source: mainline/uspace/lib/c/generic/async/server.c@ 42f5860

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since 42f5860 was 9bde0d5, checked in by Jiří Zárevúcky <jiri.zarevucky@…>, 7 years ago

Replace a bunch of direct uses of futex_t.

  • Property mode set to 100644
File size: 44.9 KB
Line 
1/*
2 * Copyright (c) 2006 Ondrej Palkovsky
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/** @addtogroup libc
30 * @{
31 */
32/** @file
33 */
34
35/**
36 * Asynchronous library
37 *
38 * The aim of this library is to provide a facility for writing programs which
39 * utilize the asynchronous nature of HelenOS IPC, yet using a normal way of
40 * programming.
41 *
42 * You should be able to write very simple multithreaded programs. The async
43 * framework will automatically take care of most of the synchronization
44 * problems.
45 *
46 * Example of use (pseudo C):
47 *
48 * 1) Multithreaded client application
49 *
50 * fibril_create(fibril1, ...);
51 * fibril_create(fibril2, ...);
52 * ...
53 *
54 * int fibril1(void *arg)
55 * {
56 * conn = async_connect_me_to(...);
57 *
58 * exch = async_exchange_begin(conn);
59 * c1 = async_send(exch);
60 * async_exchange_end(exch);
61 *
62 * exch = async_exchange_begin(conn);
63 * c2 = async_send(exch);
64 * async_exchange_end(exch);
65 *
66 * async_wait_for(c1);
67 * async_wait_for(c2);
68 * ...
69 * }
70 *
71 *
72 * 2) Multithreaded server application
73 *
74 * main()
75 * {
76 * async_manager();
77 * }
78 *
79 * port_handler(ipc_call_t *icall)
80 * {
81 * if (want_refuse) {
82 * async_answer_0(icall, ELIMIT);
83 * return;
84 * }
85 *
86 * async_answer_0(icall, EOK);
87 *
88 * async_get_call(&call);
89 * somehow_handle_the_call(&call);
90 * async_answer_2(&call, 1, 2, 3);
91 *
92 * async_get_call(&call);
93 * ...
94 * }
95 *
96 */
97
98#define LIBC_ASYNC_C_
99#include <ipc/ipc.h>
100#include <async.h>
101#include "../private/async.h"
102#undef LIBC_ASYNC_C_
103
104#include <ipc/irq.h>
105#include <ipc/event.h>
106#include <futex.h>
107#include <fibril.h>
108#include <adt/hash_table.h>
109#include <adt/hash.h>
110#include <adt/list.h>
111#include <assert.h>
112#include <errno.h>
113#include <sys/time.h>
114#include <libarch/barrier.h>
115#include <stdbool.h>
116#include <stdlib.h>
117#include <mem.h>
118#include <stdlib.h>
119#include <macros.h>
120#include <as.h>
121#include <abi/mm/as.h>
122#include "../private/libc.h"
123#include "../private/fibril.h"
124
125#define DPRINTF(...) ((void) 0)
126
127/** Async framework global futex */
128futex_t async_futex = FUTEX_INITIALIZER;
129
130/** Number of threads waiting for IPC in the kernel. */
131static atomic_t threads_in_ipc_wait = { 0 };
132
133/** Call data */
134typedef struct {
135 link_t link;
136 ipc_call_t call;
137} msg_t;
138
139/* Client connection data */
140typedef struct {
141 ht_link_t link;
142
143 task_id_t in_task_id;
144 atomic_t refcnt;
145 void *data;
146} client_t;
147
148/* Server connection data */
149typedef struct {
150 awaiter_t wdata;
151
152 /** Hash table link. */
153 ht_link_t link;
154
155 /** Incoming client task ID. */
156 task_id_t in_task_id;
157
158 /** Incoming phone hash. */
159 sysarg_t in_phone_hash;
160
161 /** Link to the client tracking structure. */
162 client_t *client;
163
164 /** Messages that should be delivered to this fibril. */
165 list_t msg_queue;
166
167 /** Call data of the opening call. */
168 ipc_call_t call;
169
170 /** Identification of the closing call. */
171 cap_call_handle_t close_chandle;
172
173 /** Fibril function that will be used to handle the connection. */
174 async_port_handler_t handler;
175
176 /** Client data */
177 void *data;
178} connection_t;
179
180/* Member of notification_t::msg_list. */
181typedef struct {
182 link_t link;
183 ipc_call_t calldata;
184} notification_msg_t;
185
186/* Notification data */
187typedef struct {
188 /** notification_hash_table link */
189 ht_link_t htlink;
190
191 /** notification_queue link */
192 link_t qlink;
193
194 /** Notification method */
195 sysarg_t imethod;
196
197 /** Notification handler */
198 async_notification_handler_t handler;
199
200 /** Notification handler argument */
201 void *arg;
202
203 /** List of arrived notifications. */
204 list_t msg_list;
205} notification_t;
206
207/** Identifier of the incoming connection handled by the current fibril. */
208static fibril_local connection_t *fibril_connection;
209
210static void *default_client_data_constructor(void)
211{
212 return NULL;
213}
214
215static void default_client_data_destructor(void *data)
216{
217}
218
219static async_client_data_ctor_t async_client_data_create =
220 default_client_data_constructor;
221static async_client_data_dtor_t async_client_data_destroy =
222 default_client_data_destructor;
223
224void async_set_client_data_constructor(async_client_data_ctor_t ctor)
225{
226 assert(async_client_data_create == default_client_data_constructor);
227 async_client_data_create = ctor;
228}
229
230void async_set_client_data_destructor(async_client_data_dtor_t dtor)
231{
232 assert(async_client_data_destroy == default_client_data_destructor);
233 async_client_data_destroy = dtor;
234}
235
236static FIBRIL_RMUTEX_INITIALIZE(client_mutex);
237static hash_table_t client_hash_table;
238
239// TODO: lockfree notification_queue?
240static FIBRIL_RMUTEX_INITIALIZE(notification_mutex);
241static hash_table_t notification_hash_table;
242static LIST_INITIALIZE(notification_queue);
243static FIBRIL_SEMAPHORE_INITIALIZE(notification_semaphore, 0);
244
245static LIST_INITIALIZE(notification_freelist);
246static long notification_freelist_total = 0;
247static long notification_freelist_used = 0;
248
249static sysarg_t notification_avail = 0;
250
251/* The remaining structures are guarded by async_futex. */
252static hash_table_t conn_hash_table;
253static LIST_INITIALIZE(timeout_list);
254
255static size_t client_key_hash(void *key)
256{
257 task_id_t in_task_id = *(task_id_t *) key;
258 return in_task_id;
259}
260
261static size_t client_hash(const ht_link_t *item)
262{
263 client_t *client = hash_table_get_inst(item, client_t, link);
264 return client_key_hash(&client->in_task_id);
265}
266
267static bool client_key_equal(void *key, const ht_link_t *item)
268{
269 task_id_t in_task_id = *(task_id_t *) key;
270 client_t *client = hash_table_get_inst(item, client_t, link);
271 return in_task_id == client->in_task_id;
272}
273
274/** Operations for the client hash table. */
275static hash_table_ops_t client_hash_table_ops = {
276 .hash = client_hash,
277 .key_hash = client_key_hash,
278 .key_equal = client_key_equal,
279 .equal = NULL,
280 .remove_callback = NULL
281};
282
283typedef struct {
284 task_id_t task_id;
285 sysarg_t phone_hash;
286} conn_key_t;
287
288/** Compute hash into the connection hash table
289 *
290 * The hash is based on the source task ID and the source phone hash. The task
291 * ID is included in the hash because a phone hash alone might not be unique
292 * while we still track connections for killed tasks due to kernel's recycling
293 * of phone structures.
