source: mainline/uspace/lib/c/generic/async/server.c@ 3679f51a

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since 3679f51a was d73d992, checked in by Jiří Zárevúcky <jiri.zarevucky@…>, 7 years ago

Hide libc-internal details of the fibril implementation.

  • Property mode set to 100644
File size: 47.5 KB
Line 
1/*
2 * Copyright (c) 2006 Ondrej Palkovsky
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/** @addtogroup libc
30 * @{
31 */
32/** @file
33 */
34
35/**
36 * Asynchronous library
37 *
38 * The aim of this library is to provide a facility for writing programs which
39 * utilize the asynchronous nature of HelenOS IPC, yet using a normal way of
40 * programming.
41 *
42 * You should be able to write very simple multithreaded programs. The async
43 * framework will automatically take care of most of the synchronization
44 * problems.
45 *
46 * Example of use (pseudo C):
47 *
48 * 1) Multithreaded client application
49 *
50 * fibril_create(fibril1, ...);
51 * fibril_create(fibril2, ...);
52 * ...
53 *
54 * int fibril1(void *arg)
55 * {
56 * conn = async_connect_me_to(...);
57 *
58 * exch = async_exchange_begin(conn);
59 * c1 = async_send(exch);
60 * async_exchange_end(exch);
61 *
62 * exch = async_exchange_begin(conn);
63 * c2 = async_send(exch);
64 * async_exchange_end(exch);
65 *
66 * async_wait_for(c1);
67 * async_wait_for(c2);
68 * ...
69 * }
70 *
71 *
72 * 2) Multithreaded server application
73 *
74 * main()
75 * {
76 * async_manager();
77 * }
78 *
79 * port_handler(ichandle, *icall)
80 * {
81 * if (want_refuse) {
82 * async_answer_0(ichandle, ELIMIT);
83 * return;
84 * }
85 * async_answer_0(ichandle, EOK);
86 *
87 * chandle = async_get_call(&call);
88 * somehow_handle_the_call(chandle, call);
89 * async_answer_2(chandle, 1, 2, 3);
90 *
91 * chandle = async_get_call(&call);
92 * ...
93 * }
94 *
95 */
96
97#define LIBC_ASYNC_C_
98#include <ipc/ipc.h>
99#include <async.h>
100#include "../private/async.h"
101#undef LIBC_ASYNC_C_
102
103#include <ipc/irq.h>
104#include <ipc/event.h>
105#include <futex.h>
106#include <fibril.h>
107#include <adt/hash_table.h>
108#include <adt/hash.h>
109#include <adt/list.h>
110#include <assert.h>
111#include <errno.h>
112#include <sys/time.h>
113#include <libarch/barrier.h>
114#include <stdbool.h>
115#include <stdlib.h>
116#include <mem.h>
117#include <stdlib.h>
118#include <macros.h>
119#include <as.h>
120#include <abi/mm/as.h>
121#include "../private/libc.h"
122#include "../private/fibril.h"
123
124/** Async framework global futex */
125futex_t async_futex = FUTEX_INITIALIZER;
126
127/** Number of threads waiting for IPC in the kernel. */
128static atomic_t threads_in_ipc_wait = { 0 };
129
130/** Call data */
131typedef struct {
132 link_t link;
133
134 cap_call_handle_t chandle;
135 ipc_call_t call;
136} msg_t;
137
138/* Client connection data */
139typedef struct {
140 ht_link_t link;
141
142 task_id_t in_task_id;
143 atomic_t refcnt;
144 void *data;
145} client_t;
146
147/* Server connection data */
148typedef struct {
149 awaiter_t wdata;
150
151 /** Hash table link. */
152 ht_link_t link;
153
154 /** Incoming client task ID. */
155 task_id_t in_task_id;
156
157 /** Incoming phone hash. */
158 sysarg_t in_phone_hash;
159
160 /** Link to the client tracking structure. */
161 client_t *client;
162
163 /** Messages that should be delivered to this fibril. */
164 list_t msg_queue;
165
166 /** Identification of the opening call. */
167 cap_call_handle_t chandle;
168
169 /** Call data of the opening call. */
170 ipc_call_t call;
171
172 /** Identification of the closing call. */
173 cap_call_handle_t close_chandle;
174
175 /** Fibril function that will be used to handle the connection. */
176 async_port_handler_t handler;
177
178 /** Client data */
179 void *data;
180} connection_t;
181
182/* Notification data */
183typedef struct {
184 /** notification_hash_table link */
185 ht_link_t htlink;
186
187 /** notification_queue link */
188 link_t qlink;
189
190 /** Notification method */
191 sysarg_t imethod;
192
193 /** Notification handler */
194 async_notification_handler_t handler;
195
196 /** Notification handler argument */
197 void *arg;
198
199 /** Data of the most recent notification. */
200 ipc_call_t calldata;
201
202 /**
203 * How many notifications with this `imethod` arrived since it was last
204 * handled. If `count` > 1, `calldata` only holds the data for the most
205 * recent such notification, all the older data being lost.
206 *
207 * `async_spawn_notification_handler()` can be used to increase the
208 * number of notifications that can be processed simultaneously,
209 * reducing the likelihood of losing them when the handler blocks.
210 */
211 long count;
212} notification_t;
213
214/** Identifier of the incoming connection handled by the current fibril. */
215static fibril_local connection_t *fibril_connection;
216
217static void *default_client_data_constructor(void)
218{
219 return NULL;
220}
221
222static void default_client_data_destructor(void *data)
223{
224}
225
226static async_client_data_ctor_t async_client_data_create =
227 default_client_data_constructor;
228static async_client_data_dtor_t async_client_data_destroy =
229 default_client_data_destructor;
230
231void async_set_client_data_constructor(async_client_data_ctor_t ctor)
232{
233 assert(async_client_data_create == default_client_data_constructor);
234 async_client_data_create = ctor;
235}
236
237void async_set_client_data_destructor(async_client_data_dtor_t dtor)
238{
239 assert(async_client_data_destroy == default_client_data_destructor);
240 async_client_data_destroy = dtor;
241}
242
243static futex_t client_futex = FUTEX_INITIALIZER;
244static hash_table_t client_hash_table;
245
246// TODO: lockfree notification_queue?
247static futex_t notification_futex = FUTEX_INITIALIZER;
248static hash_table_t notification_hash_table;
249static LIST_INITIALIZE(notification_queue);
250static FIBRIL_SEMAPHORE_INITIALIZE(notification_semaphore, 0);
251
252static sysarg_t notification_avail = 0;
253
254/* The remaining structures are guarded by async_futex. */
255static hash_table_t conn_hash_table;
256static LIST_INITIALIZE(timeout_list);
257
258static size_t client_key_hash(void *key)
259{
260 task_id_t in_task_id = *(task_id_t *) key;
261 return in_task_id;
262}
263
264static size_t client_hash(const ht_link_t *item)
265{
266 client_t *client = hash_table_get_inst(item, client_t, link);
267 return client_key_hash(&client->in_task_id);
268}
269
270static bool client_key_equal(void *key, const ht_link_t *item)
271{
272 task_id_t in_task_id = *(task_id_t *) key;
273 client_t *client = hash_table_get_inst(item, client_t, link);
274 return in_task_id == client->in_task_id;
275}
276
277/** Operations for the client hash table. */
278static hash_table_ops_t client_hash_table_ops = {
279 .hash = client_hash,
280 .key_hash = client_key_hash,
281 .key_equal = client_key_equal,
282 .equal = NULL,
283 .remove_callback = NULL
284};
285
286typedef struct {
287 task_id_t task_id;
288 sysarg_t phone_hash;
289} conn_key_t;
290
291/** Compute hash into the connection hash table
292 *
293 * The hash is based on the source task ID and the source phone hash. The task
294 * ID is included in the hash because a phone hash alone might not be unique
295 * while we still track connections for killed tasks due to kernel's recycling
296 * of phone structures.
