source: mainline/uspace/lib/cpp/include/impl/functional.hpp@ 72f5379e

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since 72f5379e was 0a414494, checked in by Dzejrou <dzejrou@…>, 7 years ago

cpp: added negators

  • Property mode set to 100644
File size: 34.8 KB
Line 
1/*
2 * Copyright (c) 2018 Jaroslav Jindrak
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#ifndef LIBCPP_FUNCTIONAL
30#define LIBCPP_FUNCTIONAL
31
32#include <limits>
33#include <memory>
34#include <typeinfo>
35#include <type_traits>
36#include <utility>
37
38namespace std
39{
40 namespace aux
41 {
42 /**
43 * 20.9.2, requirements:
44 */
45 template<class R, class T, class T1, class... Ts>
46 decltype(auto) invoke(R T::* f, T1&& t1, Ts&&... args)
47 {
48 if constexpr (is_member_function_pointer_v<decltype(f)>)
49 {
50 if constexpr (is_base_of_v<T, remove_reference_t<T1>>)
51 // (1.1)
52 return (t1.*f)(forward<Ts>(args)...);
53 else
54 // (1.2)
55 return ((*t1).*f)(forward<Ts>(args)...);
56 }
57 else if constexpr (is_member_object_pointer_v<decltype(f)> && sizeof...(args) == 0)
58 {
59 /**
60 * Note: Standard requires to N be equal to 1, but we take t1 directly
61 * so we need sizeof...(args) to be 0.
62 */
63 if constexpr (is_base_of_v<T, remove_reference_t<T1>>)
64 // (1.3)
65 return t1.*f;
66 else
67 // (1.4)
68 return (*t1).*f;
69 }
70
71 /**
72 * Note: If this condition holds this will not be reachable,
73 * but a new addition to the standard (17.7 point (8.1))
74 * prohibits us from simply using false as the condition here,
75 * so we use this because we know it is false here.
76 */
77 static_assert(is_member_function_pointer_v<decltype(f)>, "invalid invoke");
78 }
79
80 template<class F, class... Args>
81 decltype(auto) invoke(F&& f, Args&&... args)
82 {
83 // (1.5)
84 return f(forward<Args>(args)...);
85 }
86 }
87
88 /**
89 * 20.9.3, invoke:
90 */
91
92 template<class F, class... Args>
93 result_of_t<F&&(Args&&...)> invoke(F&& f, Args&&... args)
94 {
95 return aux::invoke(forward<F>(f)(forward<Args>(args)...));
96 }
97
98 /**
99 * 20.9.4, reference_wrapper:
100 */
101
102 template<class T>
103 class reference_wrapper
104 {
105 public:
106 using type = T;
107 // TODO: conditional typedefs
108
109 reference_wrapper(type& val) noexcept
110 : data_{&val}
111 { /* DUMMY BODY */ }
112
113 reference_wrapper(type&&) = delete;
114
115 reference_wrapper(const reference_wrapper& other) noexcept
116 : data_{other.data_}
117 { /* DUMMY BODY */ }
118
119 reference_wrapper& operator=(const reference_wrapper& other) noexcept
120 {
121 data_ = other.data_;
122
123 return *this;
124 }
125
126 operator type&() const noexcept
127 {
128 return *data_;
129 }
130
131 type& get() const noexcept
132 {
133 return *data_;
134 }
135
136 template<class... Args>
137 result_of_t<type&(Args&&...)> operator()(Args&&... args) const
138 {
139 return invoke(*data_, std::forward<Args>(args)...);
140 }
141
142 private:
143 type* data_;
144 };
145
146 template<class T>
147 reference_wrapper<T> ref(T& t) noexcept
148 {
149 return reference_wrapper<T>{t};
150 }
151
152 template<class T>
153 reference_wrapper<const T> cref(const T& t) noexcept
154 {
155 return reference_wrapper<const T>{t};
156 }
157
158 template<class T>
159 void ref(const T&&) = delete;
160
161 template<class T>
162 void cref(const T&&) = delete;
163
164 template<class T>
165 reference_wrapper<T> ref(reference_wrapper<T> t) noexcept
166 {
167 return ref(t.get());
168 }
169
170 template<class T>
171 reference_wrapper<const T> cref(reference_wrapper<T> t) noexcept
172 {
173 return cref(t.get());
174 }
175
176 /**
177 * 20.9.5, arithmetic operations:
178 */
179
180 template<class T = void>
181 struct plus
182 {
183 constexpr T operator()(const T& lhs, const T& rhs) const
184 {
185 return lhs + rhs;
186 }
187
188 using first_argument_type = T;
189 using second_argument_type = T;
190 using result_type = T;
191 };
192
193 template<class T = void>
