source: mainline/kernel/generic/src/synch/rcu.c@ e8471b9

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since e8471b9 was c14762e, checked in by Adam Hraska <adam.hraska+hos@…>, 13 years ago

adt: Removed duplicate implementations of list_concat().

  • Property mode set to 100644
File size: 38.4 KB
Line 
1/*
2 * Copyright (c) 2012 Adam Hraska
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29
30/** @addtogroup sync
31 * @{
32 */
33
34/**
35 * @file
36 * @brief Preemptible read-copy update. Usable from interrupt handlers.
37 */
38
39#include <synch/rcu.h>
40#include <synch/condvar.h>
41#include <synch/semaphore.h>
42#include <synch/spinlock.h>
43#include <proc/thread.h>
44#include <cpu/cpu_mask.h>
45#include <cpu.h>
46#include <smp/smp_call.h>
47#include <compiler/barrier.h>
48#include <atomic.h>
49#include <arch.h>
50#include <macros.h>
51
52/*
53 * Number of milliseconds to give to preexisting readers to finish
54 * when non-expedited grace period detection is in progress.
55 */
56#define DETECT_SLEEP_MS 5
57/*
58 * Max number of pending callbacks in the local cpu's queue before
59 * aggressively expediting the current grace period
60 */
61#define EXPEDITE_THRESHOLD 1000
62/* Half the number of values a uint32 can hold. */
63#define UINT32_MAX_HALF 2147483648U
64
65
66/*c Global RCU data. */
67typedef struct rcu_data {
68 /** Detector uses so signal reclaimers that a grace period ended. */
69 condvar_t gp_ended;
70 /** Reclaimers notify the detector when they request more grace periods.*/
71 condvar_t req_gp_changed;
72 /** Reclaimers use to notify the detector to accelerate GP detection. */
73 condvar_t expedite_now;
74 /**
75 * The detector waits on this semaphore for any readers delaying the GP.
76 *
77 * Each of the cpus with readers that are delaying the current GP
78 * must up() this sema once they reach a quiescent state. If there
79 * are any readers in cur_preempted (ie preempted preexisting) and
80 * they are already delaying GP detection, the last to unlock its
81 * reader section must up() this sema once.
82 */
83 semaphore_t remaining_readers;
84
85 /** Protects the 4 fields below. */
86 SPINLOCK_DECLARE(gp_lock);
87 /** Number of grace period ends the detector was requested to announce. */
88 size_t req_gp_end_cnt;
89 /** Number of consecutive grace periods to detect quickly and aggressively.*/
90 size_t req_expedited_cnt;
91 /**
92 * The current grace period number. Increases monotonically.
93 * Lock gp_lock or preempt_lock to get a current value.
94 */
95 rcu_gp_t cur_gp;
96 /**
97 * The number of the most recently completed grace period.
98 * At most one behind cur_gp. If equal to cur_gp, a grace
99 * period detection is not in progress and the detector
100 * is idle.
101 */
102 rcu_gp_t completed_gp;
103
104 /** Protect the following 3 fields. */
105 IRQ_SPINLOCK_DECLARE(preempt_lock);
106 /** Preexisting readers that have been preempted. */
107 list_t cur_preempted;
108 /** Reader that have been preempted and might delay the next grace period.*/
109 list_t next_preempted;
110 /**
111 * The detector is waiting for the last preempted reader
112 * in cur_preempted to announce that it exited its reader
113 * section by up()ing remaining_readers.
114 */
115 bool preempt_blocking_det;
116
117 /**
118 * Number of cpus with readers that are delaying the current GP.
119 * They will up() remaining_readers.