297 *
298 * @param key Pointer to the connection key structure.
299 *
300 * @return Index into the connection hash table.
301 *
302 */
303static size_t conn_key_hash(void *key)
304{
305 conn_key_t *ck = (conn_key_t *) key;
306
307 size_t hash = 0;
308 hash = hash_combine(hash, LOWER32(ck->task_id));
309 hash = hash_combine(hash, UPPER32(ck->task_id));
310 hash = hash_combine(hash, ck->phone_hash);
311 return hash;
312}
313
314static size_t conn_hash(const ht_link_t *item)
315{
316 connection_t *conn = hash_table_get_inst(item, connection_t, link);
317 return conn_key_hash(&(conn_key_t){
318 .task_id = conn->in_task_id,
319 .phone_hash = conn->in_phone_hash
320 });
321}
322
323static bool conn_key_equal(void *key, const ht_link_t *item)
324{
325 conn_key_t *ck = (conn_key_t *) key;
326 connection_t *conn = hash_table_get_inst(item, connection_t, link);
327 return ((ck->task_id == conn->in_task_id) &&
328 (ck->phone_hash == conn->in_phone_hash));
329}
330
331/** Operations for the connection hash table. */
332static hash_table_ops_t conn_hash_table_ops = {
333 .hash = conn_hash,
334 .key_hash = conn_key_hash,
335 .key_equal = conn_key_equal,
336 .equal = NULL,
337 .remove_callback = NULL
338};
339
340static client_t *async_client_get(task_id_t client_id, bool create)
341{
342 client_t *client = NULL;
343
344 futex_lock(&client_futex);
345 ht_link_t *link = hash_table_find(&client_hash_table, &client_id);
346 if (link) {
347 client = hash_table_get_inst(link, client_t, link);
348 atomic_inc(&client->refcnt);
349 } else if (create) {
350 // TODO: move the malloc out of critical section
351 client = malloc(sizeof(client_t));
352 if (client) {
353 client->in_task_id = client_id;
354 client->data = async_client_data_create();
355
356 atomic_set(&client->refcnt, 1);
357 hash_table_insert(&client_hash_table, &client->link);
358 }
359 }
360
361 futex_unlock(&client_futex);
362 return client;
363}
364
365static void async_client_put(client_t *client)
366{
367 bool destroy;
368
369 futex_lock(&client_futex);
370
371 if (atomic_predec(&client->refcnt) == 0) {
372 hash_table_remove(&client_hash_table, &client->in_task_id);
373 destroy = true;
374 } else
375 destroy = false;
376
377 futex_unlock(&client_futex);
378
379 if (destroy) {
380 if (client->data)
381 async_client_data_destroy(client->data);
382
383 free(client);
384 }
385}
386
387/** Wrapper for client connection fibril.
388 *
389 * When a new connection arrives, a fibril with this implementing
390 * function is created.
391 *
392 * @param arg Connection structure pointer.
393 *
394 * @return Always zero.
395 *
396 */
397static errno_t connection_fibril(void *arg)
398{
399 assert(arg);
400
401 /*
402 * Setup fibril-local connection pointer.
403 */
404 fibril_connection = (connection_t *) arg;
405
406 /*
407 * Add our reference for the current connection in the client task
408 * tracking structure. If this is the first reference, create and
409 * hash in a new tracking structure.
410 */
411
412 client_t *client = async_client_get(fibril_connection->in_task_id, true);
413 if (!client) {
414 ipc_answer_0(fibril_connection->chandle, ENOMEM);
415 return 0;
416 }
417
418 fibril_connection->client = client;
419
420 /*
421 * Call the connection handler function.
422 */
423 fibril_connection->handler(fibril_connection->chandle,
424 &fibril_connection->call, fibril_connection->data);
425
426 /*
427 * Remove the reference for this client task connection.
428 */
429 async_client_put(client);
430
431 /*
432 * Remove myself from the connection hash table.
433 */
434 futex_down(&async_futex);
435 hash_table_remove(&conn_hash_table, &(conn_key_t){
436 .task_id = fibril_connection->in_task_id,
437 .phone_hash = fibril_connection->in_phone_hash
438 });
439 futex_up(&async_futex);
440
441 /*
442 * Answer all remaining messages with EHANGUP.
443 */
444 while (!list_empty(&fibril_connection->msg_queue)) {
445 msg_t *msg =
446 list_get_instance(list_first(&fibril_connection->msg_queue),
447 msg_t, link);
448
449 list_remove(&msg->link);
450 ipc_answer_0(msg->chandle, EHANGUP);
451 free(msg);
452 }
453
454 /*
455 * If the connection was hung-up, answer the last call,
456 * i.e. IPC_M_PHONE_HUNGUP.
457 */
458 if (fibril_connection->close_chandle)
459 ipc_answer_0(fibril_connection->close_chandle, EOK);
460
461 free(fibril_connection);
462 return EOK;
463}
464
465/** Create a new fibril for a new connection.
466 *
467 * Create new fibril for connection, fill in connection structures and insert it
468 * into the hash table, so that later we can easily do routing of messages to
469 * particular fibrils.
470 *
471 * @param in_task_id Identification of the incoming connection.
472 * @param in_phone_hash Identification of the incoming connection.
473 * @param chandle Handle of the opening IPC_M_CONNECT_ME_TO call.
474 * If chandle is CAP_NIL, the connection was opened by
475 * accepting the IPC_M_CONNECT_TO_ME call and this
476 * function is called directly by the server.
477 * @param call Call data of the opening call.
478 * @param handler Connection handler.
479 * @param data Client argument to pass to the connection handler.
480 *
481 * @return New fibril id or NULL on failure.
482 *
483 */
484static fid_t async_new_connection(task_id_t in_task_id, sysarg_t in_phone_hash,
485 cap_call_handle_t chandle, ipc_call_t *call, async_port_handler_t handler,
486 void *data)
487{
488 connection_t *conn = malloc(sizeof(*conn));
489 if (!conn) {
490 if (chandle != CAP_NIL)
491 ipc_answer_0(chandle, ENOMEM);
492
493 return (uintptr_t) NULL;
494 }
495
496 conn->in_task_id = in_task_id;
497 conn->in_phone_hash = in_phone_hash;
498 list_initialize(&conn->msg_queue);
499 conn->chandle = chandle;
500 conn->close_chandle = CAP_NIL;
501 conn->handler = handler;
502 conn->data = data;
503
504 if (call)
505 conn->call = *call;
506
507 /* We will activate the fibril ASAP */
508 conn->wdata.active = true;
509 conn->wdata.fid = fibril_create(connection_fibril, conn);
510
511 if (conn->wdata.fid == 0) {
512 free(conn);
513
514 if (chandle != CAP_NIL)
515 ipc_answer_0(chandle, ENOMEM);
516
517 return (uintptr_t) NULL;
518 }
519
520 /* Add connection to the connection hash table */
521
522 futex_down(&async_futex);
523 hash_table_insert(&conn_hash_table, &conn->link);
524 futex_up(&async_futex);
525
526 fibril_add_ready(conn->wdata.fid);
527
528 return conn->wdata.fid;
529}
530
531/** Wrapper for making IPC_M_CONNECT_TO_ME calls using the async framework.
532 *
533 * Ask through phone for a new connection to some service.