194 struct minus
195 {
196 constexpr T operator()(const T& lhs, const T& rhs) const
197 {
198 return lhs - rhs;
199 }
200
201 using first_argument_type = T;
202 using second_argument_type = T;
203 using result_type = T;
204 };
205
206 template<class T = void>
207 struct multiplies
208 {
209 constexpr T operator()(const T& lhs, const T& rhs) const
210 {
211 return lhs * rhs;
212 }
213
214 using first_argument_type = T;
215 using second_argument_type = T;
216 using result_type = T;
217 };
218
219 template<class T = void>
220 struct divides
221 {
222 constexpr T operator()(const T& lhs, const T& rhs) const
223 {
224 return lhs / rhs;
225 }
226
227 using first_argument_type = T;
228 using second_argument_type = T;
229 using result_type = T;
230 };
231
232 template<class T = void>
233 struct modulus
234 {
235 constexpr T operator()(const T& lhs, const T& rhs) const
236 {
237 return lhs % rhs;
238 }
239
240 using first_argument_type = T;
241 using second_argument_type = T;
242 using result_type = T;
243 };
244
245 template<class T = void>
246 struct negate
247 {
248 constexpr T operator()(const T& x) const
249 {
250 return -x;
251 }
252
253 using argument_type = T;
254 using result_type = T;
255 };
256
257 namespace aux
258 {
259 /**
260 * Used by some functions like std::set::find to determine
261 * whether a functor is transparent.
262 */
263 struct transparent_t;
264
265 template<class T, class = void>
266 struct is_transparent: false_type
267 { /* DUMMY BODY */ };
268
269 template<class T>
270 struct is_transparent<T, void_t<typename T::is_transparent>>
271 : true_type
272 { /* DUMMY BODY */ };
273
274 template<class T>
275 inline constexpr bool is_transparent_v = is_transparent<T>::value;
276 }
277
278 template<>
279 struct plus<void>
280 {
281 template<class T, class U>
282 constexpr auto operator()(T&& lhs, U&& rhs) const
283 -> decltype(forward<T>(lhs) + forward<U>(rhs))
284 {
285 return forward<T>(lhs) + forward<T>(rhs);
286 }
287
288 using is_transparent = aux::transparent_t;
289 };
290
291 template<>
292 struct minus<void>
293 {
294 template<class T, class U>
295 constexpr auto operator()(T&& lhs, U&& rhs) const
296 -> decltype(forward<T>(lhs) - forward<U>(rhs))
297 {
298 return forward<T>(lhs) - forward<T>(rhs);
299 }
300
301 using is_transparent = aux::transparent_t;
302 };
303
304 template<>
305 struct multiplies<void>
306 {
307 template<class T, class U>
308 constexpr auto operator()(T&& lhs, U&& rhs) const
309 -> decltype(forward<T>(lhs) * forward<U>(rhs))
310 {
311 return forward<T>(lhs) * forward<T>(rhs);
312 }
313
314 using is_transparent = aux::transparent_t;
315 };
316
317 template<>
318 struct divides<void>
319 {
320 template<class T, class U>
321 constexpr auto operator()(T&& lhs, U&& rhs) const
322 -> decltype(forward<T>(lhs) / forward<U>(rhs))
323 {
324 return forward<T>(lhs) / forward<T>(rhs);
325 }
326
327 using is_transparent = aux::transparent_t;
328 };
329
330 template<>
331 struct modulus<void>
332 {
333 template<class T, class U>
334 constexpr auto operator()(T&& lhs, U&& rhs) const
335 -> decltype(forward<T>(lhs) % forward<U>(rhs))
336 {
337 return forward<T>(lhs) % forward<T>(rhs);
338 }
339
340 using is_transparent = aux::transparent_t;
341 };
342
343 template<>
344 struct negate<void>
345 {
346 template<class T>
347 constexpr auto operator()(T&& x) const
348 -> decltype(-forward<T>(x))
349 {
350 return -forward<T>(x);
351 }
352
353 using is_transparent = aux::transparent_t;
354 };
355
356 /**
357 * 20.9.6, comparisons:
358 */
359
360 template<class T = void>
361 struct equal_to
362 {
363 constexpr bool operator()(const T& lhs, const T& rhs) const
364 {
365 return lhs == rhs;
366 }
367
368 using first_argument_type = T;
369 using second_argument_type = T;
370 using result_type = bool;
371 };
372
373 template<class T = void>
374 struct not_equal_to
375 {
376 constexpr bool operator()(const T& lhs, const T& rhs) const
377 {
378 return lhs != rhs;