294 *
295 * @param key Pointer to the connection key structure.
296 *
297 * @return Index into the connection hash table.
298 *
299 */
300static size_t conn_key_hash(void *key)
301{
302 conn_key_t *ck = (conn_key_t *) key;
303
304 size_t hash = 0;
305 hash = hash_combine(hash, LOWER32(ck->task_id));
306 hash = hash_combine(hash, UPPER32(ck->task_id));
307 hash = hash_combine(hash, ck->phone_hash);
308 return hash;
309}
310
311static size_t conn_hash(const ht_link_t *item)
312{
313 connection_t *conn = hash_table_get_inst(item, connection_t, link);
314 return conn_key_hash(&(conn_key_t){
315 .task_id = conn->in_task_id,
316 .phone_hash = conn->in_phone_hash
317 });
318}
319
320static bool conn_key_equal(void *key, const ht_link_t *item)
321{
322 conn_key_t *ck = (conn_key_t *) key;
323 connection_t *conn = hash_table_get_inst(item, connection_t, link);
324 return ((ck->task_id == conn->in_task_id) &&
325 (ck->phone_hash == conn->in_phone_hash));
326}
327
328/** Operations for the connection hash table. */
329static hash_table_ops_t conn_hash_table_ops = {
330 .hash = conn_hash,
331 .key_hash = conn_key_hash,
332 .key_equal = conn_key_equal,
333 .equal = NULL,
334 .remove_callback = NULL
335};
336
337static client_t *async_client_get(task_id_t client_id, bool create)
338{
339 client_t *client = NULL;
340
341 fibril_rmutex_lock(&client_mutex);
342 ht_link_t *link = hash_table_find(&client_hash_table, &client_id);
343 if (link) {
344 client = hash_table_get_inst(link, client_t, link);
345 atomic_inc(&client->refcnt);
346 } else if (create) {
347 // TODO: move the malloc out of critical section
348 /* malloc() is rmutex safe. */
349 client = malloc(sizeof(client_t));
350 if (client) {
351 client->in_task_id = client_id;
352 client->data = async_client_data_create();
353
354 atomic_set(&client->refcnt, 1);
355 hash_table_insert(&client_hash_table, &client->link);
356 }
357 }
358
359 fibril_rmutex_unlock(&client_mutex);
360 return client;
361}
362
363static void async_client_put(client_t *client)
364{
365 bool destroy;
366
367 fibril_rmutex_lock(&client_mutex);
368
369 if (atomic_predec(&client->refcnt) == 0) {
370 hash_table_remove(&client_hash_table, &client->in_task_id);
371 destroy = true;
372 } else
373 destroy = false;
374
375 fibril_rmutex_unlock(&client_mutex);
376
377 if (destroy) {
378 if (client->data)
379 async_client_data_destroy(client->data);
380
381 free(client);
382 }
383}
384
385/** Wrapper for client connection fibril.
386 *
387 * When a new connection arrives, a fibril with this implementing
388 * function is created.
389 *
390 * @param arg Connection structure pointer.
391 *
392 * @return Always zero.
393 *
394 */
395static errno_t connection_fibril(void *arg)
396{
397 assert(arg);
398
399 /*
400 * Setup fibril-local connection pointer.
401 */
402 fibril_connection = (connection_t *) arg;
403
404 /*
405 * Add our reference for the current connection in the client task
406 * tracking structure. If this is the first reference, create and
407 * hash in a new tracking structure.
408 */
409
410 client_t *client = async_client_get(fibril_connection->in_task_id, true);
411 if (!client) {
412 ipc_answer_0(fibril_connection->call.cap_handle, ENOMEM);
413 return 0;
414 }
415
416 fibril_connection->client = client;
417
418 /*
419 * Call the connection handler function.
420 */
421 fibril_connection->handler(&fibril_connection->call,
422 fibril_connection->data);
423
424 /*
425 * Remove the reference for this client task connection.
426 */
427 async_client_put(client);
428
429 /*
430 * Remove myself from the connection hash table.
431 */
432 futex_lock(&async_futex);
433 hash_table_remove(&conn_hash_table, &(conn_key_t){
434 .task_id = fibril_connection->in_task_id,
435 .phone_hash = fibril_connection->in_phone_hash
436 });
437 futex_unlock(&async_futex);
438
439 /*
440 * Answer all remaining messages with EHANGUP.
441 */
442 while (!list_empty(&fibril_connection->msg_queue)) {
443 msg_t *msg =
444 list_get_instance(list_first(&fibril_connection->msg_queue),
445 msg_t, link);
446
447 list_remove(&msg->link);
448 ipc_answer_0(msg->call.cap_handle, EHANGUP);
449 free(msg);
450 }
451
452 /*
453 * If the connection was hung-up, answer the last call,
454 * i.e. IPC_M_PHONE_HUNGUP.
455 */
456 if (fibril_connection->close_chandle)
457 ipc_answer_0(fibril_connection->close_chandle, EOK);
458
459 free(fibril_connection);
460 return EOK;
461}
462
463/** Create a new fibril for a new connection.
464 *
465 * Create new fibril for connection, fill in connection structures and insert it
466 * into the hash table, so that later we can easily do routing of messages to
467 * particular fibrils.
468 *
469 * @param in_task_id Identification of the incoming connection.
470 * @param in_phone_hash Identification of the incoming connection.
471 * @param call Call data of the opening call. If call is NULL,
472 * the connection was opened by accepting the
473 * IPC_M_CONNECT_TO_ME call and this function is
474 * called directly by the server.
475 * @param handler Connection handler.
476 * @param data Client argument to pass to the connection handler.
477 *
478 * @return New fibril id or NULL on failure.
479 *
480 */
481static fid_t async_new_connection(task_id_t in_task_id, sysarg_t in_phone_hash,
482 ipc_call_t *call, async_port_handler_t handler, void *data)
483{
484 connection_t *conn = malloc(sizeof(*conn));
485 if (!conn) {
486 if (call)
487 ipc_answer_0(call->cap_handle, ENOMEM);
488
489 return (uintptr_t) NULL;
490 }
491
492 conn->in_task_id = in_task_id;
493 conn->in_phone_hash = in_phone_hash;
494 list_initialize(&conn->msg_queue);
495 conn->close_chandle = CAP_NIL;
496 conn->handler = handler;
497 conn->data = data;
498
499 if (call)
500 conn->call = *call;
501 else
502 conn->call.cap_handle = CAP_NIL;
503
504 /* We will activate the fibril ASAP */
505 conn->wdata.active = true;
506 conn->wdata.fid = fibril_create(connection_fibril, conn);
507
508 if (conn->wdata.fid == 0) {
509 free(conn);
510
511 if (call)
512 ipc_answer_0(call->cap_handle, ENOMEM);
513
514 return (uintptr_t) NULL;
515 }
516
517 /* Add connection to the connection hash table */
518
519 futex_lock(&async_futex);
520 hash_table_insert(&conn_hash_table, &conn->link);
521 futex_unlock(&async_futex);
522
523 fibril_add_ready(conn->wdata.fid);
524
525 return conn->wdata.fid;
526}
527
528/** Wrapper for making IPC_M_CONNECT_TO_ME calls using the async framework.