534 *
535 * @param exch Exchange for sending the message.
536 * @param iface Callback interface.
537 * @param arg1 User defined argument.
538 * @param arg2 User defined argument.
539 * @param handler Callback handler.
540 * @param data Handler data.
541 * @param port_id ID of the newly created port.
542 *
543 * @return Zero on success or an error code.
544 *
545 */
546errno_t async_create_callback_port(async_exch_t *exch, iface_t iface, sysarg_t arg1,
547 sysarg_t arg2, async_port_handler_t handler, void *data, port_id_t *port_id)
548{
549 if ((iface & IFACE_MOD_CALLBACK) != IFACE_MOD_CALLBACK)
550 return EINVAL;
551
552 if (exch == NULL)
553 return ENOENT;
554
555 ipc_call_t answer;
556 aid_t req = async_send_3(exch, IPC_M_CONNECT_TO_ME, iface, arg1, arg2,
557 &answer);
558
559 errno_t rc;
560 async_wait_for(req, &rc);
561 if (rc != EOK)
562 return rc;
563
564 rc = async_create_port_internal(iface, handler, data, port_id);
565 if (rc != EOK)
566 return rc;
567
568 sysarg_t phone_hash = IPC_GET_ARG5(answer);
569 fid_t fid = async_new_connection(answer.in_task_id, phone_hash,
570 CAP_NIL, NULL, handler, data);
571 if (fid == (uintptr_t) NULL)
572 return ENOMEM;
573
574 return EOK;
575}
576
577static size_t notification_key_hash(void *key)
578{
579 sysarg_t id = *(sysarg_t *) key;
580 return id;
581}
582
583static size_t notification_hash(const ht_link_t *item)
584{
585 notification_t *notification =
586 hash_table_get_inst(item, notification_t, htlink);
587 return notification_key_hash(&notification->imethod);
588}
589
590static bool notification_key_equal(void *key, const ht_link_t *item)
591{
592 sysarg_t id = *(sysarg_t *) key;
593 notification_t *notification =
594 hash_table_get_inst(item, notification_t, htlink);
595 return id == notification->imethod;
596}
597
598/** Operations for the notification hash table. */
599static hash_table_ops_t notification_hash_table_ops = {
600 .hash = notification_hash,
601 .key_hash = notification_key_hash,
602 .key_equal = notification_key_equal,
603 .equal = NULL,
604 .remove_callback = NULL
605};
606
607/** Sort in current fibril's timeout request.
608 *
609 * @param wd Wait data of the current fibril.
610 *
611 */
612void async_insert_timeout(awaiter_t *wd)
613{
614 assert(wd);
615
616 wd->to_event.occurred = false;
617 wd->to_event.inlist = true;
618
619 link_t *tmp = timeout_list.head.next;
620 while (tmp != &timeout_list.head) {
621 awaiter_t *cur =
622 list_get_instance(tmp, awaiter_t, to_event.link);
623
624 if (tv_gteq(&cur->to_event.expires, &wd->to_event.expires))
625 break;
626
627 tmp = tmp->next;
628 }
629
630 list_insert_before(&wd->to_event.link, tmp);
631}
632
633/** Try to route a call to an appropriate connection fibril.
634 *
635 * If the proper connection fibril is found, a message with the call is added to
636 * its message queue. If the fibril was not active, it is activated and all
637 * timeouts are unregistered.
638 *
639 * @param chandle Handle of the incoming call.
640 * @param call Data of the incoming call.
641 *
642 * @return False if the call doesn't match any connection.
643 * @return True if the call was passed to the respective connection fibril.
644 *
645 */
646static bool route_call(cap_call_handle_t chandle, ipc_call_t *call)
647{
648 assert(call);
649
650 futex_down(&async_futex);
651
652 ht_link_t *link = hash_table_find(&conn_hash_table, &(conn_key_t){
653 .task_id = call->in_task_id,
654 .phone_hash = call->in_phone_hash
655 });
656 if (!link) {
657 futex_up(&async_futex);
658 return false;
659 }
660
661 connection_t *conn = hash_table_get_inst(link, connection_t, link);
662
663 msg_t *msg = malloc(sizeof(*msg));
664 if (!msg) {
665 futex_up(&async_futex);
666 return false;
667 }
668
669 msg->chandle = chandle;
670 msg->call = *call;
671 list_append(&msg->link, &conn->msg_queue);
672
673 if (IPC_GET_IMETHOD(*call) == IPC_M_PHONE_HUNGUP)
674 conn->close_chandle = chandle;
675
676 /* If the connection fibril is waiting for an event, activate it */
677 if (!conn->wdata.active) {
678
679 /* If in timeout list, remove it */
680 if (conn->wdata.to_event.inlist) {
681 conn->wdata.to_event.inlist = false;
682 list_remove(&conn->wdata.to_event.link);
683 }
684
685 conn->wdata.active = true;
686 fibril_add_ready(conn->wdata.fid);
687 }
688
689 futex_up(&async_futex);
690 return true;
691}
692
693/** Function implementing the notification handler fibril. Never returns. */
694static errno_t notification_fibril_func(void *arg)
695{
696 (void) arg;
697
698 while (true) {
699 fibril_semaphore_down(&notification_semaphore);
700
701 futex_lock(&notification_futex);
702
703 /*
704 * The semaphore ensures that if we get this far,
705 * the queue must be non-empty.
706 */
707 assert(!list_empty(&notification_queue));
708
709 notification_t *notification = list_get_instance(
710 list_first(&notification_queue), notification_t, qlink);
711 list_remove(&notification->qlink);
712
713 async_notification_handler_t handler = notification->handler;
714 void *arg = notification->arg;
715 ipc_call_t calldata = notification->calldata;
716 long count = notification->count;
717
718 notification->count = 0;
719
720 futex_unlock(&notification_futex);
721
722 // FIXME: Pass count to the handler. It might be important.
723 (void) count;
724
725 if (handler)
726 handler(&calldata, arg);
727 }
728
729 /* Not reached. */
730 return EOK;
731}
732
733/**
734 * Creates a new dedicated fibril for handling notifications.
735 * By default, there is one such fibril. This function can be used to
736 * create more in order to increase the number of notification that can
737 * be processed concurrently.
738 *
739 * Currently, there is no way to destroy those fibrils after they are created.
740 */
741errno_t async_spawn_notification_handler(void)
742{
743 fid_t f = fibril_create(notification_fibril_func, NULL);
744 if (f == 0)
745 return ENOMEM;
746
747 fibril_add_ready(f);
748 return EOK;
749}
750
751/** Queue notification.
752 *
753 * @param call Data of the incoming call.
754 *
755 */
756static void queue_notification(ipc_call_t *call)
757{
758 assert(call);
759
760 futex_lock(&notification_futex);
761
762 ht_link_t *link = hash_table_find(&notification_hash_table,
763 &IPC_GET_IMETHOD(*call));
764 if (!link) {
765 /* Invalid notification. */
766 // TODO: Make sure this can't happen and turn it into assert.
767 futex_unlock(&notification_futex);
768 return;
769 }
770
771 notification_t *notification =
772 hash_table_get_inst(link, notification_t, htlink);
773
774 notification->count++;
775 notification->calldata = *call;
776
777 if (link_in_use(&notification->qlink)) {
778 /* Notification already queued. */
779 futex_unlock(&notification_futex);
780 return;
781 }
782
783 list_append(&notification->qlink, &notification_queue);
784 futex_unlock(&notification_futex);
785
786 fibril_semaphore_up(&notification_semaphore);
787}
788
789/**
790 * Creates a new notification structure and inserts it into the hash table.
