[b5440cf] | 1 | /*
|
---|
| 2 | * Copyright (C) 2005 Josef Cejka
|
---|
| 3 | * All rights reserved.
|
---|
| 4 | *
|
---|
| 5 | * Redistribution and use in source and binary forms, with or without
|
---|
| 6 | * modification, are permitted provided that the following conditions
|
---|
| 7 | * are met:
|
---|
| 8 | *
|
---|
| 9 | * - Redistributions of source code must retain the above copyright
|
---|
| 10 | * notice, this list of conditions and the following disclaimer.
|
---|
| 11 | * - Redistributions in binary form must reproduce the above copyright
|
---|
| 12 | * notice, this list of conditions and the following disclaimer in the
|
---|
| 13 | * documentation and/or other materials provided with the distribution.
|
---|
| 14 | * - The name of the author may not be used to endorse or promote products
|
---|
| 15 | * derived from this software without specific prior written permission.
|
---|
| 16 | *
|
---|
| 17 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
---|
| 18 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
---|
| 19 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
---|
| 20 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
---|
| 21 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
---|
| 22 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
---|
| 23 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
---|
| 24 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
---|
| 25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
---|
| 26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
---|
| 27 | */
|
---|
| 28 |
|
---|
| 29 | #include<sftypes.h>
|
---|
[12c6f2d] | 30 | #include<mul.h>
|
---|
[cf4a823] | 31 | #include<comparison.h>
|
---|
[b5440cf] | 32 |
|
---|
[3af72dc] | 33 | /** Multiply two 32 bit float numbers
|
---|
| 34 | *
|
---|
| 35 | */
|
---|
| 36 | float32 mulFloat32(float32 a, float32 b)
|
---|
| 37 | {
|
---|
| 38 | float32 result;
|
---|
[1266543] | 39 | __u64 frac1, frac2;
|
---|
[3af72dc] | 40 | __s32 exp;
|
---|
| 41 |
|
---|
| 42 | result.parts.sign = a.parts.sign ^ b.parts.sign;
|
---|
| 43 |
|
---|
[bff16dd] | 44 | if (isFloat32NaN(a) || isFloat32NaN(b) ) {
|
---|
[3af72dc] | 45 | /* TODO: fix SigNaNs */
|
---|
| 46 | if (isFloat32SigNaN(a)) {
|
---|
[1266543] | 47 | result.parts.fraction = a.parts.fraction;
|
---|
[3af72dc] | 48 | result.parts.exp = a.parts.exp;
|
---|
| 49 | return result;
|
---|
| 50 | };
|
---|
| 51 | if (isFloat32SigNaN(b)) { /* TODO: fix SigNaN */
|
---|
[1266543] | 52 | result.parts.fraction = b.parts.fraction;
|
---|
[3af72dc] | 53 | result.parts.exp = b.parts.exp;
|
---|
| 54 | return result;
|
---|
| 55 | };
|
---|
| 56 | /* set NaN as result */
|
---|
