1 | /*
|
---|
2 | * Copyright (C) 2005 Josef Cejka
|
---|
3 | * All rights reserved.
|
---|
4 | *
|
---|
5 | * Redistribution and use in source and binary forms, with or without
|
---|
6 | * modification, are permitted provided that the following conditions
|
---|
7 | * are met:
|
---|
8 | *
|
---|
9 | * - Redistributions of source code must retain the above copyright
|
---|
10 | * notice, this list of conditions and the following disclaimer.
|
---|
11 | * - Redistributions in binary form must reproduce the above copyright
|
---|
12 | * notice, this list of conditions and the following disclaimer in the
|
---|
13 | * documentation and/or other materials provided with the distribution.
|
---|
14 | * - The name of the author may not be used to endorse or promote products
|
---|
15 | * derived from this software without specific prior written permission.
|
---|
16 | *
|
---|
17 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
---|
18 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
---|
19 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
---|
20 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
---|
21 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
---|
22 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
---|
23 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
---|
24 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
---|
25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
---|
26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
---|
27 | */
|
---|
28 |
|
---|
29 | #include<sftypes.h>
|
---|
30 | #include<mul.h>
|
---|
31 | #include<comparison.h>
|
---|
32 |
|
---|
33 | /** Multiply two 32 bit float numbers
|
---|
34 | *
|
---|
35 | */
|
---|
36 | float32 mulFloat32(float32 a, float32 b)
|
---|
37 | {
|
---|
38 | float32 result;
|
---|
39 | __u64 frac1, frac2;
|
---|
40 | __s32 exp;
|
---|
41 |
|
---|
42 | result.parts.sign = a.parts.sign ^ b.parts.sign;
|
---|
43 |
|
---|
44 | if (isFloat32NaN(a) || isFloat32NaN(b) ) {
|
---|
45 | /* TODO: fix SigNaNs */
|
---|
46 | if (isFloat32SigNaN(a)) {
|
---|
47 | result.parts.fraction = a.parts.fraction;
|
---|
48 | result.parts.exp = a.parts.exp;
|
---|
49 | return result;
|
---|
50 | };
|
---|
51 | if (isFloat32SigNaN(b)) { /* TODO: fix SigNaN */
|
---|
52 | result.parts.fraction = b.parts.fraction;
|
---|
53 | result.parts.exp = b.parts.exp;
|
---|
54 | return result;
|
---|
55 | };
|
---|
56 | /* set NaN as result */
|
---|
57 | result.binary = FLOAT32_NAN;
|
---|
58 | return result;
|
---|
59 | };
|
---|
60 |
|
---|
61 | if (isFloat32Infinity(a)) {
|
---|
62 | if (isFloat32Zero(b)) {
|
---|
63 | /* FIXME: zero * infinity */
|
---|
64 | result.binary = FLOAT32_NAN;
|
---|
65 | return result;
|
---|
66 | }
|
---|
67 | result.parts.fraction = a.parts.fraction;
|
---|
68 | result.parts.exp = a.parts.exp;
|
---|
69 | return result;
|
---|
70 | }
|
---|
71 |
|
---|
72 | if (isFloat32Infinity(b)) {
|
---|
73 | if (isFloat32Zero(a)) {
|
---|
74 | /* FIXME: zero * infinity */
|
---|
75 | result.binary = FLOAT32_NAN;
|
---|
76 | return result;
|
---|
77 | }
|
---|
78 | result.parts.fraction = b.parts.fraction;