379 }
380
381 using first_argument_type = T;
382 using second_argument_type = T;
383 using result_type = bool;
384 };
385
386 template<class T = void>
387 struct greater
388 {
389 constexpr bool operator()(const T& lhs, const T& rhs) const
390 {
391 return lhs > rhs;
392 }
393
394 using first_argument_type = T;
395 using second_argument_type = T;
396 using result_type = bool;
397 };
398
399 template<class T = void>
400 struct less
401 {
402 constexpr bool operator()(const T& lhs, const T& rhs) const
403 {
404 return lhs < rhs;
405 }
406
407 using first_argument_type = T;
408 using second_argument_type = T;
409 using result_type = bool;
410 };
411
412 template<class T = void>
413 struct greater_equal
414 {
415 constexpr bool operator()(const T& lhs, const T& rhs) const
416 {
417 return lhs >= rhs;
418 }
419
420 using first_argument_type = T;
421 using second_argument_type = T;
422 using result_type = bool;
423 };
424
425 template<class T = void>
426 struct less_equal
427 {
428 constexpr bool operator()(const T& lhs, const T& rhs) const
429 {
430 return lhs <= rhs;
431 }
432
433 using first_argument_type = T;
434 using second_argument_type = T;
435 using result_type = bool;
436 };
437
438 template<>
439 struct equal_to<void>
440 {
441 template<class T, class U>
442 constexpr auto operator()(T&& lhs, U&& rhs) const
443 -> decltype(forward<T>(lhs) == forward<U>(rhs))
444 {
445 return forward<T>(lhs) == forward<U>(rhs);
446 }
447
448 using is_transparent = aux::transparent_t;
449 };
450
451 template<>
452 struct not_equal_to<void>
453 {
454 template<class T, class U>
455 constexpr auto operator()(T&& lhs, U&& rhs) const
456 -> decltype(forward<T>(lhs) != forward<U>(rhs))
457 {
458 return forward<T>(lhs) != forward<U>(rhs);
459 }
460
461 using is_transparent = aux::transparent_t;
462 };
463
464 template<>
465 struct greater<void>
466 {
467 template<class T, class U>
468 constexpr auto operator()(T&& lhs, U&& rhs) const
469 -> decltype(forward<T>(lhs) > forward<U>(rhs))
470 {
471 return forward<T>(lhs) > forward<U>(rhs);
472 }
473
474 using is_transparent = aux::transparent_t;
475 };
476
477 template<>
478 struct less<void>
479 {
480 template<class T, class U>
481 constexpr auto operator()(T&& lhs, U&& rhs) const
482 -> decltype(forward<T>(lhs) < forward<U>(rhs))
483 {
484 return forward<T>(lhs) < forward<U>(rhs);
485 }
486
487 using is_transparent = aux::transparent_t;
488 };
489
490 template<>
491 struct greater_equal<void>
492 {
493 template<class T, class U>
494 constexpr auto operator()(T&& lhs, U&& rhs) const
495 -> decltype(forward<T>(lhs) >= forward<U>(rhs))
496 {
497 return forward<T>(lhs) >= forward<U>(rhs);
498 }
499
500 using is_transparent = aux::transparent_t;
501 };
502
503 template<>
504 struct less_equal<void>
505 {
506 template<class T, class U>
507 constexpr auto operator()(T&& lhs, U&& rhs) const
508 -> decltype(forward<T>(lhs) <= forward<U>(rhs))
509 {
510 return forward<T>(lhs) <= forward<U>(rhs);
511 }
512
513 using is_transparent = aux::transparent_t;
514 };
515
516 /**
517 * 20.9.7, logical operations:
518 */
519
520 template<class T = void>
521 struct logical_and
522 {
523 constexpr bool operator()(const T& lhs, const T& rhs) const
524 {
525 return lhs && rhs;
526 }
527
528 using first_argument_type = T;
529 using second_argument_type = T;
530 using result_type = bool;
531 };
532
533 template<class T = void>
534 struct logical_or
535 {
536 constexpr bool operator()(const T& lhs, const T& rhs) const
537 {
538 return lhs || rhs;
539 }
540
541 using first_argument_type = T;
542 using second_argument_type = T;
543 using result_type = bool;
544 };
545
546 template<class T = void>
547 struct logical_not
548 {
549 constexpr bool operator()(const T& x) const
550 {
551 return !x;
552 }
553
554 using argument_type = T;
555 using result_type = bool;
556 };
557
558 template<>
559 struct logical_and<void>
560 {
561 template<class T, class U>