529 *
530 * Ask through phone for a new connection to some service.
531 *
532 * @param exch Exchange for sending the message.
533 * @param iface Callback interface.
534 * @param arg1 User defined argument.
535 * @param arg2 User defined argument.
536 * @param handler Callback handler.
537 * @param data Handler data.
538 * @param port_id ID of the newly created port.
539 *
540 * @return Zero on success or an error code.
541 *
542 */
543errno_t async_create_callback_port(async_exch_t *exch, iface_t iface, sysarg_t arg1,
544 sysarg_t arg2, async_port_handler_t handler, void *data, port_id_t *port_id)
545{
546 if ((iface & IFACE_MOD_CALLBACK) != IFACE_MOD_CALLBACK)
547 return EINVAL;
548
549 if (exch == NULL)
550 return ENOENT;
551
552 ipc_call_t answer;
553 aid_t req = async_send_3(exch, IPC_M_CONNECT_TO_ME, iface, arg1, arg2,
554 &answer);
555
556 errno_t rc;
557 async_wait_for(req, &rc);
558 if (rc != EOK)
559 return rc;
560
561 rc = async_create_port_internal(iface, handler, data, port_id);
562 if (rc != EOK)
563 return rc;
564
565 sysarg_t phone_hash = IPC_GET_ARG5(answer);
566 fid_t fid = async_new_connection(answer.in_task_id, phone_hash,
567 NULL, handler, data);
568 if (fid == (uintptr_t) NULL)
569 return ENOMEM;
570
571 return EOK;
572}
573
574static size_t notification_key_hash(void *key)
575{
576 sysarg_t id = *(sysarg_t *) key;
577 return id;
578}
579
580static size_t notification_hash(const ht_link_t *item)
581{
582 notification_t *notification =
583 hash_table_get_inst(item, notification_t, htlink);
584 return notification_key_hash(&notification->imethod);
585}
586
587static bool notification_key_equal(void *key, const ht_link_t *item)
588{
589 sysarg_t id = *(sysarg_t *) key;
590 notification_t *notification =
591 hash_table_get_inst(item, notification_t, htlink);
592 return id == notification->imethod;
593}
594
595/** Operations for the notification hash table. */
596static hash_table_ops_t notification_hash_table_ops = {
597 .hash = notification_hash,
598 .key_hash = notification_key_hash,
599 .key_equal = notification_key_equal,
600 .equal = NULL,
601 .remove_callback = NULL
602};
603
604/** Sort in current fibril's timeout request.
605 *
606 * @param wd Wait data of the current fibril.
607 *
608 */
609void async_insert_timeout(awaiter_t *wd)
610{
611 assert(wd);
612
613 wd->to_event.occurred = false;
614 wd->to_event.inlist = true;
615
616 link_t *tmp = timeout_list.head.next;
617 while (tmp != &timeout_list.head) {
618 awaiter_t *cur =
619 list_get_instance(tmp, awaiter_t, to_event.link);
620
621 if (tv_gteq(&cur->to_event.expires, &wd->to_event.expires))
622 break;
623
624 tmp = tmp->next;
625 }
626
627 list_insert_before(&wd->to_event.link, tmp);
628}
629
630/** Try to route a call to an appropriate connection fibril.
631 *
632 * If the proper connection fibril is found, a message with the call is added to
633 * its message queue. If the fibril was not active, it is activated and all
634 * timeouts are unregistered.
635 *
636 * @param call Data of the incoming call.
637 *
638 * @return False if the call doesn't match any connection.
639 * @return True if the call was passed to the respective connection fibril.
640 *
641 */
642static bool route_call(ipc_call_t *call)
643{
644 assert(call);
645
646 futex_lock(&async_futex);
647
648 ht_link_t *link = hash_table_find(&conn_hash_table, &(conn_key_t){
649 .task_id = call->in_task_id,
650 .phone_hash = call->in_phone_hash
651 });
652 if (!link) {
653 futex_unlock(&async_futex);
654 return false;
655 }
656
657 connection_t *conn = hash_table_get_inst(link, connection_t, link);
658
659 msg_t *msg = malloc(sizeof(*msg));
660 if (!msg) {
661 futex_unlock(&async_futex);
662 return false;
663 }
664
665 msg->call = *call;
666 list_append(&msg->link, &conn->msg_queue);
667
668 if (IPC_GET_IMETHOD(*call) == IPC_M_PHONE_HUNGUP)
669 conn->close_chandle = call->cap_handle;
670
671 /* If the connection fibril is waiting for an event, activate it */
672 if (!conn->wdata.active) {
673
674 /* If in timeout list, remove it */
675 if (conn->wdata.to_event.inlist) {
676 conn->wdata.to_event.inlist = false;
677 list_remove(&conn->wdata.to_event.link);
678 }
679
680 conn->wdata.active = true;
681 fibril_add_ready(conn->wdata.fid);
682 }
683
684 futex_unlock(&async_futex);
685 return true;
686}
687
688/** Function implementing the notification handler fibril. Never returns. */
689static errno_t notification_fibril_func(void *arg)
690{
691 (void) arg;
692
693 while (true) {
694 fibril_semaphore_down(&notification_semaphore);
695
696 fibril_rmutex_lock(&notification_mutex);
697
698 /*
699 * The semaphore ensures that if we get this far,
700 * the queue must be non-empty.
701 */
702 assert(!list_empty(&notification_queue));
703
704 notification_t *notification = list_get_instance(
705 list_first(&notification_queue), notification_t, qlink);
706
707 async_notification_handler_t handler = notification->handler;
708 void *arg = notification->arg;
709
710 notification_msg_t *m = list_pop(&notification->msg_list,
711 notification_msg_t, link);
712 assert(m);
713 ipc_call_t calldata = m->calldata;
714
715 notification_freelist_used--;
716
717 if (notification_freelist_total > 64 &&
718 notification_freelist_total > 2 * notification_freelist_used) {
719 /* Going to free the structure if we have too much. */
720 notification_freelist_total--;
721 } else {
722 /* Otherwise add to freelist. */
723 list_append(&m->link, &notification_freelist);
724 m = NULL;
725 }
726
727 if (list_empty(&notification->msg_list))
728 list_remove(&notification->qlink);
729
730 fibril_rmutex_unlock(&notification_mutex);
731
732 if (handler)
733 handler(&calldata, arg);
734
735 free(m);
736 }
737
738 /* Not reached. */
739 return EOK;
740}
741
742/**
743 * Creates a new dedicated fibril for handling notifications.
744 * By default, there is one such fibril. This function can be used to
745 * create more in order to increase the number of notification that can
746 * be processed concurrently.
747 *
748 * Currently, there is no way to destroy those fibrils after they are created.