|
---|
79 | result.parts.exp = b.parts.exp;
|
---|
80 | return result;
|
---|
81 | }
|
---|
82 |
|
---|
83 | /* exp is signed so we can easy detect underflow */
|
---|
84 | exp = a.parts.exp + b.parts.exp;
|
---|
85 | exp -= FLOAT32_BIAS;
|
---|
86 |
|
---|
87 | if (exp >= FLOAT32_MAX_EXPONENT) {
|
---|
88 | /* FIXME: overflow */
|
---|
89 | /* set infinity as result */
|
---|
90 | result.binary = FLOAT32_INF;
|
---|
91 | result.parts.sign = a.parts.sign ^ b.parts.sign;
|
---|
92 | return result;
|
---|
93 | };
|
---|
94 |
|
---|
95 | if (exp < 0) {
|
---|
96 | /* FIXME: underflow */
|
---|
97 | /* return signed zero */
|
---|
98 | result.parts.fraction = 0x0;
|
---|
99 | result.parts.exp = 0x0;
|
---|
100 | return result;
|
---|
101 | };
|
---|
102 |
|
---|
103 | frac1 = a.parts.fraction;
|
---|
104 | if (a.parts.exp > 0) {
|
---|
105 | frac1 |= FLOAT32_HIDDEN_BIT_MASK;
|
---|
106 | } else {
|
---|
107 | ++exp;
|
---|
108 | };
|
---|
109 |
|
---|
110 | frac2 = b.parts.fraction;
|
---|
111 |
|
---|
112 | if (b.parts.exp > 0) {
|
---|
113 | frac2 |= FLOAT32_HIDDEN_BIT_MASK;
|
---|
114 | } else {
|
---|
115 | ++exp;
|
---|
116 | };
|
---|
117 |
|
---|
118 | frac1 <<= 1; /* one bit space for rounding */
|
---|
119 |
|
---|
120 | frac1 = frac1 * frac2;
|
---|
121 | /* round and return */
|
---|
122 |
|
---|
123 | while ((exp < FLOAT32_MAX_EXPONENT) && (frac1 >= ( 1 << (FLOAT32_FRACTION_SIZE + 2)))) {
|
---|
124 | /* 23 bits of fraction + one more for hidden bit (all shifted 1 bit left)*/
|
---|
125 | ++exp;
|
---|
126 | frac1 >>= 1;
|
---|
127 | };
|
---|
128 |
|
---|
129 | /* rounding */
|
---|
130 | /* ++frac1; FIXME: not works - without it is ok */
|
---|
131 | frac1 >>= 1; /* shift off rounding space */
|
---|
132 |
|
---|
133 | if ((exp < FLOAT32_MAX_EXPONENT) && (frac1 >= (1 << (FLOAT32_FRACTION_SIZE + 1)))) {
|
---|
134 | ++exp;
|
---|
135 | frac1 >>= 1;
|
---|
136 | };
|
---|
137 |
|
---|
138 | if (exp >= FLOAT32_MAX_EXPONENT ) {
|
---|
139 | /* TODO: fix overflow */
|
---|
140 | /* return infinity*/
|
---|
141 | result.parts.exp = FLOAT32_MAX_EXPONENT;
|
---|
142 | result.parts.fraction = 0x0;
|
---|
143 | return result;
|
---|
144 | }
|
---|
145 |
|
---|
146 | exp -= FLOAT32_FRACTION_SIZE;
|
---|
147 |
|
---|
148 | if (exp <= FLOAT32_FRACTION_SIZE) {
|
---|
149 | /* denormalized number */
|
---|
150 | frac1 >>= 1; /* denormalize */
|
---|
151 | while ((frac1 > 0) && (exp < 0)) {
|
---|
152 | frac1 >>= 1;
|
---|
153 | ++exp;
|
---|
154 | };
|
---|
155 | if (frac1 == 0) {
|
---|
156 | /* FIXME : underflow */
|
---|
157 | result.parts.exp = 0;
|
---|
158 | result.parts.fraction = 0;
|
---|
159 | return result;
|
---|
160 | };
|
---|
161 | };
|
---|
162 | result.parts.exp = exp;
|
---|
163 | result.parts.fraction = frac1 & ( (1 << FLOAT32_FRACTION_SIZE) - 1);
|
---|
164 |
|
---|
165 | return result;
|
---|
166 |
|
---|
167 | }
|
---|
168 |
|
---|
169 | /** Multiply two 64 bit float numbers
|
---|
170 | *
|
---|
171 | */
|
---|
172 | float64 mulFloat64(float64 a, float64 b)
|
---|
173 | {
|
---|
174 | float64 result;
|
---|
175 | __u64 frac1, frac2;
|
---|