562 constexpr auto operator()(T&& lhs, U&& rhs) const
563 -> decltype(forward<T>(lhs) && forward<U>(rhs))
564 {
565 return forward<T>(lhs) && forward<U>(rhs);
566 }
567
568 using is_transparent = aux::transparent_t;
569 };
570
571 template<>
572 struct logical_or<void>
573 {
574 template<class T, class U>
575 constexpr auto operator()(T&& lhs, U&& rhs) const
576 -> decltype(forward<T>(lhs) || forward<U>(rhs))
577 {
578 return forward<T>(lhs) || forward<U>(rhs);
579 }
580
581 using is_transparent = aux::transparent_t;
582 };
583
584 template<>
585 struct logical_not<void>
586 {
587 template<class T>
588 constexpr auto operator()(T&& x) const
589 -> decltype(!forward<T>(x))
590 {
591 return !forward<T>(x);
592 }
593
594 using is_transparent = aux::transparent_t;
595 };
596
597 /**
598 * 20.9.8, bitwise operations:
599 */
600
601 template<class T = void>
602 struct bit_and
603 {
604 constexpr T operator()(const T& lhs, const T& rhs) const
605 {
606 return lhs & rhs;
607 }
608
609 using first_argument_type = T;
610 using second_argument_type = T;
611 using result_type = T;
612 };
613
614 template<class T = void>
615 struct bit_or
616 {
617 constexpr T operator()(const T& lhs, const T& rhs) const
618 {
619 return lhs | rhs;
620 }
621
622 using first_argument_type = T;
623 using second_argument_type = T;
624 using result_type = T;
625 };
626
627 template<class T = void>
628 struct bit_xor
629 {
630 constexpr T operator()(const T& lhs, const T& rhs) const
631 {
632 return lhs ^ rhs;
633 }
634
635 using first_argument_type = T;
636 using second_argument_type = T;
637 using result_type = T;
638 };
639
640 template<class T = void>
641 struct bit_not
642 {
643 constexpr bool operator()(const T& x) const
644 {
645 return ~x;
646 }
647
648 using argument_type = T;
649 using result_type = T;
650 };
651
652 template<>
653 struct bit_and<void>
654 {
655 template<class T, class U>
656 constexpr auto operator()(T&& lhs, U&& rhs) const
657 -> decltype(forward<T>(lhs) & forward<U>(rhs))
658 {
659 return forward<T>(lhs) & forward<U>(rhs);
660 }
661
662 using is_transparent = aux::transparent_t;
663 };
664
665 template<>
666 struct bit_or<void>
667 {
668 template<class T, class U>
669 constexpr auto operator()(T&& lhs, U&& rhs) const
670 -> decltype(forward<T>(lhs) | forward<U>(rhs))
671 {
672 return forward<T>(lhs) | forward<U>(rhs);
673 }
674
675 using is_transparent = aux::transparent_t;
676 };
677
678 template<>
679 struct bit_xor<void>
680 {
681 template<class T, class U>
682 constexpr auto operator()(T&& lhs, U&& rhs) const
683 -> decltype(forward<T>(lhs) ^ forward<U>(rhs))
684 {
685 return forward<T>(lhs) ^ forward<U>(rhs);
686 }
687
688 using is_transparent = aux::transparent_t;
689 };
690
691 template<>
692 struct bit_not<void>
693 {
694 template<class T>
695 constexpr auto operator()(T&& x) const
696 -> decltype(~forward<T>(x))
697 {
698 return ~forward<T>(x);
699 }
700
701 using is_transparent = aux::transparent_t;
702 };
703
704 /**
705 * 20.9.9, negators:
706 */
707
708 template<class Predicate>
709 class unary_negate
710 {
711 public:
712 using result_type = bool;
713 using argument_type = typename Predicate::argument_type;
714
715 constexpr explicit unary_negate(const Predicate& pred)
716 : pred_{pred}
717 { /* DUMMY BODY */ }
718
719 constexpr result_type operator()(const argument_type& arg)
720 {
721 return !pred_(arg);
722 }
723
724 private:
725 Predicate pred_;
726 };
727
728 template<class Predicate>
729 constexpr unary_negate<Predicate> not1(const Predicate& pred)
730 {
731 return unary_negate<Predicate>{pred};
732 }
733
734 template<class Predicate>
735 class binary_negate
736 {
737 public:
738 using result_type = bool;
739 using first_argument_type = typename Predicate::first_argument_type;
740 using second_argument_type = typename Predicate::second_argument_type;
741
742 constexpr explicit binary_negate(const Predicate& pred)
743 : pred_{pred}
744 { /* DUMMY BODY */ }