120 */
121 atomic_t delaying_cpu_cnt;
122
123 /** Interruptable attached detector thread pointer. */
124 thread_t *detector_thr;
125
126 /* Some statistics. */
127 size_t stat_expedited_cnt;
128 size_t stat_delayed_cnt;
129 size_t stat_preempt_blocking_cnt;
130 /* Does not contain self/local calls. */
131 size_t stat_smp_call_cnt;
132} rcu_data_t;
133
134
135static rcu_data_t rcu;
136
137static void start_detector(void);
138static void start_reclaimers(void);
139static void rcu_read_unlock_impl(size_t *pnesting_cnt);
140static void synch_complete(rcu_item_t *rcu_item);
141static void check_qs(void);
142static void record_qs(void);
143static void signal_read_unlock(void);
144static bool arriving_cbs_empty(void);
145static bool next_cbs_empty(void);
146static bool cur_cbs_empty(void);
147static bool all_cbs_empty(void);
148static void reclaimer(void *arg);
149static bool wait_for_pending_cbs(void);
150static bool advance_cbs(void);
151static void exec_completed_cbs(rcu_gp_t last_completed_gp);
152static void exec_cbs(rcu_item_t **phead);
153static void req_detection(size_t req_cnt);
154static bool wait_for_cur_cbs_gp_end(bool expedite, rcu_gp_t *last_completed_gp);
155static bool cv_wait_for_gp(rcu_gp_t wait_on_gp);
156static void detector(void *);
157static bool wait_for_detect_req(void);
158static void start_new_gp(void);
159static void end_cur_gp(void);
160static bool wait_for_readers(void);
161static void rm_quiescent_cpus(cpu_mask_t *cpu_mask);
162static bool gp_sleep(void);
163static void interrupt_delaying_cpus(cpu_mask_t *cpu_mask);
164static void sample_local_cpu(void *);
165static bool wait_for_delaying_cpus(void);
166static bool wait_for_preempt_reader(void);
167
168
169
170/** Initializes global RCU structures. */
171void rcu_init(void)
172{
173 condvar_initialize(&rcu.gp_ended);
174 condvar_initialize(&rcu.req_gp_changed);
175 condvar_initialize(&rcu.expedite_now);
176 semaphore_initialize(&rcu.remaining_readers, 0);
177
178 spinlock_initialize(&rcu.gp_lock, "rcu.gp_lock");
179 rcu.req_gp_end_cnt = 0;
180 rcu.req_expedited_cnt = 0;
181 rcu.cur_gp = 0;
182 rcu.completed_gp = 0;
183
184 irq_spinlock_initialize(&rcu.preempt_lock, "rcu.preempt_lock");
185 list_initialize(&rcu.cur_preempted);
186 list_initialize(&rcu.next_preempted);
187 rcu.preempt_blocking_det = false;
188
189 atomic_set(&rcu.delaying_cpu_cnt, 0);
190
191 rcu.detector_thr = 0;
192
193 rcu.stat_expedited_cnt = 0;
194 rcu.stat_delayed_cnt = 0;
195 rcu.stat_preempt_blocking_cnt = 0;
196 rcu.stat_smp_call_cnt = 0;
197}
198
199/** Initializes per-CPU RCU data. If on the boot cpu inits global data too.*/
200void rcu_cpu_init(void)
201{
202 if (config.cpu_active == 1) {
203 rcu_init();
204 }
205
206 CPU->rcu.last_seen_gp = 0;
207
208 CPU->rcu.pnesting_cnt = &CPU->rcu.tmp_nesting_cnt;
209 CPU->rcu.tmp_nesting_cnt = 0;
210
211 CPU->rcu.cur_cbs = 0;
212 CPU->rcu.next_cbs = 0;
213 CPU->rcu.arriving_cbs = 0;
214 CPU->rcu.parriving_cbs_tail = &CPU->rcu.arriving_cbs;
215
216 CPU->rcu.arriving_cbs_cnt = 0;
217
218 CPU->rcu.cur_cbs_gp = 0;
219 CPU->rcu.next_cbs_gp = 0;
220
221 CPU->rcu.is_delaying_gp = false;
222
223 semaphore_initialize(&CPU->rcu.arrived_flag, 0);
224 CPU->rcu.reclaimer_thr = 0;
225
226 CPU->rcu.stat_max_cbs = 0;
227 CPU->rcu.stat_avg_cbs = 0;
228 CPU->rcu.stat_missed_gps = 0;
229}
230
231/** Completes RCU init. Creates and runs the detector and reclaimer threads.*/
232void rcu_kinit_init(void)
233{
234 start_detector();
235 start_reclaimers();
236}
237
238/** Initializes any per-thread RCU structures. */
239void rcu_thread_init(thread_t *thread)
240{
241 thread->rcu.nesting_cnt = 0;
242 thread->rcu.was_preempted = false;
243 link_initialize(&thread->rcu.preempt_link);
244}
245
246/** Called from scheduler() when exiting the current thread.