791 *
792 * @param handler Function to call when notification is received.
793 * @param arg Argument for the handler function.
794 * @return The newly created notification structure.
795 */
796static notification_t *notification_create(async_notification_handler_t handler, void *arg)
797{
798 notification_t *notification = calloc(1, sizeof(notification_t));
799 if (!notification)
800 return NULL;
801
802 notification->handler = handler;
803 notification->arg = arg;
804
805 fid_t fib = 0;
806
807 futex_lock(&notification_futex);
808
809 if (notification_avail == 0) {
810 /* Attempt to create the first handler fibril. */
811 fib = fibril_create(notification_fibril_func, NULL);
812 if (fib == 0) {
813 futex_unlock(&notification_futex);
814 free(notification);
815 return NULL;
816 }
817 }
818
819 sysarg_t imethod = notification_avail;
820 notification_avail++;
821
822 notification->imethod = imethod;
823 hash_table_insert(&notification_hash_table, &notification->htlink);
824
825 futex_unlock(&notification_futex);
826
827 if (imethod == 0) {
828 assert(fib);
829 fibril_add_ready(fib);
830 }
831
832 return notification;
833}
834
835/** Subscribe to IRQ notification.
836 *
837 * @param inr IRQ number.
838 * @param handler Notification handler.
839 * @param data Notification handler client data.
840 * @param ucode Top-half pseudocode handler.
841 *
842 * @param[out] handle IRQ capability handle on success.
843 *
844 * @return An error code.
845 *
846 */
847errno_t async_irq_subscribe(int inr, async_notification_handler_t handler,
848 void *data, const irq_code_t *ucode, cap_irq_handle_t *handle)
849{
850 notification_t *notification = notification_create(handler, data);
851 if (!notification)
852 return ENOMEM;
853
854 cap_irq_handle_t ihandle;
855 errno_t rc = ipc_irq_subscribe(inr, notification->imethod, ucode,
856 &ihandle);
857 if (rc == EOK && handle != NULL) {
858 *handle = ihandle;
859 }
860 return rc;
861}
862
863/** Unsubscribe from IRQ notification.
864 *
865 * @param handle IRQ capability handle.
866 *
867 * @return Zero on success or an error code.
868 *
869 */
870errno_t async_irq_unsubscribe(cap_irq_handle_t ihandle)
871{
872 // TODO: Remove entry from hash table
873 // to avoid memory leak
874
875 return ipc_irq_unsubscribe(ihandle);
876}
877
878/** Subscribe to event notifications.
879 *
880 * @param evno Event type to subscribe.
881 * @param handler Notification handler.
882 * @param data Notification handler client data.
883 *
884 * @return Zero on success or an error code.
885 *
886 */
887errno_t async_event_subscribe(event_type_t evno,
888 async_notification_handler_t handler, void *data)
889{
890 notification_t *notification = notification_create(handler, data);
891 if (!notification)
892 return ENOMEM;
893
894 return ipc_event_subscribe(evno, notification->imethod);
895}
896
897/** Subscribe to task event notifications.
898 *
899 * @param evno Event type to subscribe.
900 * @param handler Notification handler.
901 * @param data Notification handler client data.
902 *
903 * @return Zero on success or an error code.
904 *
905 */
906errno_t async_event_task_subscribe(event_task_type_t evno,
907 async_notification_handler_t handler, void *data)
908{
909 notification_t *notification = notification_create(handler, data);
910 if (!notification)
911 return ENOMEM;
912
913 return ipc_event_task_subscribe(evno, notification->imethod);
914}
915
916/** Unmask event notifications.
917 *
918 * @param evno Event type to unmask.
919 *
920 * @return Value returned by the kernel.
921 *
922 */
923errno_t async_event_unmask(event_type_t evno)
924{
925 return ipc_event_unmask(evno);
926}
927
928/** Unmask task event notifications.
929 *
930 * @param evno Event type to unmask.
931 *
932 * @return Value returned by the kernel.
933 *
934 */
935errno_t async_event_task_unmask(event_task_type_t evno)
936{
937 return ipc_event_task_unmask(evno);
938}
939
940/** Return new incoming message for the current (fibril-local) connection.
941 *
942 * @param call Storage where the incoming call data will be stored.
943 * @param usecs Timeout in microseconds. Zero denotes no timeout.
944 *
945 * @return If no timeout was specified, then a handle of the incoming call is
946 * returned. If a timeout is specified, then a handle of the incoming
947 * call is returned unless the timeout expires prior to receiving a
948 * message. In that case zero CAP_NIL is returned.
949 */
950cap_call_handle_t async_get_call_timeout(ipc_call_t *call, suseconds_t usecs)
951{
952 assert(call);
953 assert(fibril_connection);
954
955 /*
956 * Why doing this?
957 * GCC 4.1.0 coughs on fibril_connection-> dereference.
958 * GCC 4.1.1 happilly puts the rdhwr instruction in delay slot.
959 * I would never expect to find so many errors in
960 * a compiler.
961 */
962 connection_t *conn = fibril_connection;
963
964 futex_down(&async_futex);
965
966 if (usecs) {
967 getuptime(&conn->wdata.to_event.expires);
968 tv_add_diff(&conn->wdata.to_event.expires, usecs);
969 } else
970 conn->wdata.to_event.inlist = false;
971
972 /* If nothing in queue, wait until something arrives */
973 while (list_empty(&conn->msg_queue)) {
974 if (conn->close_chandle) {
975 /*
976 * Handle the case when the connection was already
977 * closed by the client but the server did not notice
978 * the first IPC_M_PHONE_HUNGUP call and continues to
979 * call async_get_call_timeout(). Repeat
980 * IPC_M_PHONE_HUNGUP until the caller notices.
981 */
982 memset(call, 0, sizeof(ipc_call_t));
983 IPC_SET_IMETHOD(*call, IPC_M_PHONE_HUNGUP);
984 futex_up(&async_futex);
985 return conn->close_chandle;
986 }
987
988 if (usecs)
989 async_insert_timeout(&conn->wdata);
990
991 conn->wdata.active = false;
992
993 /*
994 * Note: the current fibril will be rescheduled either due to a
995 * timeout or due to an arriving message destined to it. In the
996 * former case, handle_expired_timeouts() and, in the latter
997 * case, route_call() will perform the wakeup.
998 */
999 fibril_switch(FIBRIL_TO_MANAGER);
1000
1001 /*
1002 * Futex is up after getting back from async_manager.
1003 * Get it again.
1004 */
1005 futex_down(&async_futex);
1006 if ((usecs) && (conn->wdata.to_event.occurred) &&
1007 (list_empty(&conn->msg_queue))) {
1008 /* If we timed out -> exit */
1009 futex_up(&async_futex);
1010 return CAP_NIL;
1011 }
1012 }
1013
1014 msg_t *msg = list_get_instance(list_first(&conn->msg_queue),
1015 msg_t, link);
1016 list_remove(&msg->link);
1017
1018 cap_call_handle_t chandle = msg->chandle;
1019 *call = msg->call;
1020 free(msg);
1021
1022 futex_up(&async_futex);
1023 return chandle;
1024}
1025
1026void *async_get_client_data(void)
1027{
1028 assert(fibril_connection);
1029 return fibril_connection->client->data;
1030}
1031
1032void *async_get_client_data_by_id(task_id_t client_id)
1033{
1034 client_t *client = async_client_get(client_id, false);
1035 if (!client)
1036 return NULL;
1037
1038 if (!client->data) {
1039 async_client_put(client);
1040 return NULL;
1041 }
1042
1043 return client->data;
1044}
1045
1046void async_put_client_data_by_id(task_id_t client_id)
1047{
1048 client_t *client = async_client_get(client_id, false);
1049
1050 assert(client);
1051 assert(client->data);
1052
1053 /* Drop the reference we got in async_get_client_data_by_hash(). */
1054 async_client_put(client);
1055
1056 /* Drop our own reference we got at the beginning of this function. */
1057 async_client_put(client);
1058}
1059
1060/** Handle a call that was received.
