1 | /*
|
---|
2 | * Copyright (C) 2005 Josef Cejka
|
---|
3 | * All rights reserved.
|
---|
4 | *
|
---|
5 | * Redistribution and use in source and binary forms, with or without
|
---|
6 | * modification, are permitted provided that the following conditions
|
---|
7 | * are met:
|
---|
8 | *
|
---|
9 | * - Redistributions of source code must retain the above copyright
|
---|
10 | * notice, this list of conditions and the following disclaimer.
|
---|
11 | * - Redistributions in binary form must reproduce the above copyright
|
---|
12 | * notice, this list of conditions and the following disclaimer in the
|
---|
13 | * documentation and/or other materials provided with the distribution.
|
---|
14 | * - The name of the author may not be used to endorse or promote products
|
---|
15 | * derived from this software without specific prior written permission.
|
---|
16 | *
|
---|
17 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
---|
18 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
---|
19 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
---|
20 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
---|
21 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
---|
22 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
---|
23 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
---|
24 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
---|
25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
---|
26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
---|
27 | */
|
---|
28 |
|
---|
29 | #include<sftypes.h>
|
---|
30 | #include<add.h>
|
---|
31 | #include<div.h>
|
---|
32 | #include<comparison.h>
|
---|
33 | #include<mul.h>
|
---|
34 | #include<common.h>
|
---|
35 |
|
---|
36 |
|
---|
37 | float32 divFloat32(float32 a, float32 b)
|
---|
38 | {
|
---|
39 | float32 result;
|
---|
40 | __s32 aexp, bexp, cexp;
|
---|
41 | __u64 afrac, bfrac, cfrac;
|
---|
42 |
|
---|
43 | result.parts.sign = a.parts.sign ^ b.parts.sign;
|
---|
44 |
|
---|
45 | if (isFloat32NaN(a)) {
|
---|
46 | if (isFloat32SigNaN(a)) {
|
---|
47 | /*FIXME: SigNaN*/
|
---|
48 | }
|
---|
49 | /*NaN*/
|
---|
50 | return a;
|
---|
51 | }
|
---|
52 |
|
---|
53 | if (isFloat32NaN(b)) {
|
---|
54 | if (isFloat32SigNaN(b)) {
|
---|
55 | /*FIXME: SigNaN*/
|
---|
56 | }
|
---|
57 | /*NaN*/
|
---|
58 | return b;
|
---|
59 | }
|
---|
60 |
|
---|
61 | if (isFloat32Infinity(a)) {
|
---|
62 | if (isFloat32Infinity(b)) {
|
---|
63 | /*FIXME: inf / inf */
|
---|
64 | result.binary = FLOAT32_NAN;
|
---|
65 | return result;
|
---|
66 | }
|
---|
67 | /* inf / num */
|
---|
68 | result.parts.exp = a.parts.exp;
|
---|
69 | result.parts.fraction = a.parts.fraction;
|
---|
70 | return result;
|
---|
71 | }
|
---|
72 |
|
---|
73 | if (isFloat32Infinity(b)) {
|
---|
74 | if (isFloat32Zero(a)) {
|
---|
75 | /* FIXME 0 / inf */
|
---|
