501 | return __trunctfdf2(*a);
|
---|
1502 | }
|
---|
1503 |
|
---|
1504 | #endif
|
---|
1505 |
|
---|
1506 | /** @}
|
---|
1507 | */
|
---|