[bff16dd] | 57 | result.binary = FLOAT32_NAN;
|
---|
[3af72dc] | 58 | return result;
|
---|
| 59 | };
|
---|
| 60 |
|
---|
| 61 | if (isFloat32Infinity(a)) {
|
---|
| 62 | if (isFloat32Zero(b)) {
|
---|
| 63 | /* FIXME: zero * infinity */
|
---|
[bff16dd] | 64 | result.binary = FLOAT32_NAN;
|
---|
[3af72dc] | 65 | return result;
|
---|
| 66 | }
|
---|
[1266543] | 67 | result.parts.fraction = a.parts.fraction;
|
---|
[3af72dc] | 68 | result.parts.exp = a.parts.exp;
|
---|
| 69 | return result;
|
---|
| 70 | }
|
---|
| 71 |
|
---|
| 72 | if (isFloat32Infinity(b)) {
|
---|
| 73 | if (isFloat32Zero(a)) {
|
---|
| 74 | /* FIXME: zero * infinity */
|
---|
[bff16dd] | 75 | result.binary = FLOAT32_NAN;
|
---|
[3af72dc] | 76 | return result;
|
---|
| 77 | }
|
---|
[1266543] | 78 | result.parts.fraction = b.parts.fraction;
|
---|
[3af72dc] | 79 | result.parts.exp = b.parts.exp;
|
---|
| 80 | return result;
|
---|
| 81 | }
|
---|
| 82 |
|
---|
| 83 | /* exp is signed so we can easy detect underflow */
|
---|
| 84 | exp = a.parts.exp + b.parts.exp;
|
---|
| 85 | exp -= FLOAT32_BIAS;
|
---|
| 86 |
|
---|
[bff16dd] | 87 | if (exp >= FLOAT32_MAX_EXPONENT) {
|
---|
[3af72dc] | 88 | /* FIXME: overflow */
|
---|
| 89 | /* set infinity as result */
|
---|
[bff16dd] | 90 | result.binary = FLOAT32_INF;
|
---|
| 91 | result.parts.sign = a.parts.sign ^ b.parts.sign;
|
---|
[3af72dc] | 92 | return result;
|
---|
| 93 | };
|
---|
| 94 |
|
---|
| 95 | if (exp < 0) {
|
---|
| 96 | /* FIXME: underflow */
|
---|
| 97 | /* return signed zero */
|
---|
[1266543] | 98 | result.parts.fraction = 0x0;
|
---|
[3af72dc] | 99 | result.parts.exp = 0x0;
|
---|
| 100 | return result;
|
---|
| 101 | };
|
---|
| 102 |
|
---|
[1266543] | 103 | frac1 = a.parts.fraction;
|
---|
[bff16dd] | 104 | if (a.parts.exp > 0) {
|
---|
[1266543] | 105 | frac1 |= FLOAT32_HIDDEN_BIT_MASK;
|
---|
[3af72dc] | 106 | } else {
|
---|
| 107 | ++exp;
|
---|
| 108 | };
|
---|
| 109 |
|
---|
[1266543] | 110 | frac2 = b.parts.fraction;
|
---|
[bff16dd] | 111 |
|
---|
| 112 | if (b.parts.exp > 0) {
|
---|
[1266543] | 113 | frac2 |= FLOAT32_HIDDEN_BIT_MASK;
|
---|
[3af72dc] | 114 | } else {
|
---|
| 115 | ++exp;
|
---|
| 116 | };
|
---|
| 117 |
|
---|
[1266543] | 118 | frac1 <<= 1; /* one bit space for rounding */
|
---|
[3af72dc] | 119 |
|
---|
[1266543] | 120 | frac1 = frac1 * frac2;
|
---|
[3af72dc] | 121 | /* round and return */
|
---|
| 122 |
|
---|
[1266543] | 123 | while ((exp < FLOAT32_MAX_EXPONENT) && (frac1 >= ( 1 << (FLOAT32_FRACTION_SIZE + 2)))) {
|
---|
| 124 | /* 23 bits of fraction + one more for hidden bit (all shifted 1 bit left)*/
|
---|
[3af72dc] | 125 | ++exp;
|
---|
[1266543] | 126 | frac1 >>= 1;
|
---|
[3af72dc] | 127 | };
|
---|