76 | result.parts.exp = 0;
|
---|
77 | result.parts.fraction = 0;
|
---|
78 | return result;
|
---|
79 | }
|
---|
80 | /* FIXME: num / inf*/
|
---|
81 | result.parts.exp = 0;
|
---|
82 | result.parts.fraction = 0;
|
---|
83 | return result;
|
---|
84 | }
|
---|
85 |
|
---|
86 | if (isFloat32Zero(b)) {
|
---|
87 | if (isFloat32Zero(a)) {
|
---|
88 | /*FIXME: 0 / 0*/
|
---|
89 | result.binary = FLOAT32_NAN;
|
---|
90 | return result;
|
---|
91 | }
|
---|
92 | /* FIXME: division by zero */
|
---|
93 | result.parts.exp = 0;
|
---|
94 | result.parts.fraction = 0;
|
---|
95 | return result;
|
---|
96 | }
|
---|
97 |
|
---|
98 |
|
---|
99 | afrac = a.parts.fraction;
|
---|
100 | aexp = a.parts.exp;
|
---|
101 | bfrac = b.parts.fraction;
|
---|
102 | bexp = b.parts.exp;
|
---|
103 |
|
---|
104 | /* denormalized numbers */
|
---|
105 | if (aexp == 0) {
|
---|
106 | if (afrac == 0) {
|
---|
107 | result.parts.exp = 0;
|
---|
108 | result.parts.fraction = 0;
|
---|
109 | return result;
|
---|
110 | }
|
---|
111 | /* normalize it*/
|
---|
112 |
|
---|
113 | afrac <<= 1;
|
---|
114 | /* afrac is nonzero => it must stop */
|
---|
115 | while (! (afrac & FLOAT32_HIDDEN_BIT_MASK) ) {
|
---|
116 | afrac <<= 1;
|
---|
117 | aexp--;
|
---|
118 | }
|
---|
119 | }
|
---|
120 |
|
---|
121 | if (bexp == 0) {
|
---|
122 | bfrac <<= 1;
|
---|
123 | /* bfrac is nonzero => it must stop */
|
---|
124 | while (! (bfrac & FLOAT32_HIDDEN_BIT_MASK) ) {
|
---|
125 | bfrac <<= 1;
|
---|
126 | bexp--;
|
---|
127 | }
|
---|
128 | }
|
---|
129 |
|
---|
130 | afrac = (afrac | FLOAT32_HIDDEN_BIT_MASK ) << (32 - FLOAT32_FRACTION_SIZE - 1 );
|
---|
131 | bfrac = (bfrac | FLOAT32_HIDDEN_BIT_MASK ) << (32 - FLOAT32_FRACTION_SIZE );
|
---|
132 |
|
---|
133 | if ( bfrac <= (afrac << 1) ) {
|
---|
134 | afrac >>= 1;
|
---|
135 | aexp++;
|
---|
136 | }
|
---|
137 |
|
---|
138 | cexp = aexp - bexp + FLOAT32_BIAS - 2;
|
---|
139 |
|
---|
140 | cfrac = (afrac << 32) / bfrac;
|
---|
141 | if (( cfrac & 0x3F ) == 0) {
|
---|
142 | cfrac |= ( bfrac * cfrac != afrac << 32 );
|
---|
143 | }
|
---|
144 |
|
---|
145 | /* pack and round */
|
---|
146 |
|
---|
147 | /* find first nonzero digit and shift result and detect possibly underflow */
|
---|
148 | while ((cexp > 0) && (cfrac) && (!(cfrac & (FLOAT32_HIDDEN_BIT_MASK << 7 )))) {
|
---|
149 | cexp--;
|
---|
150 | cfrac <<= 1;
|
---|
151 | /* TODO: fix underflow */
|
---|
152 | };
|
---|
153 |
|
---|
154 | cfrac += (0x1 << 6); /* FIXME: 7 is not sure*/
|
---|
155 |
|
---|
156 | if (cfrac & (FLOAT32_HIDDEN_BIT_MASK << 7)) {
|
---|
157 | ++cexp;
|
---|
158 | cfrac >>= 1;
|
---|
159 | }
|
---|
160 |
|
---|
161 | /* check overflow */
|
---|
162 | if (cexp >= FLOAT32_MAX_EXPONENT ) {
|
---|
163 | /* FIXME: overflow, return infinity */
|
---|
164 | result.parts.exp = FLOAT32_MAX_EXPONENT;
|
---|
165 | result.parts.fraction = 0;
