source: mainline/uspace/lib/math/generic/log.c@ f23dbf4

Last change on this file since f23dbf4 was 19520ba9, checked in by Maurizio Lombardi <mlombard@…>, 4 years ago

math: sync log() to FreeBSD 11.2

  • Property mode set to 100644
File size: 4.5 KB
Line 
1/*
2 * ====================================================
3 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
4 *
5 * Developed at SunSoft, a Sun Microsystems, Inc. business.
6 * Permission to use, copy, modify, and distribute this
7 * software is freely granted, provided that this notice
8 * is preserved.
9 * ====================================================
10 */
11
12/** @addtogroup libmath
13 * @{
14 */
15/** @file log mathematical function
16 */
17
18/* log(x)
19 * Return the logarithm of x
20 *
21 * Method :
22 * 1. Argument Reduction: find k and f such that
23 * x = 2^k * (1+f),
24 * where sqrt(2)/2 < 1+f < sqrt(2) .
25 *
26 * 2. Approximation of log(1+f).
27 * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
28 * = 2s + 2/3 s**3 + 2/5 s**5 + .....,
29 * = 2s + s*R
30 * We use a special Remez algorithm on [0,0.1716] to generate
31 * a polynomial of degree 14 to approximate R The maximum error
32 * of this polynomial approximation is bounded by 2**-58.45. In
33 * other words,
34 * 2 4 6 8 10 12 14
35 * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s
36 * (the values of Lg1 to Lg7 are listed in the program)
37 * and
38 * | 2 14 | -58.45
39 * | Lg1*s +...+Lg7*s - R(z) | <= 2
40 * | |
41 * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
42 * In order to guarantee error in log below 1ulp, we compute log
43 * by
44 * log(1+f) = f - s*(f - R) (if f is not too large)
45 * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
46 *
47 * 3. Finally, log(x) = k*ln2 + log(1+f).
48 * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
49 * Here ln2 is split into two floating point number:
50 * ln2_hi + ln2_lo,
51 * where n*ln2_hi is always exact for |n| < 2000.
52 *
53 * Special cases:
54 * log(x) is NaN with signal if x < 0 (including -INF) ;
55 * log(+INF) is +INF; log(0) is -INF with signal;
56 * log(NaN) is that NaN with no signal.
57 *
58 * Accuracy:
59 * according to an error analysis, the error is always less than
60 * 1 ulp (unit in the last place).
61 *
62 * Constants:
63 * The hexadecimal values are the intended ones for the following
64 * constants. The decimal values may be used, provided that the
65 * compiler will convert from decimal to binary accurately enough
66 * to produce the hexadecimal values shown.
67 */
68
69#include <math.h>
70#include <stdint.h>
71
72#include "internal.h"
73
74static const double
75ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
76ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
77two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */
78Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
79Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
80Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
81Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
82Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
83Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
84Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
85
86static const double zero = 0.0;
87static volatile double vzero = 0.0;
88
89
90double log(double x)
91{
92 double hfsq,f,s,z,R,w,t1,t2,dk;
93 int32_t k,hx,i,j;
94 uint32_t lx;
95
96 EXTRACT_WORDS(hx,lx,x);
97
98 k=0;
99 if (hx < 0x00100000) { /* x < 2**-1022 */
100 if (((hx&0x7fffffff)|lx)==0)
101 return -two54/vzero; /* log(+-0)=-inf */
102 if (hx<0) return (x-x)/zero; /* log(-#) = NaN */
103 k -= 54; x *= two54; /* subnormal number, scale up x */
104 GET_HIGH_WORD(hx,x);
105 }
106 if (hx >= 0x7ff00000) return x+x;
107 k += (hx>>20)-1023;
108 hx &= 0x000fffff;
109 i = (hx+0x95f64)&0x100000;
110 SET_HIGH_WORD(x,hx|(i^0x3ff00000)); /* normalize x or x/2 */
111 k += (i>>20);
112 f = x-1.0;
113 if((0x000fffff&(2+hx))<3) { /* -2**-20 <= f < 2**-20 */
114 if(f==zero) {
115 if(k==0) {
116 return zero;
117 } else {
118 dk=(double)k;
119 return dk*ln2_hi+dk*ln2_lo;
120 }
121 }
122 R = f*f*(0.5-0.33333333333333333*f);
123 if(k==0) return f-R; else {dk=(double)k;
124 return dk*ln2_hi-((R-dk*ln2_lo)-f);}
125 }
126 s = f/(2.0+f);
127 dk = (double)k;
128 z = s*s;
129 i = hx-0x6147a;
130 w = z*z;
131 j = 0x6b851-hx;
132 t1= w*(Lg2+w*(Lg4+w*Lg6));
133 t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
134 i |= j;
135 R = t2+t1;
136 if(i>0) {
137 hfsq=0.5*f*f;
138 if(k==0) return f-(hfsq-s*(hfsq+R)); else
139 return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);
140 } else {
141 if(k==0) return f-s*(f-R); else
142 return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f);
143 }
144}
145
146/** @}
147 */
Note: See TracBrowser for help on using the repository browser.