1061 *
1062 * If the call has the IPC_M_CONNECT_ME_TO method, a new connection is created.
1063 * Otherwise the call is routed to its connection fibril.
1064 *
1065 * @param chandle Handle of the incoming call.
1066 * @param call Data of the incoming call.
1067 *
1068 */
1069static void handle_call(cap_call_handle_t chandle, ipc_call_t *call)
1070{
1071 assert(call);
1072
1073 /* Kernel notification */
1074 if ((chandle == CAP_NIL) && (call->flags & IPC_CALL_NOTIF)) {
1075 queue_notification(call);
1076 return;
1077 }
1078
1079 /* New connection */
1080 if (IPC_GET_IMETHOD(*call) == IPC_M_CONNECT_ME_TO) {
1081 iface_t iface = (iface_t) IPC_GET_ARG1(*call);
1082 sysarg_t in_phone_hash = IPC_GET_ARG5(*call);
1083
1084 // TODO: Currently ignores all ports but the first one.
1085 void *data;
1086 async_port_handler_t handler =
1087 async_get_port_handler(iface, 0, &data);
1088
1089 async_new_connection(call->in_task_id, in_phone_hash, chandle,
1090 call, handler, data);
1091 return;
1092 }
1093
1094 /* Try to route the call through the connection hash table */
1095 if (route_call(chandle, call))
1096 return;
1097
1098 /* Unknown call from unknown phone - hang it up */
1099 ipc_answer_0(chandle, EHANGUP);
1100}
1101
1102/** Fire all timeouts that expired. */
1103static void handle_expired_timeouts(void)
1104{
1105 struct timeval tv;
1106 getuptime(&tv);
1107
1108 futex_down(&async_futex);
1109
1110 link_t *cur = list_first(&timeout_list);
1111 while (cur != NULL) {
1112 awaiter_t *waiter =
1113 list_get_instance(cur, awaiter_t, to_event.link);
1114
1115 if (tv_gt(&waiter->to_event.expires, &tv))
1116 break;
1117
1118 list_remove(&waiter->to_event.link);
1119 waiter->to_event.inlist = false;
1120 waiter->to_event.occurred = true;
1121
1122 /*
1123 * Redundant condition?
1124 * The fibril should not be active when it gets here.
1125 */
1126 if (!waiter->active) {
1127 waiter->active = true;
1128 fibril_add_ready(waiter->fid);
1129 }
1130
1131 cur = list_first(&timeout_list);
1132 }
1133
1134 futex_up(&async_futex);
1135}
1136
1137/** Endless loop dispatching incoming calls and answers.
1138 *
1139 * @return Never returns.
1140 *
1141 */
1142static errno_t async_manager_worker(void)
1143{
1144 while (true) {
1145 if (fibril_switch(FIBRIL_FROM_MANAGER)) {
1146 futex_up(&async_futex);
1147 /*
1148 * async_futex is always held when entering a manager
1149 * fibril.
1150 */
1151 continue;
1152 }
1153
1154 futex_down(&async_futex);
1155
1156 suseconds_t timeout;
1157 unsigned int flags = SYNCH_FLAGS_NONE;
1158 if (!list_empty(&timeout_list)) {
1159 awaiter_t *waiter = list_get_instance(
1160 list_first(&timeout_list), awaiter_t, to_event.link);
1161
1162 struct timeval tv;
1163 getuptime(&tv);
1164
1165 if (tv_gteq(&tv, &waiter->to_event.expires)) {
1166 futex_up(&async_futex);
1167 handle_expired_timeouts();
1168 /*
1169 * Notice that even if the event(s) already
1170 * expired (and thus the other fibril was
1171 * supposed to be running already),
1172 * we check for incoming IPC.
1173 *
1174 * Otherwise, a fibril that continuously
1175 * creates (almost) expired events could
1176 * prevent IPC retrieval from the kernel.
1177 */
1178 timeout = 0;
1179 flags = SYNCH_FLAGS_NON_BLOCKING;
1180
1181 } else {
1182 timeout = tv_sub_diff(&waiter->to_event.expires,
1183 &tv);
1184 futex_up(&async_futex);
1185 }
1186 } else {
1187 futex_up(&async_futex);
1188 timeout = SYNCH_NO_TIMEOUT;
1189 }
1190
1191 atomic_inc(&threads_in_ipc_wait);
1192
1193 ipc_call_t call;
1194 errno_t rc = ipc_wait_cycle(&call, timeout, flags);
1195
1196 atomic_dec(&threads_in_ipc_wait);
1197
1198 assert(rc == EOK);
1199
1200 if (call.cap_handle == CAP_NIL) {
1201 if ((call.flags &
1202 (IPC_CALL_NOTIF | IPC_CALL_ANSWERED)) == 0) {
1203 /* Neither a notification nor an answer. */
1204 handle_expired_timeouts();
1205 continue;
1206 }
1207 }
1208
1209 if (call.flags & IPC_CALL_ANSWERED)
1210 continue;
1211
1212 handle_call(call.cap_handle, &call);
1213 }
1214
1215 return 0;
1216}
1217
1218/** Function to start async_manager as a standalone fibril.
1219 *
1220 * When more kernel threads are used, one async manager should exist per thread.
1221 *
1222 * @param arg Unused.
1223 * @return Never returns.
1224 *
1225 */
1226static errno_t async_manager_fibril(void *arg)
1227{
1228 futex_up(&async_futex);
1229
1230 /*
1231 * async_futex is always locked when entering manager
1232 */
1233 async_manager_worker();
1234
1235 return 0;
1236}
1237
1238/** Add one manager to manager list. */
1239void async_create_manager(void)
1240{
1241 fid_t fid = fibril_create_generic(async_manager_fibril, NULL, PAGE_SIZE);
1242 if (fid != 0)
1243 fibril_add_manager(fid);
1244}
1245
1246/** Remove one manager from manager list */
1247void async_destroy_manager(void)
1248{
1249 fibril_remove_manager();
1250}
1251
1252/** Initialize the async framework.