745
746 constexpr result_type operator()(const first_argument_type& arg1,
747 const second_argument_type& arg2)
748 {
749 return !pred_(arg1, arg2);
750 }
751
752 private:
753 Predicate pred_;
754 };
755
756 template<class Predicate>
757 constexpr binary_negate<Predicate> not2(const Predicate& pred);
758
759 /**
760 * 20.9.10, bind:
761 */
762
763 template<class T>
764 struct is_bind_expression;
765
766 template<class T>
767 struct is_placeholder;
768
769 // TODO: void should be /unspecified/
770 template<class F, class... Args>
771 void bind(F&& f, Args&&... args);
772
773 template<class R, class F, class... Args>
774 void bind(F&& f, Args&&... args);
775
776 namespace placeholders
777 {
778 /**
779 * TODO: for X from 1 to implementation defined M
780 * extern /unspecified/ _X;
781 */
782 }
783
784 /**
785 * 20.9.11, member function adaptors:
786 */
787
788 // TODO: void should be /unspecified/
789 template<class R, class T>
790 void mem_fn(R T::* f);
791
792 /**
793 * 20.9.12, polymorphic function adaptors:
794 */
795
796 namespace aux
797 {
798 // TODO: fix this
799 /* template<class, class T, class... Args> */
800 /* struct is_callable_impl: false_type */
801 /* { /1* DUMMY BODY *1/ }; */
802
803 /* template<class, class R, class... Args> */
804 /* struct is_callable_impl< */
805 /* void_t<decltype(aux::invoke(declval<R(Args...)>(), declval<Args>()..., R))>, */
806 /* R, Args... */
807 /* > : true_type */
808 /* { /1* DUMMY BODY *1/ }; */
809
810 /* template<class T> */
811 /* struct is_callable: is_callable_impl<void_t<>, T> */
812 /* { /1* DUMMY BODY *1/ }; */
813
814 template<class Callable, class R, class... Args>
815 R invoke_callable(Callable* clbl, Args&&... args)
816 {
817 return (*clbl)(forward<Args>(args)...);
818 }
819
820 template<class Callable>
821 void copy_callable(Callable* to, Callable* from)
822 {
823 new(to) Callable{*from};
824 }
825
826 template<class Callable>
827 void destroy_callable(Callable* clbl)
828 {
829 if (clbl)
830 clbl->~Callable();
831 }
832 }
833
834 class bad_function_call;
835
836 template<class>
837 class function; // undefined
838
839 /**
840 * Note: Ideally, this implementation wouldn't
841 * copy the target if it was a pointer to
842 * a function, but for the simplicity of the
843 * implementation, we do copy even in that
844 * case for now. It would be a nice optimization
845 * if this was changed in the future.
846 */
847 template<class R, class... Args>
848 class function<R(Args...)>
849 {
850 public:
851 using result_type = R;
852 // TODO: conditional typedefs
853
854 /**
855 * 20.9.12.2.1, construct/copy/destroy:
856 */
857
858 function() noexcept
859 : callable_{}, callable_size_{}, call_{},
860 copy_{}, dest_{}
861 { /* DUMMY BODY */ }
862
863 function(nullptr_t) noexcept
864 : function{}
865 { /* DUMMY BODY */ }
866
867 function(const function& other)
868 : callable_{}, callable_size_{other.callable_size_},
869 call_{other.call_}, copy_{other.copy_}, dest_{other.dest_}
870 {
871 callable_ = new uint8_t[callable_size_];
872 (*copy_)(callable_, other.callable_);
873 }
874
875 function(function&& other)
876 : callable_{other.callable_}, callable_size_{other.callable_size_},
877 call_{other.call_}, copy_{other.copy_}, dest_{other.dest_}
878 {
879 other.callable_ = nullptr;
880 other.callable_size_ = size_t{};
881 other.call_ = nullptr;
882 other.copy_ = nullptr;
883 other.dest_ = nullptr;
884 }
885
886 // TODO: shall not participate in overloading unless aux::is_callable<F>
887 template<class F>
888 function(F f)
889 : callable_{}, callable_size_{sizeof(F)},
890 call_{(call_t)aux::invoke_callable<F, R, Args...>},
891 copy_{(copy_t)aux::copy_callable<F>},
892 dest_{(dest_t)aux::destroy_callable<F>}
893 {
894 callable_ = new uint8_t[callable_size_];
895 (*copy_)(callable_, (uint8_t*)&f);
896 }
897
898 /**
899 * Note: For the moment we're ignoring the allocator
900 * for simplicity of the implementation.
