[992ffa6] | 1 | /*
|
---|
| 2 | * Copyright (c) 2015 Jiri Svoboda
|
---|
| 3 | * Copyright (c) 2014 Martin Decky
|
---|
| 4 | * All rights reserved.
|
---|
| 5 | *
|
---|
| 6 | * Redistribution and use in source and binary forms, with or without
|
---|
| 7 | * modification, are permitted provided that the following conditions
|
---|
| 8 | * are met:
|
---|
| 9 | *
|
---|
| 10 | * - Redistributions of source code must retain the above copyright
|
---|
| 11 | * notice, this list of conditions and the following disclaimer.
|
---|
| 12 | * - Redistributions in binary form must reproduce the above copyright
|
---|
| 13 | * notice, this list of conditions and the following disclaimer in the
|
---|
| 14 | * documentation and/or other materials provided with the distribution.
|
---|
| 15 | * - The name of the author may not be used to endorse or promote products
|
---|
| 16 | * derived from this software without specific prior written permission.
|
---|
| 17 | *
|
---|
| 18 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
---|
| 19 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
---|
| 20 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
---|
| 21 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
---|
| 22 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
---|
| 23 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
---|
| 24 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
---|
| 25 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
---|
| 26 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
---|
| 27 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
---|
| 28 | */
|
---|
| 29 |
|
---|
| 30 | /** @addtogroup libmath
|
---|
| 31 | * @{
|
---|
| 32 | */
|
---|
| 33 | /** @file
|
---|
| 34 | */
|
---|
| 35 |
|
---|
| 36 | #include <exp.h>
|
---|
| 37 | #include <math.h>
|
---|
| 38 |
|
---|
| 39 | #define TAYLOR_DEGREE_32 13
|
---|
| 40 | #define TAYLOR_DEGREE_64 21
|
---|
| 41 |
|
---|
| 42 | /** Precomputed values for factorial (starting from 1!) */
|
---|
| 43 | static float64_t factorials[TAYLOR_DEGREE_64] = {
|
---|
| 44 | 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800,
|
---|
| 45 | 479001600, 6227020800.0L, 87178291200.0L, 1307674368000.0L,
|
---|
| 46 | 20922789888000.0L, 355687428096000.0L, 6402373705728000.0L,
|
---|
| 47 | 121645100408832000.0L, 2432902008176640000.0L, 51090942171709440000.0L
|
---|
| 48 | };
|
---|
| 49 |
|
---|
[9adb61d] | 50 | /** Exponential approximation by Taylor series (32-bit floating point)
|
---|
[992ffa6] | 51 | *
|
---|
| 52 | * Compute the approximation of exponential by a Taylor
|
---|
| 53 | * series (using the first TAYLOR_DEGREE terms).
|
---|
| 54 | * The approximation is reasonably accurate for
|
---|
| 55 | * arguments within the interval XXXX.
|
---|
| 56 | *
|
---|
| 57 | * @param arg Argument.
|
---|
| 58 | *
|
---|
| 59 | * @return Exponential value approximation.
|
---|
| 60 | *
|
---|
| 61 | */
|
---|
[9adb61d] | 62 | static float32_t taylor_exp_32(float32_t arg)
|
---|
[992ffa6] | 63 | {
|
---|
[9adb61d] | 64 | float32_t ret = 1;
|
---|
| 65 | float32_t nom = 1;
|
---|
[992ffa6] | 66 |
|
---|
| 67 | for (unsigned int i = 0; i < TAYLOR_DEGREE_32; i++) {
|
---|
| 68 | nom *= arg;
|
---|
| 69 | ret += nom / factorials[i];
|
---|
| 70 | }
|
---|
| 71 |
|
---|
| 72 | return ret;
|
---|
| 73 | }
|
---|
| 74 |
|
---|
[9adb61d] | 75 | /** Exponential approximation by Taylor series (64-bit floating point)
|
---|
[992ffa6] | 76 | *
|
---|
| 77 | * Compute the approximation of exponential by a Taylor
|
---|
| 78 | * series (using the first TAYLOR_DEGREE terms).
|
---|
| 79 | * The approximation is reasonably accurate for
|
---|
| 80 | * arguments within the interval XXXX.
|
---|
| 81 | *
|
---|
| 82 | * @param arg Argument.