1253 *
1254 */
1255void __async_server_init(void)
1256{
1257 if (!hash_table_create(&client_hash_table, 0, 0, &client_hash_table_ops))
1258 abort();
1259
1260 if (!hash_table_create(&conn_hash_table, 0, 0, &conn_hash_table_ops))
1261 abort();
1262
1263 if (!hash_table_create(&notification_hash_table, 0, 0,
1264 &notification_hash_table_ops))
1265 abort();
1266}
1267
1268errno_t async_answer_0(cap_call_handle_t chandle, errno_t retval)
1269{
1270 return ipc_answer_0(chandle, retval);
1271}
1272
1273errno_t async_answer_1(cap_call_handle_t chandle, errno_t retval, sysarg_t arg1)
1274{
1275 return ipc_answer_1(chandle, retval, arg1);
1276}
1277
1278errno_t async_answer_2(cap_call_handle_t chandle, errno_t retval, sysarg_t arg1,
1279 sysarg_t arg2)
1280{
1281 return ipc_answer_2(chandle, retval, arg1, arg2);
1282}
1283
1284errno_t async_answer_3(cap_call_handle_t chandle, errno_t retval, sysarg_t arg1,
1285 sysarg_t arg2, sysarg_t arg3)
1286{
1287 return ipc_answer_3(chandle, retval, arg1, arg2, arg3);
1288}
1289
1290errno_t async_answer_4(cap_call_handle_t chandle, errno_t retval, sysarg_t arg1,
1291 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4)
1292{
1293 return ipc_answer_4(chandle, retval, arg1, arg2, arg3, arg4);
1294}
1295
1296errno_t async_answer_5(cap_call_handle_t chandle, errno_t retval, sysarg_t arg1,
1297 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4, sysarg_t arg5)
1298{
1299 return ipc_answer_5(chandle, retval, arg1, arg2, arg3, arg4, arg5);
1300}
1301
1302errno_t async_forward_fast(cap_call_handle_t chandle, async_exch_t *exch,
1303 sysarg_t imethod, sysarg_t arg1, sysarg_t arg2, unsigned int mode)
1304{
1305 if (exch == NULL)
1306 return ENOENT;
1307
1308 return ipc_forward_fast(chandle, exch->phone, imethod, arg1, arg2, mode);
1309}
1310
1311errno_t async_forward_slow(cap_call_handle_t chandle, async_exch_t *exch,
1312 sysarg_t imethod, sysarg_t arg1, sysarg_t arg2, sysarg_t arg3,
1313 sysarg_t arg4, sysarg_t arg5, unsigned int mode)
1314{
1315 if (exch == NULL)
1316 return ENOENT;
1317
1318 return ipc_forward_slow(chandle, exch->phone, imethod, arg1, arg2, arg3,
1319 arg4, arg5, mode);
1320}
1321
1322/** Wrapper for making IPC_M_CONNECT_TO_ME calls using the async framework.
1323 *
1324 * Ask through phone for a new connection to some service.
1325 *
1326 * @param exch Exchange for sending the message.
1327 * @param arg1 User defined argument.
1328 * @param arg2 User defined argument.
1329 * @param arg3 User defined argument.
1330 *
1331 * @return Zero on success or an error code.
1332 *
1333 */
1334errno_t async_connect_to_me(async_exch_t *exch, sysarg_t arg1, sysarg_t arg2,
1335 sysarg_t arg3)
1336{
1337 if (exch == NULL)
1338 return ENOENT;
1339
1340 ipc_call_t answer;
1341 aid_t req = async_send_3(exch, IPC_M_CONNECT_TO_ME, arg1, arg2, arg3,
1342 &answer);
1343
1344 errno_t rc;
1345 async_wait_for(req, &rc);
1346 if (rc != EOK)
1347 return (errno_t) rc;
1348
1349 return EOK;
1350}
1351
1352/** Interrupt one thread of this task from waiting for IPC. */
1353void async_poke(void)
1354{
1355 if (atomic_get(&threads_in_ipc_wait) > 0)
1356 ipc_poke();
1357}
1358
1359/** Wrapper for receiving the IPC_M_SHARE_IN calls using the async framework.
1360 *
1361 * This wrapper only makes it more comfortable to receive IPC_M_SHARE_IN
1362 * calls so that the user doesn't have to remember the meaning of each IPC
1363 * argument.
1364 *
1365 * So far, this wrapper is to be used from within a connection fibril.
1366 *
1367 * @param chandle Storage for the handle of the IPC_M_SHARE_IN call.
1368 * @param size Destination address space area size.
1369 *
1370 * @return True on success, false on failure.
1371 *
1372 */
1373bool async_share_in_receive(cap_call_handle_t *chandle, size_t *size)
1374{
1375 assert(chandle);
1376 assert(size);
1377
1378 ipc_call_t data;
1379 *chandle = async_get_call(&data);
1380
1381 if (IPC_GET_IMETHOD(data) != IPC_M_SHARE_IN)
1382 return false;
1383
1384 *size = (size_t) IPC_GET_ARG1(data);
1385 return true;
1386}
1387
1388/** Wrapper for answering the IPC_M_SHARE_IN calls using the async framework.
1389 *
1390 * This wrapper only makes it more comfortable to answer IPC_M_SHARE_IN
1391 * calls so that the user doesn't have to remember the meaning of each IPC
1392 * argument.
1393 *
1394 * @param chandle Handle of the IPC_M_DATA_READ call to answer.
1395 * @param src Source address space base.
1396 * @param flags Flags to be used for sharing. Bits can be only cleared.
1397 *
1398 * @return Zero on success or a value from @ref errno.h on failure.
1399 *
1400 */
1401errno_t async_share_in_finalize(cap_call_handle_t chandle, void *src,
1402 unsigned int flags)
1403{
1404 // FIXME: The source has no business deciding destination address.
1405 return ipc_answer_3(chandle, EOK, (sysarg_t) src, (sysarg_t) flags,
1406 (sysarg_t) _end);
1407}
1408
1409/** Wrapper for receiving the IPC_M_SHARE_OUT calls using the async framework.
1410 *
1411 * This wrapper only makes it more comfortable to receive IPC_M_SHARE_OUT
1412 * calls so that the user doesn't have to remember the meaning of each IPC
1413 * argument.
1414 *
1415 * So far, this wrapper is to be used from within a connection fibril.
1416 *
1417 * @param chandle Storage for the hash of the IPC_M_SHARE_OUT call.
1418 * @param size Storage for the source address space area size.
1419 * @param flags Storage for the sharing flags.
1420 *
1421 * @return True on success, false on failure.
1422 *
1423 */
1424bool async_share_out_receive(cap_call_handle_t *chandle, size_t *size,
1425 unsigned int *flags)
1426{
1427 assert(chandle);
1428 assert(size);
1429 assert(flags);
1430
1431 ipc_call_t data;
1432 *chandle = async_get_call(&data);
1433
1434 if (IPC_GET_IMETHOD(data) != IPC_M_SHARE_OUT)
1435 return false;
1436
1437 *size = (size_t) IPC_GET_ARG2(data);
1438 *flags = (unsigned int) IPC_GET_ARG3(data);
1439 return true;
1440}
1441
1442/** Wrapper for answering the IPC_M_SHARE_OUT calls using the async framework.
1443 *
1444 * This wrapper only makes it more comfortable to answer IPC_M_SHARE_OUT
1445 * calls so that the user doesn't have to remember the meaning of each IPC
1446 * argument.
1447 *
1448 * @param chandle Handle of the IPC_M_DATA_WRITE call to answer.
1449 * @param dst Address of the storage for the destination address space area
1450 * base address.
1451 *
1452 * @return Zero on success or a value from @ref errno.h on failure.
1453 *
1454 */
1455errno_t async_share_out_finalize(cap_call_handle_t chandle, void **dst)
1456{
1457 return ipc_answer_2(chandle, EOK, (sysarg_t) _end, (sysarg_t) dst);
1458}
1459
1460/** Wrapper for receiving the IPC_M_DATA_READ calls using the async framework.
1461 *
1462 * This wrapper only makes it more comfortable to receive IPC_M_DATA_READ
1463 * calls so that the user doesn't have to remember the meaning of each IPC
1464 * argument.
1465 *
1466 * So far, this wrapper is to be used from within a connection fibril.
1467 *
1468 * @param chandle Storage for the handle of the IPC_M_DATA_READ.
1469 * @param size Storage for the maximum size. Can be NULL.
1470 *
1471 * @return True on success, false on failure.
1472 *
1473 */
1474bool async_data_read_receive(cap_call_handle_t *chandle, size_t *size)
1475{
1476 ipc_call_t data;
1477 return async_data_read_receive_call(chandle, &data, size);
1478}
1479
1480/** Wrapper for receiving the IPC_M_DATA_READ calls using the async framework.