247 *
248 * Preemption or interrupts are disabled and the scheduler() already
249 * switched away from the current thread, calling rcu_after_thread_ran().
250 */
251void rcu_thread_exiting(void)
252{
253 ASSERT(THREAD != 0);
254 ASSERT(THREAD->state == Exiting);
255 ASSERT(PREEMPTION_DISABLED || interrupts_disabled());
256 /*
257 * The scheduler() must have already switched to a temporary
258 * nesting counter for interrupt handlers (we could be idle)
259 * so that interrupt handlers do not modify the exiting thread's
260 * reader section nesting count while we examine/process it.
261 */
262 ASSERT(&CPU->rcu.tmp_nesting_cnt == CPU->rcu.pnesting_cnt);
263
264 /*
265 * The thread forgot to exit its reader critical secion.
266 * It is a bug, but rather than letting the entire system lock up
267 * forcefully leave the reader section. The thread is not holding
268 * any references anyway since it is exiting so it is safe.
269 */
270 if (0 < THREAD->rcu.nesting_cnt) {
271 THREAD->rcu.nesting_cnt = 1;
272 rcu_read_unlock_impl(&THREAD->rcu.nesting_cnt);
273 }
274}
275
276/** Cleans up global RCU resources and stops dispatching callbacks.
277 *
278 * Call when shutting down the kernel. Outstanding callbacks will
279 * not be processed. Instead they will linger forever.
280 */
281void rcu_stop(void)
282{
283 /* todo: stop accepting new callbacks instead of just letting them linger?*/
284
285 /* Stop and wait for reclaimers. */
286 for (unsigned int cpu_id = 0; cpu_id < config.cpu_active; ++cpu_id) {
287 ASSERT(cpus[cpu_id].rcu.reclaimer_thr != 0);
288
289 if (cpus[cpu_id].rcu.reclaimer_thr) {
290 thread_interrupt(cpus[cpu_id].rcu.reclaimer_thr);
291 thread_join(cpus[cpu_id].rcu.reclaimer_thr);
292 thread_detach(cpus[cpu_id].rcu.reclaimer_thr);
293 cpus[cpu_id].rcu.reclaimer_thr = 0;
294 }
295 }
296
297 /* Stop the detector and wait. */
298 if (rcu.detector_thr) {
299 thread_interrupt(rcu.detector_thr);
300 thread_join(rcu.detector_thr);
301 thread_detach(rcu.detector_thr);
302 rcu.detector_thr = 0;
303 }
304}
305
306/** Starts the detector thread. */
307static void start_detector(void)
308{
309 rcu.detector_thr =
310 thread_create(detector, 0, TASK, THREAD_FLAG_NONE, "rcu-det");
311
312 if (!rcu.detector_thr)
313 panic("Failed to create RCU detector thread.");
314
315 thread_ready(rcu.detector_thr);
316}
317
318/** Creates and runs cpu-bound reclaimer threads. */
319static void start_reclaimers(void)
320{
321 for (unsigned int cpu_id = 0; cpu_id < config.cpu_count; ++cpu_id) {
322 char name[THREAD_NAME_BUFLEN] = {0};
323
324 snprintf(name, THREAD_NAME_BUFLEN - 1, "rcu-rec/%u", cpu_id);
325
326 cpus[cpu_id].rcu.reclaimer_thr =
327 thread_create(reclaimer, 0, TASK, THREAD_FLAG_NONE, name);
328
329 if (!cpus[cpu_id].rcu.reclaimer_thr)
330 panic("Failed to create RCU reclaimer thread on cpu%u.", cpu_id);
331
332 thread_wire(cpus[cpu_id].rcu.reclaimer_thr, &cpus[cpu_id]);
333 thread_ready(cpus[cpu_id].rcu.reclaimer_thr);
334 }
335}
336
337/** Returns the number of elapsed grace periods since boot. */
338uint64_t rcu_completed_gps(void)
339{
340 spinlock_lock(&rcu.gp_lock);
341 uint64_t completed = rcu.completed_gp;
342 spinlock_unlock(&rcu.gp_lock);
343
344 return completed;
345}
346
347/** Delimits the start of an RCU reader critical section.