176 | __s32 exp;
|
---|
177 |
|
---|
178 | result.parts.sign = a.parts.sign ^ b.parts.sign;
|
---|
179 |
|
---|
180 | if (isFloat64NaN(a) || isFloat64NaN(b) ) {
|
---|
181 | /* TODO: fix SigNaNs */
|
---|
182 | if (isFloat64SigNaN(a)) {
|
---|
183 | result.parts.fraction = a.parts.fraction;
|
---|
184 | result.parts.exp = a.parts.exp;
|
---|
185 | return result;
|
---|
186 | };
|
---|
187 | if (isFloat64SigNaN(b)) { /* TODO: fix SigNaN */
|
---|
188 | result.parts.fraction = b.parts.fraction;
|
---|
189 | result.parts.exp = b.parts.exp;
|
---|
190 | return result;
|
---|
191 | };
|
---|
192 | /* set NaN as result */
|
---|
193 | result.binary = FLOAT64_NAN;
|
---|
194 | return result;
|
---|
195 | };
|
---|
196 |
|
---|
197 | if (isFloat64Infinity(a)) {
|
---|
198 | if (isFloat64Zero(b)) {
|
---|
199 | /* FIXME: zero * infinity */
|
---|
200 | result.binary = FLOAT64_NAN;
|
---|
201 | return result;
|
---|
202 | }
|
---|
203 | result.parts.fraction = a.parts.fraction;
|
---|
204 | result.parts.exp = a.parts.exp;
|
---|
205 | return result;
|
---|
206 | }
|
---|
207 |
|
---|
208 | if (isFloat64Infinity(b)) {
|
---|
209 | if (isFloat64Zero(a)) {
|
---|
210 | /* FIXME: zero * infinity */
|
---|
211 | result.binary = FLOAT64_NAN;
|
---|
212 | return result;
|
---|
213 | }
|
---|
214 | result.parts.fraction = b.parts.fraction;
|
---|
215 | result.parts.exp = b.parts.exp;
|
---|
216 | return result;
|
---|
217 | }
|
---|
218 |
|
---|
219 | /* exp is signed so we can easy detect underflow */
|
---|
220 | exp = a.parts.exp + b.parts.exp;
|
---|
221 | exp -= FLOAT64_BIAS;
|
---|
222 |
|
---|
223 | if (exp >= FLOAT64_MAX_EXPONENT) {
|
---|
224 | /* FIXME: overflow */
|
---|
225 | /* set infinity as result */
|
---|
226 | result.binary = FLOAT64_INF;
|
---|
227 | result.parts.sign = a.parts.sign ^ b.parts.sign;
|
---|
228 | return result;
|
---|
229 | };
|
---|
230 |
|
---|
231 | if (exp < 0) {
|
---|
232 | /* FIXME: underflow */
|
---|
233 | /* return signed zero */
|
---|
234 | result.parts.fraction = 0x0;
|
---|
235 | result.parts.exp = 0x0;
|
---|
236 | return result;
|
---|
237 | };
|
---|
238 |
|
---|
239 | frac1 = a.parts.fraction;
|
---|
240 | if (a.parts.exp > 0) {
|
---|
241 | frac1 |= FLOAT64_HIDDEN_BIT_MASK;
|
---|
242 | } else {
|
---|
243 | ++exp;
|
---|
244 | };
|
---|
245 |
|
---|
246 | frac2 = b.parts.fraction;
|
---|
247 |
|
---|
248 | if (b.parts.exp > 0) {
|
---|
249 | frac2 |= FLOAT64_HIDDEN_BIT_MASK;
|
---|
250 | } else {
|
---|
251 | ++exp;
|
---|
252 | };
|
---|
253 |
|
---|
254 | frac1 <<= 1; /* one bit space for rounding */
|
---|
255 |
|
---|
256 | mul64integers(frac1, frac2, &frac1, &frac2);
|
---|
257 |
|
---|
258 | /* round and return */
|
---|
259 | /* FIXME: ugly soulution is to shift whole frac2 >> as in 32bit version
|
---|
260 | * Here is is more slower because we have to shift two numbers with carry
|
---|
261 | * Better is find first nonzero bit and make only one shift
|
---|
262 | * Third version is to shift both numbers a bit to right and result will be then
|
---|
263 | * placed in higher part of result. Then lower part will be good only for rounding.