1481 *
1482 * This wrapper only makes it more comfortable to receive IPC_M_DATA_READ
1483 * calls so that the user doesn't have to remember the meaning of each IPC
1484 * argument.
1485 *
1486 * So far, this wrapper is to be used from within a connection fibril.
1487 *
1488 * @param chandle Storage for the handle of the IPC_M_DATA_READ.
1489 * @param size Storage for the maximum size. Can be NULL.
1490 *
1491 * @return True on success, false on failure.
1492 *
1493 */
1494bool async_data_read_receive_call(cap_call_handle_t *chandle, ipc_call_t *data,
1495 size_t *size)
1496{
1497 assert(chandle);
1498 assert(data);
1499
1500 *chandle = async_get_call(data);
1501
1502 if (IPC_GET_IMETHOD(*data) != IPC_M_DATA_READ)
1503 return false;
1504
1505 if (size)
1506 *size = (size_t) IPC_GET_ARG2(*data);
1507
1508 return true;
1509}
1510
1511/** Wrapper for answering the IPC_M_DATA_READ calls using the async framework.
1512 *
1513 * This wrapper only makes it more comfortable to answer IPC_M_DATA_READ
1514 * calls so that the user doesn't have to remember the meaning of each IPC
1515 * argument.
1516 *
1517 * @param chandle Handle of the IPC_M_DATA_READ call to answer.
1518 * @param src Source address for the IPC_M_DATA_READ call.
1519 * @param size Size for the IPC_M_DATA_READ call. Can be smaller than
1520 * the maximum size announced by the sender.
1521 *
1522 * @return Zero on success or a value from @ref errno.h on failure.
1523 *
1524 */
1525errno_t async_data_read_finalize(cap_call_handle_t chandle, const void *src,
1526 size_t size)
1527{
1528 return ipc_answer_2(chandle, EOK, (sysarg_t) src, (sysarg_t) size);
1529}
1530
1531/** Wrapper for forwarding any read request
1532 *
1533 */
1534errno_t async_data_read_forward_fast(async_exch_t *exch, sysarg_t imethod,
1535 sysarg_t arg1, sysarg_t arg2, sysarg_t arg3, sysarg_t arg4,
1536 ipc_call_t *dataptr)
1537{
1538 if (exch == NULL)
1539 return ENOENT;
1540
1541 cap_call_handle_t chandle;
1542 if (!async_data_read_receive(&chandle, NULL)) {
1543 ipc_answer_0(chandle, EINVAL);
1544 return EINVAL;
1545 }
1546
1547 aid_t msg = async_send_fast(exch, imethod, arg1, arg2, arg3, arg4,
1548 dataptr);
1549 if (msg == 0) {
1550 ipc_answer_0(chandle, EINVAL);
1551 return EINVAL;
1552 }
1553
1554 errno_t retval = ipc_forward_fast(chandle, exch->phone, 0, 0, 0,
1555 IPC_FF_ROUTE_FROM_ME);
1556 if (retval != EOK) {
1557 async_forget(msg);
1558 ipc_answer_0(chandle, retval);
1559 return retval;
1560 }
1561
1562 errno_t rc;
1563 async_wait_for(msg, &rc);
1564
1565 return (errno_t) rc;
1566}
1567
1568/** Wrapper for receiving the IPC_M_DATA_WRITE calls using the async framework.
1569 *
1570 * This wrapper only makes it more comfortable to receive IPC_M_DATA_WRITE
1571 * calls so that the user doesn't have to remember the meaning of each IPC
1572 * argument.
1573 *
1574 * So far, this wrapper is to be used from within a connection fibril.
1575 *
1576 * @param chandle Storage for the handle of the IPC_M_DATA_WRITE.
1577 * @param size Storage for the suggested size. May be NULL.
1578 *
1579 * @return True on success, false on failure.
1580 *
1581 */
1582bool async_data_write_receive(cap_call_handle_t *chandle, size_t *size)
1583{
1584 ipc_call_t data;
1585 return async_data_write_receive_call(chandle, &data, size);
1586}
1587
1588/** Wrapper for receiving the IPC_M_DATA_WRITE calls using the async framework.
1589 *
1590 * This wrapper only makes it more comfortable to receive IPC_M_DATA_WRITE
1591 * calls so that the user doesn't have to remember the meaning of each IPC
1592 * argument.
1593 *
1594 * So far, this wrapper is to be used from within a connection fibril.
1595 *
1596 * @param chandle Storage for the handle of the IPC_M_DATA_WRITE.
1597 * @param data Storage for the ipc call data.
1598 * @param size Storage for the suggested size. May be NULL.
1599 *
1600 * @return True on success, false on failure.
1601 *
1602 */
1603bool async_data_write_receive_call(cap_call_handle_t *chandle, ipc_call_t *data,
1604 size_t *size)
1605{
1606 assert(chandle);
1607 assert(data);
1608
1609 *chandle = async_get_call(data);
1610
1611 if (IPC_GET_IMETHOD(*data) != IPC_M_DATA_WRITE)
1612 return false;
1613
1614 if (size)
1615 *size = (size_t) IPC_GET_ARG2(*data);
1616
1617 return true;
1618}
1619
1620/** Wrapper for answering the IPC_M_DATA_WRITE calls using the async framework.
1621 *
1622 * This wrapper only makes it more comfortable to answer IPC_M_DATA_WRITE
1623 * calls so that the user doesn't have to remember the meaning of each IPC
1624 * argument.
1625 *
1626 * @param chandle Handle of the IPC_M_DATA_WRITE call to answer.
1627 * @param dst Final destination address for the IPC_M_DATA_WRITE call.
1628 * @param size Final size for the IPC_M_DATA_WRITE call.
1629 *
1630 * @return Zero on success or a value from @ref errno.h on failure.
1631 *
1632 */
1633errno_t async_data_write_finalize(cap_call_handle_t chandle, void *dst,
1634 size_t size)
1635{
1636 return ipc_answer_2(chandle, EOK, (sysarg_t) dst, (sysarg_t) size);
1637}
1638
1639/** Wrapper for receiving binary data or strings
1640 *
1641 * This wrapper only makes it more comfortable to use async_data_write_*
1642 * functions to receive binary data or strings.
1643 *
1644 * @param data Pointer to data pointer (which should be later disposed
1645 * by free()). If the operation fails, the pointer is not
1646 * touched.
1647 * @param nullterm If true then the received data is always zero terminated.
1648 * This also causes to allocate one extra byte beyond the
1649 * raw transmitted data.
1650 * @param min_size Minimum size (in bytes) of the data to receive.
1651 * @param max_size Maximum size (in bytes) of the data to receive. 0 means
1652 * no limit.
1653 * @param granulariy If non-zero then the size of the received data has to
1654 * be divisible by this value.
1655 * @param received If not NULL, the size of the received data is stored here.
1656 *
1657 * @return Zero on success or a value from @ref errno.h on failure.