348 *
349 * Reader sections may be nested and are preemptable. You must not
350 * however block/sleep within reader sections.
351 */
352void rcu_read_lock(void)
353{
354 ASSERT(CPU);
355 preemption_disable();
356
357 check_qs();
358 ++(*CPU->rcu.pnesting_cnt);
359
360 preemption_enable();
361}
362
363/** Delimits the end of an RCU reader critical section. */
364void rcu_read_unlock(void)
365{
366 ASSERT(CPU);
367 preemption_disable();
368
369 rcu_read_unlock_impl(CPU->rcu.pnesting_cnt);
370
371 preemption_enable();
372}
373
374/** Unlocks the local reader section using the given nesting count.
375 *
376 * Preemption or interrupts must be disabled.
377 *
378 * @param pnesting_cnt Either &CPU->rcu.tmp_nesting_cnt or
379 * THREAD->rcu.nesting_cnt.
380 */
381static void rcu_read_unlock_impl(size_t *pnesting_cnt)
382{
383 ASSERT(PREEMPTION_DISABLED || interrupts_disabled());
384
385 if (0 == --(*pnesting_cnt)) {
386 record_qs();
387
388 /*
389 * The thread was preempted while in a critical section or
390 * the detector is eagerly waiting for this cpu's reader
391 * to finish.
392 *
393 * Note that THREAD may be 0 in scheduler() and not just during boot.
394 */
395 if ((THREAD && THREAD->rcu.was_preempted) || CPU->rcu.is_delaying_gp) {
396 /* Rechecks with disabled interrupts. */
397 signal_read_unlock();
398 }
399 }
400}
401
402/** Records a QS if not in a reader critical section. */
403static void check_qs(void)
404{
405 ASSERT(PREEMPTION_DISABLED || interrupts_disabled());
406
407 if (0 == *CPU->rcu.pnesting_cnt)
408 record_qs();
409}
410
411/** Unconditionally records a quiescent state for the local cpu. */
412static void record_qs(void)
413{
414 ASSERT(PREEMPTION_DISABLED || interrupts_disabled());
415
416 /*
417 * A new GP was started since the last time we passed a QS.
418 * Notify the detector we have reached a new QS.
419 */
420 if (CPU->rcu.last_seen_gp != rcu.cur_gp) {
421 rcu_gp_t cur_gp = ACCESS_ONCE(rcu.cur_gp);
422 /*
423 * Contain memory accesses within a reader critical section.
424 * If we are in rcu_lock() it also makes changes prior to the
425 * start of the GP visible in the reader section.
426 */
427 memory_barrier();
428 /*
429 * Acknowledge we passed a QS since the beginning of rcu.cur_gp.
430 * Cache coherency will lazily transport the value to the
431 * detector while it sleeps in gp_sleep().