749 */
750errno_t async_spawn_notification_handler(void)
751{
752 fid_t f = fibril_create(notification_fibril_func, NULL);
753 if (f == 0)
754 return ENOMEM;
755
756 fibril_add_ready(f);
757 return EOK;
758}
759
760/** Queue notification.
761 *
762 * @param call Data of the incoming call.
763 *
764 */
765static void queue_notification(ipc_call_t *call)
766{
767 assert(call);
768
769 fibril_rmutex_lock(&notification_mutex);
770
771 notification_msg_t *m = list_pop(&notification_freelist,
772 notification_msg_t, link);
773
774 if (!m) {
775 fibril_rmutex_unlock(&notification_mutex);
776 m = malloc(sizeof(notification_msg_t));
777 if (!m) {
778 DPRINTF("Out of memory.\n");
779 abort();
780 }
781
782 fibril_rmutex_lock(&notification_mutex);
783 notification_freelist_total++;
784 }
785
786 ht_link_t *link = hash_table_find(&notification_hash_table,
787 &IPC_GET_IMETHOD(*call));
788 if (!link) {
789 /* Invalid notification. */
790 // TODO: Make sure this can't happen and turn it into assert.
791 notification_freelist_total--;
792 fibril_rmutex_unlock(&notification_mutex);
793 free(m);
794 return;
795 }
796
797 notification_t *notification =
798 hash_table_get_inst(link, notification_t, htlink);
799
800 notification_freelist_used++;
801 m->calldata = *call;
802 list_append(&m->link, &notification->msg_list);
803
804 if (!link_in_use(&notification->qlink))
805 list_append(&notification->qlink, &notification_queue);
806
807 fibril_rmutex_unlock(&notification_mutex);
808
809 fibril_semaphore_up(&notification_semaphore);
810}
811
812/**
813 * Creates a new notification structure and inserts it into the hash table.
814 *
815 * @param handler Function to call when notification is received.
816 * @param arg Argument for the handler function.
817 * @return The newly created notification structure.
818 */
819static notification_t *notification_create(async_notification_handler_t handler, void *arg)
820{
821 notification_t *notification = calloc(1, sizeof(notification_t));
822 if (!notification)
823 return NULL;
824
825 notification->handler = handler;
826 notification->arg = arg;
827
828 list_initialize(&notification->msg_list);
829
830 fid_t fib = 0;
831
832 fibril_rmutex_lock(&notification_mutex);
833
834 if (notification_avail == 0) {
835 /* Attempt to create the first handler fibril. */
836 fib = fibril_create(notification_fibril_func, NULL);
837 if (fib == 0) {
838 fibril_rmutex_unlock(&notification_mutex);
839 free(notification);
840 return NULL;
841 }
842 }
843
844 sysarg_t imethod = notification_avail;
845 notification_avail++;
846
847 notification->imethod = imethod;
848 hash_table_insert(&notification_hash_table, &notification->htlink);
849
850 fibril_rmutex_unlock(&notification_mutex);
851
852 if (imethod == 0) {
853 assert(fib);
854 fibril_add_ready(fib);
855 }
856
857 return notification;
858}
859
860/** Subscribe to IRQ notification.
861 *
862 * @param inr IRQ number.
863 * @param handler Notification handler.
864 * @param data Notification handler client data.
865 * @param ucode Top-half pseudocode handler.
866 *
867 * @param[out] handle IRQ capability handle on success.
868 *
869 * @return An error code.
870 *
871 */
872errno_t async_irq_subscribe(int inr, async_notification_handler_t handler,
873 void *data, const irq_code_t *ucode, cap_irq_handle_t *handle)
874{
875 notification_t *notification = notification_create(handler, data);
876 if (!notification)
877 return ENOMEM;
878
879 cap_irq_handle_t ihandle;
880 errno_t rc = ipc_irq_subscribe(inr, notification->imethod, ucode,
881 &ihandle);
882 if (rc == EOK && handle != NULL) {
883 *handle = ihandle;
884 }
885 return rc;
886}
887
888/** Unsubscribe from IRQ notification.
889 *
890 * @param handle IRQ capability handle.
891 *
892 * @return Zero on success or an error code.
893 *
894 */
895errno_t async_irq_unsubscribe(cap_irq_handle_t ihandle)
896{
897 // TODO: Remove entry from hash table
898 // to avoid memory leak
899
900 return ipc_irq_unsubscribe(ihandle);
901}
902
903/** Subscribe to event notifications.
904 *
905 * @param evno Event type to subscribe.
906 * @param handler Notification handler.
907 * @param data Notification handler client data.
908 *
909 * @return Zero on success or an error code.
910 *
911 */
912errno_t async_event_subscribe(event_type_t evno,
913 async_notification_handler_t handler, void *data)
914{
915 notification_t *notification = notification_create(handler, data);
916 if (!notification)
917 return ENOMEM;
918
919 return ipc_event_subscribe(evno, notification->imethod);
920}
921
922/** Subscribe to task event notifications.
923 *
924 * @param evno Event type to subscribe.
925 * @param handler Notification handler.
926 * @param data Notification handler client data.
927 *
928 * @return Zero on success or an error code.
929 *
930 */
931errno_t async_event_task_subscribe(event_task_type_t evno,
932 async_notification_handler_t handler, void *data)
933{
934 notification_t *notification = notification_create(handler, data);
935 if (!notification)
936 return ENOMEM;
937
938 return ipc_event_task_subscribe(evno, notification->imethod);
939}
940
941/** Unmask event notifications.
942 *
943 * @param evno Event type to unmask.
944 *
945 * @return Value returned by the kernel.
946 *
947 */
948errno_t async_event_unmask(event_type_t evno)
949{
950 return ipc_event_unmask(evno);
951}
952
953/** Unmask task event notifications.
954 *
955 * @param evno Event type to unmask.
956 *
957 * @return Value returned by the kernel.
958 *
959 */
960errno_t async_event_task_unmask(event_task_type_t evno)
961{
962 return ipc_event_task_unmask(evno);
963}
964
965/** Return new incoming message for the current (fibril-local) connection.
966 *
967 * @param call Storage where the incoming call data will be stored.
968 * @param usecs Timeout in microseconds. Zero denotes no timeout.
969 *
970 * @return If no timeout was specified, then true is returned.
971 * @return If a timeout is specified, then true is returned unless
972 * the timeout expires prior to receiving a message.
973 *
974 */
975bool async_get_call_timeout(ipc_call_t *call, suseconds_t usecs)
976{
977 assert(call);
978 assert(fibril_connection);
979
980 /*
981 * Why doing this?
982 * GCC 4.1.0 coughs on fibril_connection-> dereference.
983 * GCC 4.1.1 happilly puts the rdhwr instruction in delay slot.
984 * I would never expect to find so many errors in
985 * a compiler.
986 */
987 connection_t *conn = fibril_connection;
988
989 futex_lock(&async_futex);
990
991 if (usecs) {
992 getuptime(&conn->wdata.to_event.expires);
993 tv_add_diff(&conn->wdata.to_event.expires, usecs);
994 } else
995 conn->wdata.to_event.inlist = false;
996
997 /* If nothing in queue, wait until something arrives */
998 while (list_empty(&conn->msg_queue)) {
999 if (conn->close_chandle) {
1000 /*
1001 * Handle the case when the connection was already
1002 * closed by the client but the server did not notice
1003 * the first IPC_M_PHONE_HUNGUP call and continues to
1004 * call async_get_call_timeout(). Repeat
1005 * IPC_M_PHONE_HUNGUP until the caller notices.