|
---|
264 | */
|
---|
265 |
|
---|
266 | while ((exp < FLOAT64_MAX_EXPONENT) && (frac2 > 0 )) {
|
---|
267 | frac1 >>= 1;
|
---|
268 | frac1 &= ((frac2 & 0x1) << 63);
|
---|
269 | frac2 >>= 1;
|
---|
270 | ++exp;
|
---|
271 | }
|
---|
272 |
|
---|
273 | while ((exp < FLOAT64_MAX_EXPONENT) && (frac1 >= ( (__u64)1 << (FLOAT64_FRACTION_SIZE + 2)))) {
|
---|
274 | ++exp;
|
---|
275 | frac1 >>= 1;
|
---|
276 | };
|
---|
277 |
|
---|
278 | /* rounding */
|
---|
279 | /* ++frac1; FIXME: not works - without it is ok */
|
---|
280 | frac1 >>= 1; /* shift off rounding space */
|
---|
281 |
|
---|
282 | if ((exp < FLOAT64_MAX_EXPONENT) && (frac1 >= ((__u64)1 << (FLOAT64_FRACTION_SIZE + 1)))) {
|
---|
283 | ++exp;
|
---|
284 | frac1 >>= 1;
|
---|
285 | };
|
---|
286 |
|
---|
287 | if (exp >= FLOAT64_MAX_EXPONENT ) {
|
---|
288 | /* TODO: fix overflow */
|
---|
289 | /* return infinity*/
|
---|
290 | result.parts.exp = FLOAT64_MAX_EXPONENT;
|
---|
291 | result.parts.fraction = 0x0;
|
---|
292 | return result;
|
---|
293 | }
|
---|
294 |
|
---|
295 | exp -= FLOAT64_FRACTION_SIZE;
|
---|
296 |
|
---|
297 | if (exp <= FLOAT64_FRACTION_SIZE) {
|
---|
298 | /* denormalized number */
|
---|
299 | frac1 >>= 1; /* denormalize */
|
---|
300 | while ((frac1 > 0) && (exp < 0)) {
|
---|
301 | frac1 >>= 1;
|
---|
302 | ++exp;
|
---|
303 | };
|
---|
304 | if (frac1 == 0) {
|
---|
305 | /* FIXME : underflow */
|
---|
306 | result.parts.exp = 0;
|
---|
307 | result.parts.fraction = 0;
|
---|
308 | return result;
|
---|
309 | };
|
---|
310 | };
|
---|
311 | result.parts.exp = exp;
|
---|
312 | result.parts.fraction = frac1 & ( ((__u64)1 << FLOAT64_FRACTION_SIZE) - 1);
|
---|
313 |
|
---|
314 | return result;
|
---|
315 |
|
---|
316 | }
|
---|
317 |
|
---|
318 | /** Multiply two 64 bit numbers and return result in two parts
|
---|
319 | * @param a first operand
|
---|
320 | * @param b second operand
|
---|
321 | * @param lo lower part from result
|
---|
322 | * @param hi higher part of result
|
---|
323 | */
|
---|
324 | void mul64integers(__u64 a,__u64 b, __u64 *lo, __u64 *hi)
|
---|
325 | {
|
---|
326 | __u64 low, high, middle1, middle2;
|
---|
327 | __u32 alow, blow;
|
---|
328 |
|
---|
329 | alow = a & 0xFFFFFFFF;
|
---|
330 | blow = b & 0xFFFFFFFF;
|
---|
331 |
|
---|
332 | a <<= 32;
|
---|
333 | b <<= 32;
|
---|
334 |
|
---|
335 | low = (__u64)alow * blow;
|
---|
336 | middle1 = a * blow;
|
---|
337 | middle2 = alow * b;
|
---|
338 | high = a * b;
|
---|
339 |
|
---|
340 | middle1 += middle2;
|
---|
341 | high += ((__u64)(middle1 < middle2) << 32) + (middle1 >> 32);
|
---|
342 | middle1 <<= 32;
|
---|
343 | low += middle1;
|
---|
344 | high += (low < middle1);
|
---|
345 | *lo = low;
|
---|
346 | *hi = high;
|
---|
347 | return;
|
---|
348 | }
|
---|
349 |
|
---|
350 |
|
---|