432 *
433 * Note that there is a theoretical possibility that we
434 * overwrite a more recent/greater last_seen_gp here with
435 * an older/smaller value. If this cpu is interrupted here
436 * while in rcu_lock() reader sections in the interrupt handler
437 * will update last_seen_gp to the same value as is currently
438 * in local cur_gp. However, if the cpu continues processing
439 * interrupts and the detector starts a new GP immediately,
440 * local interrupt handlers may update last_seen_gp again (ie
441 * properly ack the new GP) with a value greater than local cur_gp.
442 * Resetting last_seen_gp to a previous value here is however
443 * benign and we only have to remember that this reader may end up
444 * in cur_preempted even after the GP ends. That is why we
445 * append next_preempted to cur_preempted rather than overwriting
446 * it as if cur_preempted were empty.
447 */
448 CPU->rcu.last_seen_gp = cur_gp;
449 }
450}
451
452/** If necessary, signals the detector that we exited a reader section. */
453static void signal_read_unlock(void)
454{
455 ASSERT(PREEMPTION_DISABLED || interrupts_disabled());
456
457 /*
458 * We have to disable interrupts in order to make checking
459 * and resetting was_preempted and is_delaying_gp atomic
460 * with respect to local interrupt handlers. Otherwise
461 * an interrupt could beat us to calling semaphore_up()
462 * before we reset the appropriate flag.
463 */
464 ipl_t ipl = interrupts_disable();
465
466 /*
467 * If the detector is eagerly waiting for this cpu's reader to unlock,
468 * notify it that the reader did so.
469 */
470 if (CPU->rcu.is_delaying_gp) {
471 CPU->rcu.is_delaying_gp = false;
472 semaphore_up(&rcu.remaining_readers);
473 }
474
475 /*
476 * This reader was preempted while in a reader section.
477 * We might be holding up the current GP. Notify the
478 * detector if so.
479 */
480 if (THREAD && THREAD->rcu.was_preempted) {
481 ASSERT(link_used(&THREAD->rcu.preempt_link));
482 THREAD->rcu.was_preempted = false;
483
484 irq_spinlock_lock(&rcu.preempt_lock, false);
485
486 bool prev_empty = list_empty(&rcu.cur_preempted);
487 list_remove(&THREAD->rcu.preempt_link);
488 bool now_empty = list_empty(&rcu.cur_preempted);
489
490 /* This was the last reader in cur_preempted. */
491 bool last_removed = now_empty && !prev_empty;
492
493 /*
494 * Preempted readers are blocking the detector and
495 * this was the last reader blocking the current GP.
496 */
497 if (last_removed && rcu.preempt_blocking_det) {
498 rcu.preempt_blocking_det = false;
499 semaphore_up(&rcu.remaining_readers);
500 }
501
502 irq_spinlock_unlock(&rcu.preempt_lock, false);
503 }
504 interrupts_restore(ipl);
505}
506
507typedef struct synch_item {
508 waitq_t wq;
509 rcu_item_t rcu_item;
510} synch_item_t;
511
512/** Blocks until all preexisting readers exit their critical sections. */
513void rcu_synchronize(void)
514{
515 /* Calling from a reader section will deadlock. */
516 ASSERT(THREAD == 0 || 0 == THREAD->rcu.nesting_cnt);
517
518 synch_item_t completion;
519
520 waitq_initialize(&completion.wq);
521 rcu_call(&completion.rcu_item, synch_complete);
522 waitq_sleep(&completion.wq);
523 waitq_complete_wakeup(&completion.wq);
524}
525
526/** rcu_synchronize's callback. */
527static void synch_complete(rcu_item_t *rcu_item)
528{
529 synch_item_t *completion = member_to_inst(rcu_item, synch_item_t, rcu_item);
530 ASSERT(completion);
531 waitq_wakeup(&completion->wq, WAKEUP_FIRST);
532}
533
534/** Adds a callback to invoke after all preexisting readers finish.
535 *
536 * May be called from within interrupt handlers or RCU reader sections.
537 *
538 * @param rcu_item Used by RCU to track the call. Must remain
539 * until the user callback function is entered.