|
---|
166 | return result;
|
---|
167 | }
|
---|
168 |
|
---|
169 | if (cexp < 0) {
|
---|
170 | /* FIXME: underflow */
|
---|
171 | result.parts.exp = 0;
|
---|
172 | if ((cexp + FLOAT32_FRACTION_SIZE) < 0) {
|
---|
173 | result.parts.fraction = 0;
|
---|
174 | return result;
|
---|
175 | }
|
---|
176 | cfrac >>= 1;
|
---|
177 | while (cexp < 0) {
|
---|
178 | cexp ++;
|
---|
179 | cfrac >>= 1;
|
---|
180 | }
|
---|
181 |
|
---|
182 | } else {
|
---|
183 | result.parts.exp = (__u32)cexp;
|
---|
184 | }
|
---|
185 |
|
---|
186 | result.parts.fraction = ((cfrac >> 6) & (~FLOAT32_HIDDEN_BIT_MASK));
|
---|
187 |
|
---|
188 | return result;
|
---|
189 | }
|
---|
190 |
|
---|
191 | float64 divFloat64(float64 a, float64 b)
|
---|
192 | {
|
---|
193 | float64 result;
|
---|
194 | __s64 aexp, bexp, cexp;
|
---|
195 | __u64 afrac, bfrac, cfrac;
|
---|
196 | __u64 remlo, remhi;
|
---|
197 |
|
---|
198 | result.parts.sign = a.parts.sign ^ b.parts.sign;
|
---|
199 |
|
---|
200 | if (isFloat64NaN(a)) {
|
---|
201 |
|
---|
202 | if (isFloat64SigNaN(b)) {
|
---|
203 | /*FIXME: SigNaN*/
|
---|
204 | return b;
|
---|
205 | }
|
---|
206 |
|
---|
207 | if (isFloat64SigNaN(a)) {
|
---|
208 | /*FIXME: SigNaN*/
|
---|
209 | }
|
---|
210 | /*NaN*/
|
---|
211 | return a;
|
---|
212 | }
|
---|
213 |
|
---|
214 | if (isFloat64NaN(b)) {
|
---|
215 | if (isFloat64SigNaN(b)) {
|
---|
216 | /*FIXME: SigNaN*/
|
---|
217 | }
|
---|
218 | /*NaN*/
|
---|
219 | return b;
|
---|
220 | }
|
---|
221 |
|
---|
222 | if (isFloat64Infinity(a)) {
|
---|
223 | if (isFloat64Infinity(b) || isFloat64Zero(b)) {
|
---|
224 | /*FIXME: inf / inf */
|
---|
225 | result.binary = FLOAT64_NAN;
|
---|
226 | return result;
|
---|
227 | }
|
---|
228 | /* inf / num */
|
---|
229 | result.parts.exp = a.parts.exp;
|
---|
230 | result.parts.fraction = a.parts.fraction;
|
---|
231 | return result;
|
---|
232 | }
|
---|
233 |
|
---|
234 | if (isFloat64Infinity(b)) {
|
---|
235 | if (isFloat64Zero(a)) {
|
---|
236 | /* FIXME 0 / inf */
|
---|
237 | result.parts.exp = 0;
|
---|
238 | result.parts.fraction = 0;
|
---|
239 | return result;
|
---|
240 | }
|
---|
241 | /* FIXME: num / inf*/
|
---|
242 | result.parts.exp = 0;
|
---|
243 | result.parts.fraction = 0;
|
---|
244 | return result;
|
---|
245 | }
|
---|
246 |
|
---|
247 | if (isFloat64Zero(b)) {
|
---|
248 | if (isFloat64Zero(a)) {
|
---|
249 | /*FIXME: 0 / 0*/
|
---|
250 | result.binary = FLOAT64_NAN;
|
---|
251 | return result;
|
---|
252 | }
|
---|
253 | /* FIXME: division by zero */
|
---|
254 | result.parts.exp = 0;
|
---|
255 | result.parts.fraction = 0;
|
---|
256 | return result;
|
---|
257 | }
|
---|
258 |
|
---|
259 |
|
---|
260 | afrac = a.parts.fraction;
|
---|
261 | aexp = a.parts.exp;
|
---|
262 | bfrac = b.parts.fraction;
|
---|
263 | bexp = b.parts.exp;
|
---|
264 |
|
---|