|
---|
| 83 | *
|
---|
| 84 | * @return Exponential value approximation.
|
---|
| 85 | *
|
---|
| 86 | */
|
---|
| 87 | static float64_t taylor_exp_64(float64_t arg)
|
---|
| 88 | {
|
---|
| 89 | float64_t ret = 1;
|
---|
| 90 | float64_t nom = 1;
|
---|
| 91 |
|
---|
| 92 | for (unsigned int i = 0; i < TAYLOR_DEGREE_64; i++) {
|
---|
| 93 | nom *= arg;
|
---|
| 94 | ret += nom / factorials[i];
|
---|
| 95 | }
|
---|
| 96 |
|
---|
| 97 | return ret;
|
---|
| 98 | }
|
---|
| 99 |
|
---|
[9adb61d] | 100 | /** Exponential (32-bit floating point)
|
---|
[992ffa6] | 101 | *
|
---|
| 102 | * Compute exponential value.
|
---|
| 103 | *
|
---|
| 104 | * @param arg Exponential argument.
|
---|
| 105 | *
|
---|
| 106 | * @return Exponential value.
|
---|
| 107 | *
|
---|
| 108 | */
|
---|
| 109 | float32_t float32_exp(float32_t arg)
|
---|
| 110 | {
|
---|
| 111 | float32_t f;
|
---|
[e6f5766] | 112 | float32_t i;
|
---|
[992ffa6] | 113 | float32_u r;
|
---|
| 114 |
|
---|
| 115 | /*
|
---|
| 116 | * e^a = (2 ^ log2(e))^a = 2 ^ (log2(e) * a)
|
---|
| 117 | * log2(e) * a = i + f | f in [0, 1]
|
---|
| 118 | * e ^ a = 2 ^ (i + f) = 2^f * 2^i = (e ^ log(2))^f * 2^i =
|
---|
| 119 | * e^(log(2)*f) * 2^i
|
---|
| 120 | */
|
---|
| 121 |
|
---|
[9adb61d] | 122 | i = trunc_f32(arg * M_LOG2E);
|
---|
[e6f5766] | 123 | f = arg * M_LOG2E - i;
|
---|
[992ffa6] | 124 |
|
---|
| 125 | r.val = taylor_exp_32(M_LN2 * f);
|
---|
[e6f5766] | 126 | r.data.parts.exp += i;
|
---|
[992ffa6] | 127 | return r.val;
|
---|
| 128 | }
|
---|
| 129 |
|
---|
[9adb61d] | 130 | /** Exponential (64-bit floating point)
|
---|
[992ffa6] | 131 | *
|
---|
| 132 | * Compute exponential value.
|
---|
| 133 | *
|
---|
| 134 | * @param arg Exponential argument.
|
---|
| 135 | *
|
---|
| 136 | * @return Exponential value.
|
---|
| 137 | *
|
---|
| 138 | */
|
---|
| 139 | float64_t float64_exp(float64_t arg)
|
---|
| 140 | {
|
---|
| 141 | float64_t f;
|
---|
[e6f5766] | 142 | float64_t i;
|
---|
[992ffa6] | 143 | float64_u r;
|
---|
| 144 |
|
---|
| 145 | /*
|
---|
| 146 | * e^a = (2 ^ log2(e))^a = 2 ^ (log2(e) * a)
|
---|
| 147 | * log2(e) * a = i + f | f in [0, 1]
|
---|
| 148 | * e ^ a = 2 ^ (i + f) = 2^f * 2^i = (e ^ log(2))^f * 2^i =
|
---|
| 149 | * e^(log(2)*f) * 2^i
|
---|
| 150 | */
|
---|
| 151 |
|
---|
[9adb61d] | 152 | i = trunc_f64(arg * M_LOG2E);
|
---|
[e6f5766] | 153 | f = arg * M_LOG2E - i;
|
---|
[992ffa6] | 154 |
|
---|
| 155 | r.val = taylor_exp_64(M_LN2 * f);
|
---|
[e6f5766] | 156 | r.data.parts.exp += i;
|
---|
[992ffa6] | 157 | return r.val;
|
---|
| 158 | }
|
---|
| 159 |
|
---|
| 160 | /** @}
|
---|
| 161 | */
|
---|