540 * @param func User callback function that will be invoked once a full
541 * grace period elapsed, ie at a time when all preexisting
542 * readers have finished. The callback should be short and must
543 * not block. If you must sleep, enqueue your work in the system
544 * work queue from the callback (ie workq_global_enqueue()).
545 */
546void rcu_call(rcu_item_t *rcu_item, rcu_func_t func)
547{
548 _rcu_call(false, rcu_item, func);
549}
550
551/** rcu_call() implementation. See rcu_call() for comments. */
552void _rcu_call(bool expedite, rcu_item_t *rcu_item, rcu_func_t func)
553{
554 ASSERT(rcu_item);
555
556 rcu_item->func = func;
557 rcu_item->next = 0;
558
559 preemption_disable();
560
561 ipl_t ipl = interrupts_disable();
562
563 *CPU->rcu.parriving_cbs_tail = rcu_item;
564 CPU->rcu.parriving_cbs_tail = &rcu_item->next;
565
566 size_t cnt = ++CPU->rcu.arriving_cbs_cnt;
567 interrupts_restore(ipl);
568
569 if (expedite) {
570 CPU->rcu.expedite_arriving = true;
571 }
572
573 /* Added first callback - notify the reclaimer. */
574 if (cnt == 1 && !semaphore_count_get(&CPU->rcu.arrived_flag)) {
575 semaphore_up(&CPU->rcu.arrived_flag);
576 }
577
578 preemption_enable();
579}
580
581static bool cur_cbs_empty(void)
582{
583 ASSERT(THREAD && THREAD->wired);
584 return 0 == CPU->rcu.cur_cbs;
585}
586
587static bool next_cbs_empty(void)
588{
589 ASSERT(THREAD && THREAD->wired);
590 return 0 == CPU->rcu.next_cbs;
591}
592
593/** Disable interrupts to get an up-to-date result. */
594static bool arriving_cbs_empty(void)
595{
596 ASSERT(THREAD && THREAD->wired);
597 /*
598 * Accessing with interrupts enabled may at worst lead to
599 * a false negative if we race with a local interrupt handler.
600 */
601 return 0 == CPU->rcu.arriving_cbs;
602}
603
604static bool all_cbs_empty(void)
605{
606 return cur_cbs_empty() && next_cbs_empty() && arriving_cbs_empty();
607}
608
609/** Reclaimer thread dispatches locally queued callbacks once a GP ends. */
610static void reclaimer(void *arg)
611{
612 ASSERT(THREAD && THREAD->wired);
613
614 rcu_gp_t last_compl_gp = 0;
615 bool ok = true;
616
617 while (ok && wait_for_pending_cbs()) {
618 exec_completed_cbs(last_compl_gp);
619
620 bool expedite = advance_cbs();
621
622 ok = wait_for_cur_cbs_gp_end(expedite, &last_compl_gp);
623 }
624}
625
626/** Waits until there are callbacks waiting to be dispatched. */
627static bool wait_for_pending_cbs(void)
628{
629 if (!all_cbs_empty())
630 return true;
631
632 bool ok = true;
633
634 while (arriving_cbs_empty() && ok) {
635 ok = semaphore_down_interruptable(&CPU->rcu.arrived_flag);
636 }
637
638 return ok;
639}
640
641static void upd_stat_missed_gp(rcu_gp_t compl)
642{
643 if (CPU->rcu.cur_cbs_gp < compl) {
644 CPU->rcu.stat_missed_gps += (size_t)(compl - CPU->rcu.cur_cbs_gp);
645 }
646}
647
648/** Executes all callbacks for the given completed grace period. */
649static void exec_completed_cbs(rcu_gp_t last_completed_gp)
650{
651 upd_stat_missed_gp(last_completed_gp);
652
653 if (CPU->rcu.cur_cbs_gp <= last_completed_gp) {
654 exec_cbs(&CPU->rcu.cur_cbs);
655 }
656
657 if (CPU->rcu.next_cbs_gp <= last_completed_gp) {
658 exec_cbs(&CPU->rcu.next_cbs);
659 }
660}
661
662/** Executes callbacks in the single-linked list. The list is left empty. */
663static void exec_cbs(rcu_item_t **phead)
664{
665 rcu_item_t *rcu_item = *phead;
666
667 while (rcu_item) {
668 /* func() may free rcu_item. Get a local copy. */
669 rcu_item_t *next = rcu_item->next;
670 rcu_func_t func = rcu_item->func;
671
672 func(rcu_item);
673
674 rcu_item = next;
675 }
676
677 *phead = 0;
678}
679
680static void upd_stat_cb_cnts(size_t arriving_cnt)
681{
682 CPU->rcu.stat_max_cbs = max(arriving_cnt, CPU->rcu.stat_max_cbs);
683 if (0 < arriving_cnt) {
684 CPU->rcu.stat_avg_cbs =
685 (99 * CPU->rcu.stat_avg_cbs + 1 * arriving_cnt) / 100;
686 }
687}
688
689
690/** Prepares another batch of callbacks to dispatch at the nest grace period.