901 */
902
903 template<class A>
904 function(allocator_arg_t, const A& a) noexcept
905 : function{}
906 { /* DUMMY BODY */ }
907
908 template<class A>
909 function(allocator_arg_t, const A& a, nullptr_t) noexcept
910 : function{}
911 { /* DUMMY BODY */ }
912
913 template<class A>
914 function(allocator_arg_t, const A& a, const function& other)
915 : function{other}
916 { /* DUMMY BODY */ }
917
918 template<class A>
919 function(allocator_arg_t, const A& a, function&& other)
920 : function{move(other)}
921 { /* DUMMY BODY */ }
922
923 // TODO: shall not participate in overloading unless aux::is_callable<F>
924 template<class F, class A>
925 function(allocator_arg_t, const A& a, F f)
926 : function{f}
927 { /* DUMMY BODY */ }
928
929 function& operator=(const function& rhs)
930 {
931 function{rhs}.swap(*this);
932
933 return *this;
934 }
935
936 /**
937 * Note: We have to copy call_, copy_
938 * and dest_ because they can be templated
939 * by a type F we don't know.
940 */
941 function& operator=(function&& rhs)
942 {
943 clear_();
944
945 callable_ = rhs.callable_;
946 callable_size_ = rhs.callable_size_;
947 call_ = rhs.call_;
948 copy_ = rhs.copy_;
949 dest_ = rhs.dest_;
950
951 rhs.callable_ = nullptr;
952 rhs.callable_size_ = size_t{};
953 rhs.call_ = nullptr;
954 rhs.copy_ = nullptr;
955 rhs.dest_ = nullptr;
956
957 return *this;
958 }
959
960 function& operator=(nullptr_t) noexcept
961 {
962 clear_();
963
964 return *this;
965 }
966
967 // TODO: shall not participate in overloading unless aux::is_callable<F>
968 template<class F>
969 function& operator=(F&& f)
970 {
971 callable_size_ = sizeof(F);
972 callable_ = new uint8_t[callable_size_];
973 call_ = aux::invoke_callable<F, R, Args...>;
974 copy_ = aux::copy_callable<F>;
975 dest_ = aux::destroy_callable<F>;
976
977 (*copy_)(callable_, (uint8_t*)&f);
978 }
979
980 template<class F>
981 function& operator=(reference_wrapper<F> ref) noexcept
982 {
983 return (*this) = ref.get();
984 }
985
986 ~function()
987 {
988 if (callable_)
989 {
990 (*dest_)(callable_);
991 delete[] callable_;
992 }
993 }
994
995 /**
996 * 20.9.12.2.2, function modifiers:
997 */
998
999 void swap(function& other) noexcept
1000 {
1001 std::swap(callable_, other.callable_);
1002 std::swap(callable_size_, other.callable_size_);
1003 std::swap(call_, other.call_);
1004 std::swap(copy_, other.copy_);
1005 std::swap(dest_, other.dest_);
1006 }
1007
1008 template<class F, class A>
1009 void assign(F&& f, const A& a)
1010 {
1011 function{allocator_arg, a, forward<F>(f)}.swap(*this);
1012 }
1013
1014 /**
1015 * 20.9.12.2.3, function capacity:
1016 */
1017
1018 explicit operator bool() const noexcept
1019 {
1020 return callable_ != nullptr;
1021 }
1022
1023 /**
1024 * 20.9.12.2.4, function invocation:
1025 */
1026
1027 result_type operator()(Args... args) const