265 | /* denormalized numbers */
|
---|
266 | if (aexp == 0) {
|
---|
267 | if (afrac == 0) {
|
---|
268 | result.parts.exp = 0;
|
---|
269 | result.parts.fraction = 0;
|
---|
270 | return result;
|
---|
271 | }
|
---|
272 | /* normalize it*/
|
---|
273 |
|
---|
274 | aexp++;
|
---|
275 | /* afrac is nonzero => it must stop */
|
---|
276 | while (! (afrac & FLOAT64_HIDDEN_BIT_MASK) ) {
|
---|
277 | afrac <<= 1;
|
---|
278 | aexp--;
|
---|
279 | }
|
---|
280 | }
|
---|
281 |
|
---|
282 | if (bexp == 0) {
|
---|
283 | bexp++;
|
---|
284 | /* bfrac is nonzero => it must stop */
|
---|
285 | while (! (bfrac & FLOAT64_HIDDEN_BIT_MASK) ) {
|
---|
286 | bfrac <<= 1;
|
---|
287 | bexp--;
|
---|
288 | }
|
---|
289 | }
|
---|
290 |
|
---|
291 | afrac = (afrac | FLOAT64_HIDDEN_BIT_MASK ) << (64 - FLOAT64_FRACTION_SIZE - 2 );
|
---|
292 | bfrac = (bfrac | FLOAT64_HIDDEN_BIT_MASK ) << (64 - FLOAT64_FRACTION_SIZE - 1);
|
---|
293 |
|
---|
294 | if ( bfrac <= (afrac << 1) ) {
|
---|
295 | afrac >>= 1;
|
---|
296 | aexp++;
|
---|
297 | }
|
---|
298 |
|
---|
299 | cexp = aexp - bexp + FLOAT64_BIAS - 2;
|
---|
300 |
|
---|
301 | cfrac = divFloat64estim(afrac, bfrac);
|
---|
302 |
|
---|
303 | if (( cfrac & 0x1FF ) <= 2) { /*FIXME:?? */
|
---|
304 | mul64integers( bfrac, cfrac, &remlo, &remhi);
|
---|
305 | /* (__u128)afrac << 64 - ( ((__u128)remhi<<64) + (__u128)remlo )*/
|
---|
306 | remhi = afrac - remhi - ( remlo > 0);
|
---|
307 | remlo = - remlo;
|
---|
308 |
|
---|
309 | while ((__s64) remhi < 0) {
|
---|
310 | cfrac--;
|
---|
311 | remlo += bfrac;
|
---|
312 | remhi += ( remlo < bfrac );
|
---|
313 | }
|
---|
314 | cfrac |= ( remlo != 0 );
|
---|
315 | }
|
---|
316 |
|
---|
317 | /* round and shift */
|
---|
318 | result = finishFloat64(cexp, cfrac, result.parts.sign);
|
---|
319 | return result;
|
---|
320 |
|
---|
321 | }
|
---|
322 |
|
---|
323 | __u64 divFloat64estim(__u64 a, __u64 b)
|
---|
324 | {
|
---|
325 | __u64 bhi;
|
---|
326 | __u64 remhi, remlo;
|
---|
327 | __u64 result;
|
---|
328 |
|
---|
329 | if ( b <= a ) {
|
---|
330 | return 0xFFFFFFFFFFFFFFFFull;
|
---|
331 | }
|
---|
332 |
|
---|
333 | bhi = b >> 32;
|
---|
334 | result = ((bhi << 32) <= a) ?( 0xFFFFFFFFull << 32) : ( a / bhi) << 32;
|
---|
335 | mul64integers(b, result, &remlo, &remhi);
|
---|
336 |
|
---|
337 | remhi = a - remhi - (remlo > 0);
|
---|
338 | remlo = - remlo;
|
---|
339 |
|
---|
340 | b <<= 32;
|
---|
341 | while ( (__s64) remhi < 0 ) {
|
---|
342 | result -= 0x1ll << 32;
|
---|
343 | remlo += b;
|
---|
344 | remhi += bhi + ( remlo < b );
|
---|
345 | }
|
---|
346 | remhi = (remhi << 32) | (remlo >> 32);
|
---|
347 | if (( bhi << 32) <= remhi) {
|
---|
348 | result |= 0xFFFFFFFF;
|
---|
349 | } else {
|
---|
350 | result |= remhi / bhi;
|
---|
351 | }
|
---|
352 |
|
---|
353 |
|
---|
354 | return result;
|
---|
355 | }
|
---|
356 |
|
---|