1006 */
1007 memset(call, 0, sizeof(ipc_call_t));
1008 IPC_SET_IMETHOD(*call, IPC_M_PHONE_HUNGUP);
1009 futex_unlock(&async_futex);
1010 return true;
1011 }
1012
1013 if (usecs)
1014 async_insert_timeout(&conn->wdata);
1015
1016 conn->wdata.active = false;
1017
1018 /*
1019 * Note: the current fibril will be rescheduled either due to a
1020 * timeout or due to an arriving message destined to it. In the
1021 * former case, handle_expired_timeouts() and, in the latter
1022 * case, route_call() will perform the wakeup.
1023 */
1024 fibril_switch(FIBRIL_FROM_BLOCKED);
1025
1026 if ((usecs) && (conn->wdata.to_event.occurred) &&
1027 (list_empty(&conn->msg_queue))) {
1028 /* If we timed out -> exit */
1029 futex_unlock(&async_futex);
1030 return false;
1031 }
1032 }
1033
1034 msg_t *msg = list_get_instance(list_first(&conn->msg_queue),
1035 msg_t, link);
1036 list_remove(&msg->link);
1037
1038 *call = msg->call;
1039 free(msg);
1040
1041 futex_unlock(&async_futex);
1042 return true;
1043}
1044
1045void *async_get_client_data(void)
1046{
1047 assert(fibril_connection);
1048 return fibril_connection->client->data;
1049}
1050
1051void *async_get_client_data_by_id(task_id_t client_id)
1052{
1053 client_t *client = async_client_get(client_id, false);
1054 if (!client)
1055 return NULL;
1056
1057 if (!client->data) {
1058 async_client_put(client);
1059 return NULL;
1060 }
1061
1062 return client->data;
1063}
1064
1065void async_put_client_data_by_id(task_id_t client_id)
1066{
1067 client_t *client = async_client_get(client_id, false);
1068
1069 assert(client);
1070 assert(client->data);
1071
1072 /* Drop the reference we got in async_get_client_data_by_hash(). */
1073 async_client_put(client);
1074
1075 /* Drop our own reference we got at the beginning of this function. */
1076 async_client_put(client);
1077}
1078
1079/** Handle a call that was received.
1080 *
1081 * If the call has the IPC_M_CONNECT_ME_TO method, a new connection is created.
1082 * Otherwise the call is routed to its connection fibril.
1083 *
1084 * @param call Data of the incoming call.
1085 *
1086 */
1087static void handle_call(ipc_call_t *call)
1088{
1089 assert(call);
1090
1091 if (call->flags & IPC_CALL_ANSWERED) {
1092 /* Answer to a call made by us. */
1093 async_reply_received(call);
1094 return;
1095 }
1096
1097 if (call->cap_handle == CAP_NIL) {
1098 if (call->flags & IPC_CALL_NOTIF) {
1099 /* Kernel notification */
1100 queue_notification(call);
1101 }
1102 return;
1103 }
1104
1105 /* New connection */
1106 if (IPC_GET_IMETHOD(*call) == IPC_M_CONNECT_ME_TO) {
1107 iface_t iface = (iface_t) IPC_GET_ARG1(*call);
1108 sysarg_t in_phone_hash = IPC_GET_ARG5(*call);
1109
1110 // TODO: Currently ignores all ports but the first one.
1111 void *data;
1112 async_port_handler_t handler =
1113 async_get_port_handler(iface, 0, &data);
1114
1115 async_new_connection(call->in_task_id, in_phone_hash, call,
1116 handler, data);
1117 return;
1118 }
1119
1120 /* Try to route the call through the connection hash table */
1121 if (route_call(call))
1122 return;
1123
1124 /* Unknown call from unknown phone - hang it up */
1125 ipc_answer_0(call->cap_handle, EHANGUP);
1126}
1127
1128/** Fire all timeouts that expired. */
1129static suseconds_t handle_expired_timeouts(unsigned int *flags)
1130{
1131 /* Make sure the async_futex is held. */
1132 futex_assert_is_locked(&async_futex);
1133
1134 struct timeval tv;
1135 getuptime(&tv);
1136
1137 bool fired = false;
1138
1139 link_t *cur = list_first(&timeout_list);
1140 while (cur != NULL) {
1141 awaiter_t *waiter =
1142 list_get_instance(cur, awaiter_t, to_event.link);
1143
1144 if (tv_gt(&waiter->to_event.expires, &tv)) {
1145 if (fired) {
1146 *flags = SYNCH_FLAGS_NON_BLOCKING;
1147 return 0;
1148 }
1149 *flags = 0;
1150 return tv_sub_diff(&waiter->to_event.expires, &tv);
1151 }
1152
1153 list_remove(&waiter->to_event.link);
1154 waiter->to_event.inlist = false;
1155 waiter->to_event.occurred = true;
1156
1157 /*
1158 * Redundant condition?
1159 * The fibril should not be active when it gets here.
1160 */
1161 if (!waiter->active) {
1162 waiter->active = true;
1163 fibril_add_ready(waiter->fid);
1164 fired = true;
1165 }
1166
1167 cur = list_first(&timeout_list);
1168 }
1169
1170 if (fired) {
1171 *flags = SYNCH_FLAGS_NON_BLOCKING;
1172 return 0;
1173 }
1174
1175 return SYNCH_NO_TIMEOUT;
1176}
1177
1178/** Endless loop dispatching incoming calls and answers.
1179 *
1180 * @return Never returns.
1181 *
1182 */
1183static errno_t async_manager_worker(void)
1184{
1185 while (true) {
1186 futex_lock(&async_futex);
1187 fibril_switch(FIBRIL_FROM_MANAGER);
1188
1189 /*
1190 * The switch only returns when there is no non-manager fibril
1191 * it can run.
1192 */
1193
1194 unsigned int flags = SYNCH_FLAGS_NONE;
1195 suseconds_t next_timeout = handle_expired_timeouts(&flags);
1196 futex_unlock(&async_futex);
1197
1198 atomic_inc(&threads_in_ipc_wait);
1199
1200 ipc_call_t call;
1201 errno_t rc = ipc_wait(&call, next_timeout, flags);
1202
1203 atomic_dec(&threads_in_ipc_wait);
1204
1205 if (rc == EOK)
1206 handle_call(&call);
1207 }
1208
1209 return 0;
1210}
1211
1212/** Function to start async_manager as a standalone fibril.
1213 *
1214 * When more kernel threads are used, one async manager should exist per thread.
1215 *
1216 * @param arg Unused.
1217 * @return Never returns.
1218 *
1219 */
1220static errno_t async_manager_fibril(void *arg)
1221{
1222 async_manager_worker();
1223 return 0;
1224}
1225
1226/** Add one manager to manager list. */
1227void async_create_manager(void)
1228{
1229 fid_t fid = fibril_create_generic(async_manager_fibril, NULL, PAGE_SIZE);
1230 if (fid != 0)
1231 fibril_add_manager(fid);
1232}
1233
1234/** Remove one manager from manager list */
1235void async_destroy_manager(void)
1236{
1237 fibril_remove_manager();
1238}
1239
1240/** Initialize the async framework.