| 128 |
|
---|
| 129 | /* rounding */
|
---|
[1266543] | 130 | /* ++frac1; FIXME: not works - without it is ok */
|
---|
| 131 | frac1 >>= 1; /* shift off rounding space */
|
---|
[3af72dc] | 132 |
|
---|
[1266543] | 133 | if ((exp < FLOAT32_MAX_EXPONENT) && (frac1 >= (1 << (FLOAT32_FRACTION_SIZE + 1)))) {
|
---|
[3af72dc] | 134 | ++exp;
|
---|
[1266543] | 135 | frac1 >>= 1;
|
---|
[3af72dc] | 136 | };
|
---|
| 137 |
|
---|
[bff16dd] | 138 | if (exp >= FLOAT32_MAX_EXPONENT ) {
|
---|
[3af72dc] | 139 | /* TODO: fix overflow */
|
---|
| 140 | /* return infinity*/
|
---|
[bff16dd] | 141 | result.parts.exp = FLOAT32_MAX_EXPONENT;
|
---|
[1266543] | 142 | result.parts.fraction = 0x0;
|
---|
[3af72dc] | 143 | return result;
|
---|
| 144 | }
|
---|
| 145 |
|
---|
[1266543] | 146 | exp -= FLOAT32_FRACTION_SIZE;
|
---|
[3af72dc] | 147 |
|
---|
[1266543] | 148 | if (exp <= FLOAT32_FRACTION_SIZE) {
|
---|
[3af72dc] | 149 | /* denormalized number */
|
---|
[1266543] | 150 | frac1 >>= 1; /* denormalize */
|
---|
| 151 | while ((frac1 > 0) && (exp < 0)) {
|
---|
| 152 | frac1 >>= 1;
|
---|
[3af72dc] | 153 | ++exp;
|
---|
| 154 | };
|
---|
[1266543] | 155 | if (frac1 == 0) {
|
---|
[3af72dc] | 156 | /* FIXME : underflow */
|
---|
| 157 | result.parts.exp = 0;
|
---|
[1266543] | 158 | result.parts.fraction = 0;
|
---|
[3af72dc] | 159 | return result;
|
---|
| 160 | };
|
---|
| 161 | };
|
---|
| 162 | result.parts.exp = exp;
|
---|
[1266543] | 163 | result.parts.fraction = frac1 & ( (1 << FLOAT32_FRACTION_SIZE) - 1);
|
---|
[bff16dd] | 164 |
|
---|
| 165 | return result;
|
---|
| 166 |
|
---|
| 167 | }
|
---|
| 168 |
|
---|
| 169 | /** Multiply two 64 bit float numbers
|
---|
| 170 | *
|
---|
| 171 | */
|
---|
| 172 | float64 mulFloat64(float64 a, float64 b)
|
---|
| 173 | {
|
---|
| 174 | float64 result;
|
---|
[1266543] | 175 | __u64 frac1, frac2;
|
---|
[bff16dd] | 176 | __s32 exp;
|
---|
| 177 |
|
---|
| 178 | result.parts.sign = a.parts.sign ^ b.parts.sign;
|
---|
| 179 |
|
---|
| 180 | if (isFloat64NaN(a) || isFloat64NaN(b) ) {
|
---|
| 181 | /* TODO: fix SigNaNs */
|
---|
| 182 | if (isFloat64SigNaN(a)) {
|
---|
[1266543] | 183 | result.parts.fraction = a.parts.fraction;
|
---|
[bff16dd] | 184 | result.parts.exp = a.parts.exp;
|
---|
| 185 | return result;
|
---|
| 186 | };
|
---|
| 187 | if (isFloat64SigNaN(b)) { /* TODO: fix SigNaN */
|
---|
[1266543] | 188 | result.parts.fraction = b.parts.fraction;
|
---|
[bff16dd] | 189 | result.parts.exp = b.parts.exp;
|
---|
| 190 | return result;
|
---|
| 191 | };
|
---|
| 192 | /* set NaN as result */
|
---|
| 193 | result.binary = FLOAT64_NAN;
|
---|
| 194 | return result;
|
---|
| 195 | };
|
---|
| 196 |
|
---|
| 197 | if (isFloat64Infinity(a)) {
