source: mainline/uspace/lib/math/generic/log.c@ ec6081c

Last change on this file since ec6081c was ec6081c, checked in by Maurizio Lombardi <mlombard@…>, 4 years ago

limb: add the log() function

  • Property mode set to 100644
File size: 4.0 KB
Line 
1/*
2 * ====================================================
3 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
4 *
5 * Developed at SunSoft, a Sun Microsystems, Inc. business.
6 * Permission to use, copy, modify, and distribute this
7 * software is freely granted, provided that this notice
8 * is preserved.
9 * ====================================================
10 */
11
12/** @addtogroup libmath
13 * @{
14 */
15/** @file log mathematical function
16 */
17
18/* log(x)
19 * Return the logarithm of x
20 *
21 * Method :
22 * 1. Argument Reduction: find k and f such that
23 * x = 2^k * (1+f),
24 * where sqrt(2)/2 < 1+f < sqrt(2) .
25 *
26 * 2. Approximation of log(1+f).
27 * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
28 * = 2s + 2/3 s**3 + 2/5 s**5 + .....,
29 * = 2s + s*R
30 * We use a special Remez algorithm on [0,0.1716] to generate
31 * a polynomial of degree 14 to approximate R The maximum error
32 * of this polynomial approximation is bounded by 2**-58.45. In
33 * other words,
34 * 2 4 6 8 10 12 14
35 * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s
36 * (the values of Lg1 to Lg7 are listed in the program)
37 * and
38 * | 2 14 | -58.45
39 * | Lg1*s +...+Lg7*s - R(z) | <= 2
40 * | |
41 * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
42 * In order to guarantee error in log below 1ulp, we compute log
43 * by
44 * log(1+f) = f - s*(f - R) (if f is not too large)
45 * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
46 *
47 * 3. Finally, log(x) = k*ln2 + log(1+f).
48 * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
49 * Here ln2 is split into two floating point number:
50 * ln2_hi + ln2_lo,
51 * where n*ln2_hi is always exact for |n| < 2000.
52 *
53 * Special cases:
54 * log(x) is NaN with signal if x < 0 (including -INF) ;
55 * log(+INF) is +INF; log(0) is -INF with signal;
56 * log(NaN) is that NaN with no signal.
57 *
58 * Accuracy:
59 * according to an error analysis, the error is always less than
60 * 1 ulp (unit in the last place).
61 *
62 * Constants:
63 * The hexadecimal values are the intended ones for the following
64 * constants. The decimal values may be used, provided that the
65 * compiler will convert from decimal to binary accurately enough
66 * to produce the hexadecimal values shown.
67 */
68
69#include <math.h>
70#include <stdint.h>
71static const double
72ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
73ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
74Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
75Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
76Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
77Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
78Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
79Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
80Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
81
82double log(double x)
83{
84 union {double f; uint64_t i;} u = {x};
85 double_t hfsq,f,s,z,R,w,t1,t2,dk;
86 uint32_t hx;
87 int k;
88 hx = u.i>>32;
89 k = 0;
90 if (hx < 0x00100000 || hx>>31) {
91 if (u.i<<1 == 0)
92 return -1/(x*x); /* log(+-0)=-inf */
93 if (hx>>31)
94 return (x-x)/0.0; /* log(-#) = NaN */
95 /* subnormal number, scale x up */
96 k -= 54;
97 x *= 0x1p54;
98 u.f = x;
99 hx = u.i>>32;
100 } else if (hx >= 0x7ff00000) {
101 return x;
102 } else if (hx == 0x3ff00000 && u.i<<32 == 0)
103 return 0;
104
105 /* reduce x into [sqrt(2)/2, sqrt(2)] */
106 hx += 0x3ff00000 - 0x3fe6a09e;
107 k += (int)(hx>>20) - 0x3ff;
108 hx = (hx&0x000fffff) + 0x3fe6a09e;
109 u.i = (uint64_t)hx<<32 | (u.i&0xffffffff);
110 x = u.f;
111 f = x - 1.0;
112 hfsq = 0.5*f*f;
113 s = f/(2.0+f);
114 z = s*s;
115 w = z*z;
116 t1 = w*(Lg2+w*(Lg4+w*Lg6));
117 t2 = z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
118 R = t2 + t1;
119 dk = k;
120
121 return s*(hfsq+R) + dk*ln2_lo - hfsq + f + dk*ln2_hi;
122}
123
124/** @}
125 */
Note: See TracBrowser for help on using the repository browser.