1241 *
1242 */
1243void __async_server_init(void)
1244{
1245 if (!hash_table_create(&client_hash_table, 0, 0, &client_hash_table_ops))
1246 abort();
1247
1248 if (!hash_table_create(&conn_hash_table, 0, 0, &conn_hash_table_ops))
1249 abort();
1250
1251 if (!hash_table_create(&notification_hash_table, 0, 0,
1252 &notification_hash_table_ops))
1253 abort();
1254}
1255
1256errno_t async_answer_0(ipc_call_t *call, errno_t retval)
1257{
1258 return ipc_answer_0(call->cap_handle, retval);
1259}
1260
1261errno_t async_answer_1(ipc_call_t *call, errno_t retval, sysarg_t arg1)
1262{
1263 return ipc_answer_1(call->cap_handle, retval, arg1);
1264}
1265
1266errno_t async_answer_2(ipc_call_t *call, errno_t retval, sysarg_t arg1,
1267 sysarg_t arg2)
1268{
1269 return ipc_answer_2(call->cap_handle, retval, arg1, arg2);
1270}
1271
1272errno_t async_answer_3(ipc_call_t *call, errno_t retval, sysarg_t arg1,
1273 sysarg_t arg2, sysarg_t arg3)
1274{
1275 return ipc_answer_3(call->cap_handle, retval, arg1, arg2, arg3);
1276}
1277
1278errno_t async_answer_4(ipc_call_t *call, errno_t retval, sysarg_t arg1,
1279 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4)
1280{
1281 return ipc_answer_4(call->cap_handle, retval, arg1, arg2, arg3, arg4);
1282}
1283
1284errno_t async_answer_5(ipc_call_t *call, errno_t retval, sysarg_t arg1,
1285 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4, sysarg_t arg5)
1286{
1287 return ipc_answer_5(call->cap_handle, retval, arg1, arg2, arg3, arg4,
1288 arg5);
1289}
1290
1291errno_t async_forward_fast(ipc_call_t *call, async_exch_t *exch,
1292 sysarg_t imethod, sysarg_t arg1, sysarg_t arg2, unsigned int mode)
1293{
1294 assert(call);
1295
1296 if (exch == NULL)
1297 return ENOENT;
1298
1299 return ipc_forward_fast(call->cap_handle, exch->phone, imethod, arg1,
1300 arg2, mode);
1301}
1302
1303errno_t async_forward_slow(ipc_call_t *call, async_exch_t *exch,
1304 sysarg_t imethod, sysarg_t arg1, sysarg_t arg2, sysarg_t arg3,
1305 sysarg_t arg4, sysarg_t arg5, unsigned int mode)
1306{
1307 assert(call);
1308
1309 if (exch == NULL)
1310 return ENOENT;
1311
1312 return ipc_forward_slow(call->cap_handle, exch->phone, imethod, arg1,
1313 arg2, arg3, arg4, arg5, mode);
1314}
1315
1316/** Wrapper for making IPC_M_CONNECT_TO_ME calls using the async framework.
1317 *
1318 * Ask through phone for a new connection to some service.
1319 *
1320 * @param exch Exchange for sending the message.
1321 * @param iface Callback interface.
1322 * @param arg2 User defined argument.
1323 * @param arg3 User defined argument.
1324 *
1325 * @return Zero on success or an error code.
1326 *
1327 */
1328errno_t async_connect_to_me(async_exch_t *exch, iface_t iface, sysarg_t arg2,
1329 sysarg_t arg3)
1330{
1331 if (exch == NULL)
1332 return ENOENT;
1333
1334 ipc_call_t answer;
1335 aid_t req = async_send_3(exch, IPC_M_CONNECT_TO_ME, iface, arg2, arg3,
1336 &answer);
1337
1338 errno_t rc;
1339 async_wait_for(req, &rc);
1340 if (rc != EOK)
1341 return (errno_t) rc;
1342
1343 return EOK;
1344}
1345
1346/** Interrupt one thread of this task from waiting for IPC. */
1347void async_poke(void)
1348{
1349 if (atomic_get(&threads_in_ipc_wait) > 0)
1350 ipc_poke();
1351}
1352
1353/** Wrapper for receiving the IPC_M_SHARE_IN calls using the async framework.
1354 *
1355 * This wrapper only makes it more comfortable to receive IPC_M_SHARE_IN
1356 * calls so that the user doesn't have to remember the meaning of each IPC
1357 * argument.
1358 *
1359 * So far, this wrapper is to be used from within a connection fibril.
1360 *
1361 * @param call Storage for the data of the IPC_M_SHARE_IN call.
1362 * @param size Destination address space area size.
1363 *
1364 * @return True on success, false on failure.
1365 *
1366 */
1367bool async_share_in_receive(ipc_call_t *call, size_t *size)
1368{
1369 assert(call);
1370 assert(size);
1371
1372 async_get_call(call);
1373
1374 if (IPC_GET_IMETHOD(*call) != IPC_M_SHARE_IN)
1375 return false;
1376
1377 *size = (size_t) IPC_GET_ARG1(*call);
1378 return true;
1379}
1380
1381/** Wrapper for answering the IPC_M_SHARE_IN calls using the async framework.
1382 *
1383 * This wrapper only makes it more comfortable to answer IPC_M_SHARE_IN
1384 * calls so that the user doesn't have to remember the meaning of each IPC
1385 * argument.
1386 *
1387 * @param call IPC_M_DATA_READ call to answer.
1388 * @param src Source address space base.
1389 * @param flags Flags to be used for sharing. Bits can be only cleared.
1390 *
1391 * @return Zero on success or a value from @ref errno.h on failure.
1392 *
1393 */
1394errno_t async_share_in_finalize(ipc_call_t *call, void *src, unsigned int flags)
1395{
1396 assert(call);
1397
1398 // FIXME: The source has no business deciding destination address.
1399 return ipc_answer_3(call->cap_handle, EOK, (sysarg_t) src, (sysarg_t) flags,
1400 (sysarg_t) __progsymbols.end);
1401}
1402
1403/** Wrapper for receiving the IPC_M_SHARE_OUT calls using the async framework.
1404 *
1405 * This wrapper only makes it more comfortable to receive IPC_M_SHARE_OUT
1406 * calls so that the user doesn't have to remember the meaning of each IPC
1407 * argument.
1408 *
1409 * So far, this wrapper is to be used from within a connection fibril.
1410 *
1411 * @param call Storage for the data of the IPC_M_SHARE_OUT call.
1412 * @param size Storage for the source address space area size.
1413 * @param flags Storage for the sharing flags.
1414 *
1415 * @return True on success, false on failure.
1416 *
1417 */
1418bool async_share_out_receive(ipc_call_t *call, size_t *size,
1419 unsigned int *flags)
1420{
1421 assert(call);
1422 assert(size);
1423 assert(flags);
1424
1425 async_get_call(call);
1426
1427 if (IPC_GET_IMETHOD(*call) != IPC_M_SHARE_OUT)
1428 return false;
1429
1430 *size = (size_t) IPC_GET_ARG2(*call);
1431 *flags = (unsigned int) IPC_GET_ARG3(*call);
1432 return true;
1433}
1434
1435/** Wrapper for answering the IPC_M_SHARE_OUT calls using the async framework.