|
---|
| 198 | if (isFloat64Zero(b)) {
|
---|
| 199 | /* FIXME: zero * infinity */
|
---|
| 200 | result.binary = FLOAT64_NAN;
|
---|
| 201 | return result;
|
---|
| 202 | }
|
---|
[1266543] | 203 | result.parts.fraction = a.parts.fraction;
|
---|
[bff16dd] | 204 | result.parts.exp = a.parts.exp;
|
---|
| 205 | return result;
|
---|
| 206 | }
|
---|
| 207 |
|
---|
| 208 | if (isFloat64Infinity(b)) {
|
---|
| 209 | if (isFloat64Zero(a)) {
|
---|
| 210 | /* FIXME: zero * infinity */
|
---|
| 211 | result.binary = FLOAT64_NAN;
|
---|
| 212 | return result;
|
---|
| 213 | }
|
---|
[1266543] | 214 | result.parts.fraction = b.parts.fraction;
|
---|
[bff16dd] | 215 | result.parts.exp = b.parts.exp;
|
---|
| 216 | return result;
|
---|
| 217 | }
|
---|
| 218 |
|
---|
| 219 | /* exp is signed so we can easy detect underflow */
|
---|
| 220 | exp = a.parts.exp + b.parts.exp;
|
---|
| 221 | exp -= FLOAT64_BIAS;
|
---|
| 222 |
|
---|
| 223 | if (exp >= FLOAT64_MAX_EXPONENT) {
|
---|
| 224 | /* FIXME: overflow */
|
---|
| 225 | /* set infinity as result */
|
---|
| 226 | result.binary = FLOAT64_INF;
|
---|
| 227 | result.parts.sign = a.parts.sign ^ b.parts.sign;
|
---|
| 228 | return result;
|
---|
| 229 | };
|
---|
| 230 |
|
---|
| 231 | if (exp < 0) {
|
---|
| 232 | /* FIXME: underflow */
|
---|
| 233 | /* return signed zero */
|
---|
[1266543] | 234 | result.parts.fraction = 0x0;
|
---|
[bff16dd] | 235 | result.parts.exp = 0x0;
|
---|
| 236 | return result;
|
---|
| 237 | };
|
---|
| 238 |
|
---|
[1266543] | 239 | frac1 = a.parts.fraction;
|
---|
[bff16dd] | 240 | if (a.parts.exp > 0) {
|
---|
[1266543] | 241 | frac1 |= FLOAT64_HIDDEN_BIT_MASK;
|
---|
[bff16dd] | 242 | } else {
|
---|
| 243 | ++exp;
|
---|
| 244 | };
|
---|
| 245 |
|
---|
[1266543] | 246 | frac2 = b.parts.fraction;
|
---|
[bff16dd] | 247 |
|
---|
| 248 | if (b.parts.exp > 0) {
|
---|
[1266543] | 249 | frac2 |= FLOAT64_HIDDEN_BIT_MASK;
|
---|
[bff16dd] | 250 | } else {
|
---|
| 251 | ++exp;
|
---|
| 252 | };
|
---|
| 253 |
|
---|
[1266543] | 254 | frac1 <<= 1; /* one bit space for rounding */
|
---|
[bff16dd] | 255 |
|
---|
[1266543] | 256 | mul64integers(frac1, frac2, &frac1, &frac2);
|
---|
[bff16dd] | 257 |
|
---|
| 258 | /* round and return */
|
---|
[1266543] | 259 | /* FIXME: ugly soulution is to shift whole frac2 >> as in 32bit version
|
---|
[bff16dd] | 260 | * Here is is more slower because we have to shift two numbers with carry
|
---|
| 261 | * Better is find first nonzero bit and make only one shift
|
---|
| 262 | * Third version is to shift both numbers a bit to right and result will be then
|
---|
| 263 | * placed in higher part of result. Then lower part will be good only for rounding.
