source: mainline/uspace/lib/math/generic/exp.c@ ba8eecf

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since ba8eecf was 9adb61d, checked in by Jiri Svoboda <jiri@…>, 10 years ago

Add single-precision variant for all functions. Allow generic implementations to call other functions while selecting the number of bits of precision, but not the implementation (generic or arch-specific).

  • Property mode set to 100644
File size: 4.1 KB
Line 
1/*
2 * Copyright (c) 2015 Jiri Svoboda
3 * Copyright (c) 2014 Martin Decky
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 *
10 * - Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * - Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * - The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */
29
30/** @addtogroup libmath
31 * @{
32 */
33/** @file
34 */
35
36#include <exp.h>
37#include <math.h>
38#include <trunc.h>
39
40#define TAYLOR_DEGREE_32 13
41#define TAYLOR_DEGREE_64 21
42
43/** Precomputed values for factorial (starting from 1!) */
44static float64_t factorials[TAYLOR_DEGREE_64] = {
45 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800,
46 479001600, 6227020800.0L, 87178291200.0L, 1307674368000.0L,
47 20922789888000.0L, 355687428096000.0L, 6402373705728000.0L,
48 121645100408832000.0L, 2432902008176640000.0L, 51090942171709440000.0L
49};
50
51/** Exponential approximation by Taylor series (32-bit floating point)
52 *
53 * Compute the approximation of exponential by a Taylor
54 * series (using the first TAYLOR_DEGREE terms).
55 * The approximation is reasonably accurate for
56 * arguments within the interval XXXX.
57 *
58 * @param arg Argument.
59 *
60 * @return Exponential value approximation.
61 *
62 */
63static float32_t taylor_exp_32(float32_t arg)
64{
65 float32_t ret = 1;
66 float32_t nom = 1;
67
68 for (unsigned int i = 0; i < TAYLOR_DEGREE_32; i++) {
69 nom *= arg;
70 ret += nom / factorials[i];
71 }
72
73 return ret;
74}
75
76/** Exponential approximation by Taylor series (64-bit floating point)
77 *
78 * Compute the approximation of exponential by a Taylor
79 * series (using the first TAYLOR_DEGREE terms).
80 * The approximation is reasonably accurate for
81 * arguments within the interval XXXX.
82 *
83 * @param arg Argument.
84 *
85 * @return Exponential value approximation.
86 *
87 */
88static float64_t taylor_exp_64(float64_t arg)
89{
90 float64_t ret = 1;
91 float64_t nom = 1;
92
93 for (unsigned int i = 0; i < TAYLOR_DEGREE_64; i++) {
94 nom *= arg;
95 ret += nom / factorials[i];
96 }
97
98 return ret;
99}
100
101/** Exponential (32-bit floating point)
102 *
103 * Compute exponential value.
104 *
105 * @param arg Exponential argument.
106 *
107 * @return Exponential value.
108 *
109 */
110float32_t float32_exp(float32_t arg)
111{
112 float32_t f;
113 float32_t i;
114 float32_u r;
115
116 /*
117 * e^a = (2 ^ log2(e))^a = 2 ^ (log2(e) * a)
118 * log2(e) * a = i + f | f in [0, 1]
119 * e ^ a = 2 ^ (i + f) = 2^f * 2^i = (e ^ log(2))^f * 2^i =
120 * e^(log(2)*f) * 2^i
121 */
122
123 i = trunc_f32(arg * M_LOG2E);
124 f = arg * M_LOG2E - i;
125
126 r.val = taylor_exp_32(M_LN2 * f);
127 r.data.parts.exp += i;
128 return r.val;
129}
130
131/** Exponential (64-bit floating point)
132 *
133 * Compute exponential value.
134 *
135 * @param arg Exponential argument.
136 *
137 * @return Exponential value.
138 *
139 */
140float64_t float64_exp(float64_t arg)
141{
142 float64_t f;
143 float64_t i;
144 float64_u r;
145
146 /*
147 * e^a = (2 ^ log2(e))^a = 2 ^ (log2(e) * a)
148 * log2(e) * a = i + f | f in [0, 1]
149 * e ^ a = 2 ^ (i + f) = 2^f * 2^i = (e ^ log(2))^f * 2^i =
150 * e^(log(2)*f) * 2^i
151 */
152
153 i = trunc_f64(arg * M_LOG2E);
154 f = arg * M_LOG2E - i;
155
156 r.val = taylor_exp_64(M_LN2 * f);
157 r.data.parts.exp += i;
158 return r.val;
159}
160
161/** @}
162 */
Note: See TracBrowser for help on using the repository browser.