1436 *
1437 * This wrapper only makes it more comfortable to answer IPC_M_SHARE_OUT
1438 * calls so that the user doesn't have to remember the meaning of each IPC
1439 * argument.
1440 *
1441 * @param call IPC_M_DATA_WRITE call to answer.
1442 * @param dst Address of the storage for the destination address space area
1443 * base address.
1444 *
1445 * @return Zero on success or a value from @ref errno.h on failure.
1446 *
1447 */
1448errno_t async_share_out_finalize(ipc_call_t *call, void **dst)
1449{
1450 assert(call);
1451
1452 return ipc_answer_2(call->cap_handle, EOK, (sysarg_t) __progsymbols.end,
1453 (sysarg_t) dst);
1454}
1455
1456/** Wrapper for receiving the IPC_M_DATA_READ calls using the async framework.
1457 *
1458 * This wrapper only makes it more comfortable to receive IPC_M_DATA_READ
1459 * calls so that the user doesn't have to remember the meaning of each IPC
1460 * argument.
1461 *
1462 * So far, this wrapper is to be used from within a connection fibril.
1463 *
1464 * @param call Storage for the data of the IPC_M_DATA_READ.
1465 * @param size Storage for the maximum size. Can be NULL.
1466 *
1467 * @return True on success, false on failure.
1468 *
1469 */
1470bool async_data_read_receive(ipc_call_t *call, size_t *size)
1471{
1472 assert(call);
1473
1474 async_get_call(call);
1475
1476 if (IPC_GET_IMETHOD(*call) != IPC_M_DATA_READ)
1477 return false;
1478
1479 if (size)
1480 *size = (size_t) IPC_GET_ARG2(*call);
1481
1482 return true;
1483}
1484
1485/** Wrapper for answering the IPC_M_DATA_READ calls using the async framework.
1486 *
1487 * This wrapper only makes it more comfortable to answer IPC_M_DATA_READ
1488 * calls so that the user doesn't have to remember the meaning of each IPC
1489 * argument.
1490 *
1491 * @param call IPC_M_DATA_READ call to answer.
1492 * @param src Source address for the IPC_M_DATA_READ call.
1493 * @param size Size for the IPC_M_DATA_READ call. Can be smaller than
1494 * the maximum size announced by the sender.
1495 *
1496 * @return Zero on success or a value from @ref errno.h on failure.
1497 *
1498 */
1499errno_t async_data_read_finalize(ipc_call_t *call, const void *src, size_t size)
1500{
1501 assert(call);
1502
1503 return ipc_answer_2(call->cap_handle, EOK, (sysarg_t) src,
1504 (sysarg_t) size);
1505}
1506
1507/** Wrapper for forwarding any read request
1508 *
1509 */
1510errno_t async_data_read_forward_fast(async_exch_t *exch, sysarg_t imethod,
1511 sysarg_t arg1, sysarg_t arg2, sysarg_t arg3, sysarg_t arg4,
1512 ipc_call_t *dataptr)
1513{
1514 if (exch == NULL)
1515 return ENOENT;
1516
1517 ipc_call_t call;
1518 if (!async_data_read_receive(&call, NULL)) {
1519 async_answer_0(&call, EINVAL);
1520 return EINVAL;
1521 }
1522
1523 aid_t msg = async_send_fast(exch, imethod, arg1, arg2, arg3, arg4,
1524 dataptr);
1525 if (msg == 0) {
1526 async_answer_0(&call, EINVAL);
1527 return EINVAL;
1528 }
1529
1530 errno_t retval = ipc_forward_fast(call.cap_handle, exch->phone, 0, 0, 0,
1531 IPC_FF_ROUTE_FROM_ME);
1532 if (retval != EOK) {
1533 async_forget(msg);
1534 async_answer_0(&call, retval);
1535 return retval;
1536 }
1537
1538 errno_t rc;
1539 async_wait_for(msg, &rc);
1540
1541 return (errno_t) rc;
1542}
1543
1544/** Wrapper for receiving the IPC_M_DATA_WRITE calls using the async framework.
1545 *
1546 * This wrapper only makes it more comfortable to receive IPC_M_DATA_WRITE
1547 * calls so that the user doesn't have to remember the meaning of each IPC
1548 * argument.
1549 *
1550 * So far, this wrapper is to be used from within a connection fibril.
1551 *
1552 * @param call Storage for the data of the IPC_M_DATA_WRITE.
1553 * @param size Storage for the suggested size. May be NULL.
1554 *
1555 * @return True on success, false on failure.
1556 *
1557 */
1558bool async_data_write_receive(ipc_call_t *call, size_t *size)
1559{
1560 assert(call);
1561
1562 async_get_call(call);
1563
1564 if (IPC_GET_IMETHOD(*call) != IPC_M_DATA_WRITE)
1565 return false;
1566
1567 if (size)
1568 *size = (size_t) IPC_GET_ARG2(*call);
1569
1570 return true;
1571}
1572
1573/** Wrapper for answering the IPC_M_DATA_WRITE calls using the async framework.
1574 *
1575 * This wrapper only makes it more comfortable to answer IPC_M_DATA_WRITE
1576 * calls so that the user doesn't have to remember the meaning of each IPC
1577 * argument.
1578 *
1579 * @param call IPC_M_DATA_WRITE call to answer.
1580 * @param dst Final destination address for the IPC_M_DATA_WRITE call.
1581 * @param size Final size for the IPC_M_DATA_WRITE call.
1582 *
1583 * @return Zero on success or a value from @ref errno.h on failure.
1584 *
1585 */
1586errno_t async_data_write_finalize(ipc_call_t *call, void *dst, size_t size)
1587{
1588 assert(call);
1589
1590 return async_answer_2(call, EOK, (sysarg_t) dst, (sysarg_t) size);
1591}
1592
1593/** Wrapper for receiving binary data or strings
1594 *
1595 * This wrapper only makes it more comfortable to use async_data_write_*
1596 * functions to receive binary data or strings.
1597 *
1598 * @param data Pointer to data pointer (which should be later disposed
1599 * by free()). If the operation fails, the pointer is not
1600 * touched.
1601 * @param nullterm If true then the received data is always zero terminated.
1602 * This also causes to allocate one extra byte beyond the
1603 * raw transmitted data.
1604 * @param min_size Minimum size (in bytes) of the data to receive.
1605 * @param max_size Maximum size (in bytes) of the data to receive. 0 means
1606 * no limit.
1607 * @param granulariy If non-zero then the size of the received data has to
1608 * be divisible by this value.
1609 * @param received If not NULL, the size of the received data is stored here.
1610 *
1611 * @return Zero on success or a value from @ref errno.h on failure.