1658 *
1659 */
1660errno_t async_data_write_accept(void **data, const bool nullterm,
1661 const size_t min_size, const size_t max_size, const size_t granularity,
1662 size_t *received)
1663{
1664 assert(data);
1665
1666 cap_call_handle_t chandle;
1667 size_t size;
1668 if (!async_data_write_receive(&chandle, &size)) {
1669 ipc_answer_0(chandle, EINVAL);
1670 return EINVAL;
1671 }
1672
1673 if (size < min_size) {
1674 ipc_answer_0(chandle, EINVAL);
1675 return EINVAL;
1676 }
1677
1678 if ((max_size > 0) && (size > max_size)) {
1679 ipc_answer_0(chandle, EINVAL);
1680 return EINVAL;
1681 }
1682
1683 if ((granularity > 0) && ((size % granularity) != 0)) {
1684 ipc_answer_0(chandle, EINVAL);
1685 return EINVAL;
1686 }
1687
1688 void *arg_data;
1689
1690 if (nullterm)
1691 arg_data = malloc(size + 1);
1692 else
1693 arg_data = malloc(size);
1694
1695 if (arg_data == NULL) {
1696 ipc_answer_0(chandle, ENOMEM);
1697 return ENOMEM;
1698 }
1699
1700 errno_t rc = async_data_write_finalize(chandle, arg_data, size);
1701 if (rc != EOK) {
1702 free(arg_data);
1703 return rc;
1704 }
1705
1706 if (nullterm)
1707 ((char *) arg_data)[size] = 0;
1708
1709 *data = arg_data;
1710 if (received != NULL)
1711 *received = size;
1712
1713 return EOK;
1714}
1715
1716/** Wrapper for voiding any data that is about to be received
1717 *
1718 * This wrapper can be used to void any pending data
1719 *
1720 * @param retval Error value from @ref errno.h to be returned to the caller.
1721 *
1722 */
1723void async_data_write_void(errno_t retval)
1724{
1725 cap_call_handle_t chandle;
1726 async_data_write_receive(&chandle, NULL);
1727 ipc_answer_0(chandle, retval);
1728}
1729
1730/** Wrapper for forwarding any data that is about to be received
1731 *
1732 */
1733errno_t async_data_write_forward_fast(async_exch_t *exch, sysarg_t imethod,
1734 sysarg_t arg1, sysarg_t arg2, sysarg_t arg3, sysarg_t arg4,
1735 ipc_call_t *dataptr)
1736{
1737 if (exch == NULL)
1738 return ENOENT;
1739
1740 cap_call_handle_t chandle;
1741 if (!async_data_write_receive(&chandle, NULL)) {
1742 ipc_answer_0(chandle, EINVAL);
1743 return EINVAL;
1744 }
1745
1746 aid_t msg = async_send_fast(exch, imethod, arg1, arg2, arg3, arg4,
1747 dataptr);
1748 if (msg == 0) {
1749 ipc_answer_0(chandle, EINVAL);
1750 return EINVAL;
1751 }
1752
1753 errno_t retval = ipc_forward_fast(chandle, exch->phone, 0, 0, 0,
1754 IPC_FF_ROUTE_FROM_ME);
1755 if (retval != EOK) {
1756 async_forget(msg);
1757 ipc_answer_0(chandle, retval);
1758 return retval;
1759 }
1760
1761 errno_t rc;
1762 async_wait_for(msg, &rc);
1763
1764 return (errno_t) rc;
1765}
1766
1767/** Wrapper for receiving the IPC_M_CONNECT_TO_ME calls.
1768 *
1769 * If the current call is IPC_M_CONNECT_TO_ME then a new
1770 * async session is created for the accepted phone.
1771 *
1772 * @param mgmt Exchange management style.
1773 *
1774 * @return New async session.
1775 * @return NULL on failure.
1776 *
1777 */
1778async_sess_t *async_callback_receive(exch_mgmt_t mgmt)
1779{
1780 /* Accept the phone */
1781 ipc_call_t call;
1782 cap_call_handle_t chandle = async_get_call(&call);
1783 cap_phone_handle_t phandle = (cap_handle_t) IPC_GET_ARG5(call);
1784
1785 if ((IPC_GET_IMETHOD(call) != IPC_M_CONNECT_TO_ME) ||
1786 !CAP_HANDLE_VALID((phandle))) {
1787 async_answer_0(chandle, EINVAL);
1788 return NULL;
1789 }
1790
1791 async_sess_t *sess = (async_sess_t *) malloc(sizeof(async_sess_t));
1792 if (sess == NULL) {
1793 async_answer_0(chandle, ENOMEM);
1794 return NULL;
1795 }
1796
1797 sess->iface = 0;
1798 sess->mgmt = mgmt;
1799 sess->phone = phandle;
1800 sess->arg1 = 0;
1801 sess->arg2 = 0;
1802 sess->arg3 = 0;
1803
1804 fibril_mutex_initialize(&sess->remote_state_mtx);
1805 sess->remote_state_data = NULL;
1806
1807 list_initialize(&sess->exch_list);
1808 fibril_mutex_initialize(&sess->mutex);
1809 atomic_set(&sess->refcnt, 0);
1810
1811 /* Acknowledge the connected phone */
1812 async_answer_0(chandle, EOK);
1813
1814 return sess;
1815}
1816
1817/** Wrapper for receiving the IPC_M_CONNECT_TO_ME calls.
1818 *
1819 * If the call is IPC_M_CONNECT_TO_ME then a new
1820 * async session is created. However, the phone is
1821 * not accepted automatically.
1822 *
1823 * @param mgmt Exchange management style.
1824 * @param call Call data.
1825 *
1826 * @return New async session.
1827 * @return NULL on failure.
1828 * @return NULL if the call is not IPC_M_CONNECT_TO_ME.
1829 *
1830 */
1831async_sess_t *async_callback_receive_start(exch_mgmt_t mgmt, ipc_call_t *call)
1832{
1833 cap_phone_handle_t phandle = (cap_handle_t) IPC_GET_ARG5(*call);
1834
1835 if ((IPC_GET_IMETHOD(*call) != IPC_M_CONNECT_TO_ME) ||
1836 !CAP_HANDLE_VALID((phandle)))
1837 return NULL;
1838
1839 async_sess_t *sess = (async_sess_t *) malloc(sizeof(async_sess_t));
1840 if (sess == NULL)
1841 return NULL;
1842
1843 sess->iface = 0;
1844 sess->mgmt = mgmt;
1845 sess->phone = phandle;
1846 sess->arg1 = 0;
1847 sess->arg2 = 0;
1848 sess->arg3 = 0;
1849
1850 fibril_mutex_initialize(&sess->remote_state_mtx);
1851 sess->remote_state_data = NULL;
1852
1853 list_initialize(&sess->exch_list);
1854 fibril_mutex_initialize(&sess->mutex);
1855 atomic_set(&sess->refcnt, 0);
1856
1857 return sess;
1858}
1859
1860bool async_state_change_receive(cap_call_handle_t *chandle, sysarg_t *arg1,
1861 sysarg_t *arg2, sysarg_t *arg3)
1862{
1863 assert(chandle);
1864
1865 ipc_call_t call;
1866 *chandle = async_get_call(&call);
1867
1868 if (IPC_GET_IMETHOD(call) != IPC_M_STATE_CHANGE_AUTHORIZE)
1869 return false;
1870
1871 if (arg1)
1872 *arg1 = IPC_GET_ARG1(call);
1873 if (arg2)
1874 *arg2 = IPC_GET_ARG2(call);
1875 if (arg3)
1876 *arg3 = IPC_GET_ARG3(call);
1877
1878 return true;
1879}
1880
1881errno_t async_state_change_finalize(cap_call_handle_t chandle,
1882 async_exch_t *other_exch)
1883{
1884 return ipc_answer_1(chandle, EOK, CAP_HANDLE_RAW(other_exch->phone));
1885}
1886
1887_Noreturn void async_manager(void)
1888{
1889 futex_down(&async_futex);
1890 fibril_switch(FIBRIL_FROM_DEAD);
1891 __builtin_unreachable();
1892}
1893
1894/** @}
1895 */
Note: See TracBrowser for help on using the repository browser.