1028 {
1029 // TODO: throw bad_function_call if !callable_ || !call_
1030 if constexpr (is_same_v<R, void>)
1031 (*call_)(callable_, forward<Args>(args)...);
1032 else
1033 return (*call_)(callable_, forward<Args>(args)...);
1034 }
1035
1036 /**
1037 * 20.9.12.2.5, function target access:
1038 */
1039
1040 const type_info& target_type() const noexcept
1041 {
1042 return typeid(*callable_);
1043 }
1044
1045 template<class T>
1046 T* target() noexcept
1047 {
1048 if (target_type() == typeid(T))
1049 return (T*)callable_;
1050 else
1051 return nullptr;
1052 }
1053
1054 template<class T>
1055 const T* target() const noexcept
1056 {
1057 if (target_type() == typeid(T))
1058 return (T*)callable_;
1059 else
1060 return nullptr;
1061 }
1062
1063 private:
1064 using call_t = R(*)(uint8_t*, Args&&...);
1065 using copy_t = void (*)(uint8_t*, uint8_t*);
1066 using dest_t = void (*)(uint8_t*);
1067
1068 uint8_t* callable_;
1069 size_t callable_size_;
1070 call_t call_;
1071 copy_t copy_;
1072 dest_t dest_;
1073
1074 void clear_()
1075 {
1076 if (callable_)
1077 {
1078 (*dest_)(callable_);
1079 delete[] callable_;
1080 callable_ = nullptr;
1081 }
1082 }
1083 };
1084
1085 /**
1086 * 20.9.12.2.6, null pointer comparisons:
1087 */
1088
1089 template<class R, class... Args>
1090 bool operator==(const function<R(Args...)>& f, nullptr_t) noexcept
1091 {
1092 return !f;
1093 }
1094
1095 template<class R, class... Args>
1096 bool operator==(nullptr_t, const function<R(Args...)>& f) noexcept
1097 {
1098 return !f;
1099 }
1100
1101 template<class R, class... Args>
1102 bool operator!=(const function<R(Args...)>& f, nullptr_t) noexcept
1103 {
1104 return (bool)f;
1105 }
1106
1107 template<class R, class... Args>
1108 bool operator!=(nullptr_t, const function<R(Args...)>& f) noexcept
1109 {
1110 return (bool)f;
1111 }
1112
1113 /**
1114 * 20.9.12.2.7, specialized algorithms:
1115 */
1116
1117 template<class R, class... Args>
1118 void swap(function<R(Args...)>& f1, function<R(Args...)>& f2)
1119 {
1120 f1.swap(f2);
1121 }
1122
1123 template<class R, class... Args, class Alloc>
1124 struct uses_allocator<function<R(Args...)>, Alloc>
1125 : true_type
1126 { /* DUMMY BODY */ };
1127
1128 /**
1129 * 20.9.13, hash function primary template:
1130 */
1131
1132 namespace aux
1133 {
1134 template<class T>
1135 union converter
1136 {
1137 T value;
1138 uint64_t converted;
1139 };
1140
1141 template<class T>
1142 T hash_(uint64_t x) noexcept
1143 {
1144 /**
1145 * Note: std::hash is used for indexing in
1146 * unordered containers, not for cryptography.
1147 * Because of this, we decided to simply convert
1148 * the value to uin64_t, which will help us
1149 * with testing (since in order to create
1150 * a collision in a multiset or multimap
1151 * we simply need 2 values that congruent
1152 * by the size of the table.
