1 | /*
|
---|
2 | * Copyright (c) 2012 Adam Hraska
|
---|
3 | * All rights reserved.
|
---|
4 | *
|
---|
5 | * Redistribution and use in source and binary forms, with or without
|
---|
6 | * modification, are permitted provided that the following conditions
|
---|
7 | * are met:
|
---|
8 | *
|
---|
9 | * - Redistributions of source code must retain the above copyright
|
---|
10 | * notice, this list of conditions and the following disclaimer.
|
---|
11 | * - Redistributions in binary form must reproduce the above copyright
|
---|
12 | * notice, this list of conditions and the following disclaimer in the
|
---|
13 | * documentation and/or other materials provided with the distribution.
|
---|
14 | * - The name of the author may not be used to endorse or promote products
|
---|
15 | * derived from this software without specific prior written permission.
|
---|
16 | *
|
---|
17 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
---|
18 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
---|
19 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
---|
20 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
---|
21 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
---|
22 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
---|
23 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
---|
24 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
---|
25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
---|
26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
---|
27 | */
|
---|
28 |
|
---|
29 | #include <ieee_double.h>
|
---|
30 |
|
---|
31 | #include <assert.h>
|
---|
32 |
|
---|
33 | /** Returns an easily processible description of the double val.
|
---|
34 | */
|
---|
35 | ieee_double_t extract_ieee_double(double val)
|
---|
36 | {
|
---|
37 | const uint64_t significand_mask = 0xfffffffffffffULL;
|
---|
38 | const uint64_t exponent_mask = 0x7ff0000000000000ULL;
|
---|
39 | const int exponent_shift = 64 - 11 - 1;
|
---|
40 | const uint64_t sign_mask = 0x8000000000000000ULL;
|
---|
41 |
|
---|
42 | const int special_exponent = 0x7ff;
|
---|
43 | const int denormal_exponent = 0;
|
---|
44 | const uint64_t hidden_bit = (1ULL << 52);
|
---|
45 | const int exponent_bias = 1075;
|
---|
46 |
|
---|
47 | static_assert(sizeof(val) == sizeof(uint64_t));
|
---|
48 |
|
---|
49 | union {
|
---|
50 | uint64_t num;
|
---|
51 | double val;
|
---|
52 | } bits;
|
---|
53 |
|
---|
54 | bits.val = val;
|
---|
55 |
|
---|
56 | /*
|
---|
57 | * Extract the binary ieee representation of the double.
|
---|
58 | * Relies on integers having the same endianness as doubles.
|
---|
59 | */
|
---|
60 | uint64_t num = bits.num;
|
---|
61 |
|
---|
62 | ieee_double_t ret;
|
---|
63 |
|
---|
64 | /* Determine the sign. */
|
---|
65 | ret.is_negative = ((num & sign_mask) != 0);
|
---|
66 |
|
---|
67 | /* Extract the exponent. */
|
---|
68 | int raw_exponent = (num & exponent_mask) >> exponent_shift;
|
---|
69 |
|
---|
70 | /* The extracted raw significand may not contain the hidden bit */
|
---|
71 | uint64_t raw_significand = num & significand_mask;
|
---|
72 |
|
---|
73 | ret.is_special = (raw_exponent == special_exponent);
|
---|
74 |
|
---|
75 | /* NaN or infinity */
|
---|
76 | if (ret.is_special) {
|
---|
77 | ret.is_infinity = (raw_significand == 0);
|
---|
78 | ret.is_nan = (raw_significand != 0);
|
---|
79 |
|
---|
80 | /* These are not valid for special numbers but init them anyway. */
|
---|
81 | ret.is_denormal = true;
|
---|
82 | ret.is_accuracy_step = false;
|
---|
83 | ret.pos_val.significand = 0;
|
---|
84 | ret.pos_val.exponent = 0;
|
---|
85 | } else {
|
---|
86 | ret.is_infinity = false;
|
---|
87 | ret.is_nan = false;
|
---|
88 |
|
---|
89 | ret.is_denormal = (raw_exponent == denormal_exponent);
|
---|
90 |
|
---|
91 | /* Denormal or zero. */
|
---|
92 | if (ret.is_denormal) {
|
---|
93 | ret.pos_val.significand = raw_significand;
|
---|
94 | if (raw_significand == 0) {
|
---|
95 | ret.pos_val.exponent = -exponent_bias;
|
---|
96 | } else {
|
---|
97 | ret.pos_val.exponent = 1 - exponent_bias;
|
---|
98 | }
|
---|
99 |
|
---|
100 | ret.is_accuracy_step = false;
|
---|
101 | } else {
|
---|
102 | ret.pos_val.significand = raw_significand + hidden_bit;
|
---|
103 | ret.pos_val.exponent = raw_exponent - exponent_bias;
|
---|
104 |
|
---|
105 | /*
|
---|
106 | * The predecessor is closer to val than the successor
|
---|
107 | * if val is a normal value of the form 2^k (hence
|
---|
108 | * raw_significand == 0) with the only exception being
|
---|
109 | * the smallest normal (raw_exponent == 1). The smallest
|
---|
110 | * normal's predecessor is the largest denormal and denormals
|
---|
111 | * do not get an extra bit of precision because their exponent
|
---|
112 | * stays the same (ie it does not decrease from k to k-1).
|
---|
113 | */
|
---|
114 | ret.is_accuracy_step = (raw_significand == 0) && (raw_exponent != 1);
|
---|
115 | }
|
---|
116 | }
|
---|
117 |
|
---|
118 | return ret;
|
---|
119 | }
|
---|