1612 *
1613 */
1614errno_t async_data_write_accept(void **data, const bool nullterm,
1615 const size_t min_size, const size_t max_size, const size_t granularity,
1616 size_t *received)
1617{
1618 assert(data);
1619
1620 ipc_call_t call;
1621 size_t size;
1622 if (!async_data_write_receive(&call, &size)) {
1623 async_answer_0(&call, EINVAL);
1624 return EINVAL;
1625 }
1626
1627 if (size < min_size) {
1628 async_answer_0(&call, EINVAL);
1629 return EINVAL;
1630 }
1631
1632 if ((max_size > 0) && (size > max_size)) {
1633 async_answer_0(&call, EINVAL);
1634 return EINVAL;
1635 }
1636
1637 if ((granularity > 0) && ((size % granularity) != 0)) {
1638 async_answer_0(&call, EINVAL);
1639 return EINVAL;
1640 }
1641
1642 void *arg_data;
1643
1644 if (nullterm)
1645 arg_data = malloc(size + 1);
1646 else
1647 arg_data = malloc(size);
1648
1649 if (arg_data == NULL) {
1650 async_answer_0(&call, ENOMEM);
1651 return ENOMEM;
1652 }
1653
1654 errno_t rc = async_data_write_finalize(&call, arg_data, size);
1655 if (rc != EOK) {
1656 free(arg_data);
1657 return rc;
1658 }
1659
1660 if (nullterm)
1661 ((char *) arg_data)[size] = 0;
1662
1663 *data = arg_data;
1664 if (received != NULL)
1665 *received = size;
1666
1667 return EOK;
1668}
1669
1670/** Wrapper for voiding any data that is about to be received
1671 *
1672 * This wrapper can be used to void any pending data
1673 *
1674 * @param retval Error value from @ref errno.h to be returned to the caller.
1675 *
1676 */
1677void async_data_write_void(errno_t retval)
1678{
1679 ipc_call_t call;
1680 async_data_write_receive(&call, NULL);
1681 async_answer_0(&call, retval);
1682}
1683
1684/** Wrapper for forwarding any data that is about to be received
1685 *
1686 */
1687errno_t async_data_write_forward_fast(async_exch_t *exch, sysarg_t imethod,
1688 sysarg_t arg1, sysarg_t arg2, sysarg_t arg3, sysarg_t arg4,
1689 ipc_call_t *dataptr)
1690{
1691 if (exch == NULL)
1692 return ENOENT;
1693
1694 ipc_call_t call;
1695 if (!async_data_write_receive(&call, NULL)) {
1696 async_answer_0(&call, EINVAL);
1697 return EINVAL;
1698 }
1699
1700 aid_t msg = async_send_fast(exch, imethod, arg1, arg2, arg3, arg4,
1701 dataptr);
1702 if (msg == 0) {
1703 async_answer_0(&call, EINVAL);
1704 return EINVAL;
1705 }
1706
1707 errno_t retval = ipc_forward_fast(call.cap_handle, exch->phone, 0, 0, 0,
1708 IPC_FF_ROUTE_FROM_ME);
1709 if (retval != EOK) {
1710 async_forget(msg);
1711 async_answer_0(&call, retval);
1712 return retval;
1713 }
1714
1715 errno_t rc;
1716 async_wait_for(msg, &rc);
1717
1718 return (errno_t) rc;
1719}
1720
1721/** Wrapper for receiving the IPC_M_CONNECT_TO_ME calls.
1722 *
1723 * If the current call is IPC_M_CONNECT_TO_ME then a new
1724 * async session is created for the accepted phone.
1725 *
1726 * @param mgmt Exchange management style.
1727 *
1728 * @return New async session.
1729 * @return NULL on failure.
1730 *
1731 */
1732async_sess_t *async_callback_receive(exch_mgmt_t mgmt)
1733{
1734 /* Accept the phone */
1735 ipc_call_t call;
1736 async_get_call(&call);
1737
1738 cap_phone_handle_t phandle = (cap_handle_t) IPC_GET_ARG5(call);
1739
1740 if ((IPC_GET_IMETHOD(call) != IPC_M_CONNECT_TO_ME) ||
1741 !CAP_HANDLE_VALID((phandle))) {
1742 async_answer_0(&call, EINVAL);
1743 return NULL;
1744 }
1745
1746 async_sess_t *sess = (async_sess_t *) malloc(sizeof(async_sess_t));
1747 if (sess == NULL) {
1748 async_answer_0(&call, ENOMEM);
1749 return NULL;
1750 }
1751
1752 sess->iface = 0;
1753 sess->mgmt = mgmt;
1754 sess->phone = phandle;
1755 sess->arg1 = 0;
1756 sess->arg2 = 0;
1757 sess->arg3 = 0;
1758
1759 fibril_mutex_initialize(&sess->remote_state_mtx);
1760 sess->remote_state_data = NULL;
1761
1762 list_initialize(&sess->exch_list);
1763 fibril_mutex_initialize(&sess->mutex);
1764 atomic_set(&sess->refcnt, 0);
1765
1766 /* Acknowledge the connected phone */
1767 async_answer_0(&call, EOK);
1768
1769 return sess;
1770}
1771
1772/** Wrapper for receiving the IPC_M_CONNECT_TO_ME calls.
1773 *
1774 * If the call is IPC_M_CONNECT_TO_ME then a new
1775 * async session is created. However, the phone is
1776 * not accepted automatically.
1777 *
1778 * @param mgmt Exchange management style.
1779 * @param call Call data.
1780 *
1781 * @return New async session.
1782 * @return NULL on failure.
1783 * @return NULL if the call is not IPC_M_CONNECT_TO_ME.
1784 *
1785 */
1786async_sess_t *async_callback_receive_start(exch_mgmt_t mgmt, ipc_call_t *call)
1787{
1788 cap_phone_handle_t phandle = (cap_handle_t) IPC_GET_ARG5(*call);
1789
1790 if ((IPC_GET_IMETHOD(*call) != IPC_M_CONNECT_TO_ME) ||
1791 !CAP_HANDLE_VALID((phandle)))
1792 return NULL;
1793
1794 async_sess_t *sess = (async_sess_t *) malloc(sizeof(async_sess_t));
1795 if (sess == NULL)
1796 return NULL;
1797
1798 sess->iface = 0;
1799 sess->mgmt = mgmt;
1800 sess->phone = phandle;
1801 sess->arg1 = 0;
1802 sess->arg2 = 0;
1803 sess->arg3 = 0;
1804
1805 fibril_mutex_initialize(&sess->remote_state_mtx);
1806 sess->remote_state_data = NULL;
1807
1808 list_initialize(&sess->exch_list);
1809 fibril_mutex_initialize(&sess->mutex);
1810 atomic_set(&sess->refcnt, 0);
1811
1812 return sess;
1813}
1814
1815bool async_state_change_receive(ipc_call_t *call)
1816{
1817 assert(call);
1818
1819 async_get_call(call);
1820
1821 if (IPC_GET_IMETHOD(*call) != IPC_M_STATE_CHANGE_AUTHORIZE)
1822 return false;
1823
1824 return true;
1825}
1826
1827errno_t async_state_change_finalize(ipc_call_t *call, async_exch_t *other_exch)
1828{
1829 assert(call);
1830
1831 return async_answer_1(call, EOK, CAP_HANDLE_RAW(other_exch->phone));
1832}
1833
1834__noreturn void async_manager(void)
1835{
1836 futex_lock(&async_futex);
1837 fibril_switch(FIBRIL_FROM_DEAD);
1838 __builtin_unreachable();
1839}
1840
1841/** @}
1842 */
Note: See TracBrowser for help on using the repository browser.