1153 */
1154 return static_cast<T>(x);
1155 }
1156
1157 template<class T>
1158 size_t hash(T x) noexcept
1159 {
1160 static_assert(is_arithmetic_v<T> || is_pointer_v<T>,
1161 "invalid type passed to aux::hash");
1162
1163 converter<T> conv;
1164 conv.value = x;
1165
1166 return hash_<size_t>(conv.converted);
1167 }
1168 }
1169
1170 template<class T>
1171 struct hash
1172 { /* DUMMY BODY */ };
1173
1174 template<>
1175 struct hash<bool>
1176 {
1177 size_t operator()(bool x) const noexcept
1178 {
1179 return aux::hash(x);
1180 }
1181
1182 using argument_type = bool;
1183 using result_type = size_t;
1184 };
1185
1186 template<>
1187 struct hash<char>
1188 {
1189 size_t operator()(char x) const noexcept
1190 {
1191 return aux::hash(x);
1192 }
1193
1194 using argument_type = char;
1195 using result_type = size_t;
1196 };
1197
1198 template<>
1199 struct hash<signed char>
1200 {
1201 size_t operator()(signed char x) const noexcept
1202 {
1203 return aux::hash(x);
1204 }
1205
1206 using argument_type = signed char;
1207 using result_type = size_t;
1208 };
1209
1210 template<>
1211 struct hash<unsigned char>
1212 {
1213 size_t operator()(unsigned char x) const noexcept
1214 {
1215 return aux::hash(x);
1216 }
1217
1218 using argument_type = unsigned char;
1219 using result_type = size_t;
1220 };
1221
1222 template<>
1223 struct hash<char16_t>
1224 {
1225 size_t operator()(char16_t x) const noexcept
1226 {
1227 return aux::hash(x);
1228 }
1229
1230 using argument_type = char16_t;
1231 using result_type = size_t;
1232 };
1233
1234 template<>
1235 struct hash<char32_t>
1236 {
1237 size_t operator()(char32_t x) const noexcept
1238 {
1239 return aux::hash(x);
1240 }
1241
1242 using argument_type = char32_t;
1243 using result_type = size_t;
1244 };
1245
1246 template<>
1247 struct hash<wchar_t>
1248 {
1249 size_t operator()(wchar_t x) const noexcept
1250 {
1251 return aux::hash(x);
1252 }
1253
1254 using argument_type = wchar_t;
1255 using result_type = size_t;
1256 };
1257
1258 template<>
1259 struct hash<short>
1260 {
1261 size_t operator()(short x) const noexcept
1262 {
1263 return aux::hash(x);
1264 }
1265
1266 using argument_type = short;
1267 using result_type = size_t;
1268 };
1269
1270 template<>
1271 struct hash<unsigned short>
1272 {
1273 size_t operator()(unsigned short x) const noexcept
1274 {
1275 return aux::hash(x);
1276 }
1277
1278 using argument_type = unsigned short;
1279 using result_type = size_t;
1280 };
1281
1282 template<>
1283 struct hash<int>
1284 {
1285 size_t operator()(int x) const noexcept
1286 {
1287 return aux::hash(x);
1288 }
1289
1290 using argument_type = int;
1291 using result_type = size_t;
1292 };
1293
1294 template<>
1295 struct hash<unsigned int>
1296 {
1297 size_t operator()(unsigned int x) const noexcept
1298 {
1299 return aux::hash(x);
1300 }
1301
1302 using argument_type = unsigned int;
1303 using result_type = size_t;
1304 };
1305
1306 template<>
1307 struct hash<long>
1308 {
1309 size_t operator()(long x) const noexcept
1310 {
1311 return aux::hash(x);
1312 }
1313
1314 using argument_type = long;
1315 using result_type = size_t;
1316 };
1317
1318 template<>
1319 struct hash<long long>
1320 {
1321 size_t operator()(long long x) const noexcept
1322 {
1323 return aux::hash(x);
1324 }
1325
1326 using argument_type = long long;
1327 using result_type = size_t;
1328 };
1329
1330 template<>
1331 struct hash<unsigned long>
1332 {
1333 size_t operator()(unsigned long x) const noexcept
1334 {
1335 return aux::hash(x);
1336 }
1337
1338 using argument_type = unsigned long;
1339 using result_type = size_t;
1340 };
1341
1342 template<>
1343 struct hash<unsigned long long>
1344 {
1345 size_t operator()(unsigned long long x) const noexcept
1346 {
1347 return aux::hash(x);
1348 }
1349
1350 using argument_type = unsigned long long;
1351 using result_type = size_t;
1352 };
1353
1354 template<>
1355 struct hash<float>
1356 {
1357 size_t operator()(float x) const noexcept
1358 {
1359 return aux::hash(x);
1360 }
1361
1362 using argument_type = float;
1363 using result_type = size_t;
1364 };
1365
1366 template<>
1367 struct hash<double>
1368 {
1369 size_t operator()(double x) const noexcept
1370 {
1371 return aux::hash(x);
1372 }
1373
1374 using argument_type = double;
1375 using result_type = size_t;
1376 };
1377
1378 template<>
1379 struct hash<long double>
1380 {
1381 size_t operator()(long double x) const noexcept
1382 {
1383 return aux::hash(x);
1384 }
1385
1386 using argument_type = long double;
1387 using result_type = size_t;
1388 };
1389
1390 template<class T>
1391 struct hash<T*>
1392 {
1393 size_t operator()(T* x) const noexcept
1394 {
1395 return aux::hash(x);
1396 }
1397
1398 using argument_type = T*;
1399 using result_type = size_t;
1400 };
1401}
1402
1403#endif
Note: See TracBrowser for help on using the repository browser.