|
---|
| 264 | */
|
---|
| 265 |
|
---|
[1266543] | 266 | while ((exp < FLOAT64_MAX_EXPONENT) && (frac2 > 0 )) {
|
---|
| 267 | frac1 >>= 1;
|
---|
| 268 | frac1 &= ((frac2 & 0x1) << 63);
|
---|
| 269 | frac2 >>= 1;
|
---|
[bff16dd] | 270 | ++exp;
|
---|
| 271 | }
|
---|
| 272 |
|
---|
[1266543] | 273 | while ((exp < FLOAT64_MAX_EXPONENT) && (frac1 >= ( (__u64)1 << (FLOAT64_FRACTION_SIZE + 2)))) {
|
---|
[bff16dd] | 274 | ++exp;
|
---|
[1266543] | 275 | frac1 >>= 1;
|
---|
[bff16dd] | 276 | };
|
---|
| 277 |
|
---|
| 278 | /* rounding */
|
---|
[1266543] | 279 | /* ++frac1; FIXME: not works - without it is ok */
|
---|
| 280 | frac1 >>= 1; /* shift off rounding space */
|
---|
[bff16dd] | 281 |
|
---|
[1266543] | 282 | if ((exp < FLOAT64_MAX_EXPONENT) && (frac1 >= ((__u64)1 << (FLOAT64_FRACTION_SIZE + 1)))) {
|
---|
[bff16dd] | 283 | ++exp;
|
---|
[1266543] | 284 | frac1 >>= 1;
|
---|
[bff16dd] | 285 | };
|
---|
| 286 |
|
---|
| 287 | if (exp >= FLOAT64_MAX_EXPONENT ) {
|
---|
| 288 | /* TODO: fix overflow */
|
---|
| 289 | /* return infinity*/
|
---|
| 290 | result.parts.exp = FLOAT64_MAX_EXPONENT;
|
---|
[1266543] | 291 | result.parts.fraction = 0x0;
|
---|
[bff16dd] | 292 | return result;
|
---|
| 293 | }
|
---|
| 294 |
|
---|
[1266543] | 295 | exp -= FLOAT64_FRACTION_SIZE;
|
---|
[bff16dd] | 296 |
|
---|
[1266543] | 297 | if (exp <= FLOAT64_FRACTION_SIZE) {
|
---|
[bff16dd] | 298 | /* denormalized number */
|
---|
[1266543] | 299 | frac1 >>= 1; /* denormalize */
|
---|
| 300 | while ((frac1 > 0) && (exp < 0)) {
|
---|
| 301 | frac1 >>= 1;
|
---|
[bff16dd] | 302 | ++exp;
|
---|
| 303 | };
|
---|
[1266543] | 304 | if (frac1 == 0) {
|
---|
[bff16dd] | 305 | /* FIXME : underflow */
|
---|
| 306 | result.parts.exp = 0;
|
---|
[1266543] | 307 | result.parts.fraction = 0;
|
---|
[bff16dd] | 308 | return result;
|
---|
| 309 | };
|
---|
| 310 | };
|
---|
| 311 | result.parts.exp = exp;
|
---|
[1266543] | 312 | result.parts.fraction = frac1 & ( ((__u64)1 << FLOAT64_FRACTION_SIZE) - 1);
|
---|
[3af72dc] | 313 |
|
---|
| 314 | return result;
|
---|
| 315 |
|
---|
[12c6f2d] | 316 | }
|
---|
| 317 |
|
---|
[bff16dd] | 318 | /** Multiply two 64 bit numbers and return result in two parts
|
---|
| 319 | * @param a first operand
|
---|
| 320 | * @param b second operand
|
---|
| 321 | * @param lo lower part from result
|
---|
| 322 | * @param hi higher part of result
|
---|
| 323 | */
|
---|
| 324 | void mul64integers(__u64 a,__u64 b, __u64 *lo, __u64 *hi)
|
---|
| 325 | {
|
---|
| 326 | __u64 low, high, middle1, middle2;
|
---|
| 327 | __u32 alow, blow;
|
---|
| 328 |
|
---|
| 329 | alow = a & 0xFFFFFFFF;
|
---|
| 330 | blow = b & 0xFFFFFFFF;
|
---|
| 331 |
|
---|
| 332 | a <<= 32;
|
---|
| 333 | b <<= 32;
|
---|
| 334 |
|
---|
| 335 | low = (__u64)alow * blow;
|
---|
| 336 | middle1 = a * blow;
|
---|
| 337 | middle2 = alow * b;
|
---|
| 338 | high = a * b;
|
---|
| 339 |
|
---|
| 340 | middle1 += middle2;
|
---|
[1266543] | 341 | high += ((__u64)(middle1 < middle2) << 32) + (middle1 >> 32);
|
---|
| 342 | middle1 <<= 32;
|
---|
[bff16dd] | 343 | low += middle1;
|
---|
| 344 | high += (low < middle1);
|
---|
| 345 | *lo = low;
|
---|
| 346 | *hi = high;
|
---|
| 347 | return;
|
---|
| 348 | }
|
---|
[3af72dc] | 349 |
|
---|
| 350 |
|
---|