691 *
692 * @return True if the next batch of callbacks must be expedited quickly.
693 */
694static bool advance_cbs(void)
695{
696 /* Move next_cbs to cur_cbs. */
697 CPU->rcu.cur_cbs = CPU->rcu.next_cbs;
698 CPU->rcu.cur_cbs_gp = CPU->rcu.next_cbs_gp;
699
700 /* Move arriving_cbs to next_cbs. Empties arriving_cbs. */
701 ipl_t ipl = interrupts_disable();
702
703 /*
704 * Too many callbacks queued. Better speed up the detection
705 * or risk exhausting all system memory.
706 */
707 bool expedite = (EXPEDITE_THRESHOLD < CPU->rcu.arriving_cbs_cnt)
708 || CPU->rcu.expedite_arriving;
709
710 /* Update statistics. */
711 upd_stat_cb_cnts(CPU->rcu.arriving_cbs_cnt);
712
713 CPU->rcu.expedite_arriving = false;
714 CPU->rcu.next_cbs = CPU->rcu.arriving_cbs;
715 CPU->rcu.arriving_cbs = 0;
716 CPU->rcu.parriving_cbs_tail = &CPU->rcu.arriving_cbs;
717 CPU->rcu.arriving_cbs_cnt = 0;
718
719 interrupts_restore(ipl);
720
721 /*
722 * Make changes prior to queuing next_cbs visible to readers.
723 * See comment in wait_for_readers().
724 */
725 memory_barrier(); /* MB A, B */
726
727 /* At the end of next_cbs_gp, exec next_cbs. Determine what GP that is. */
728
729 if (!next_cbs_empty()) {
730 spinlock_lock(&rcu.gp_lock);
731
732 /* Exec next_cbs at the end of the next GP. */
733 CPU->rcu.next_cbs_gp = rcu.cur_gp + 1;
734
735 /*
736 * There are no callbacks to invoke before next_cbs. Instruct
737 * wait_for_cur_cbs_gp() to notify us of the nearest GP end.
738 * That could be sooner than next_cbs_gp (if the current GP
739 * had not yet completed), so we'll create a shorter batch
740 * of callbacks next time around.
741 */
742 if (cur_cbs_empty()) {
743 CPU->rcu.cur_cbs_gp = rcu.completed_gp + 1;
744 }
745
746 spinlock_unlock(&rcu.gp_lock);
747 } else {
748 CPU->rcu.next_cbs_gp = CPU->rcu.cur_cbs_gp;
749 }
750
751 ASSERT(CPU->rcu.cur_cbs_gp <= CPU->rcu.next_cbs_gp);
752
753 return expedite;
754}
755
756/** Waits for the grace period associated with callbacks cub_cbs to elapse.
757 *
758 * @param expedite Instructs the detector to aggressively speed up grace
759 * period detection without any delay.
760 * @param completed_gp Returns the most recent completed grace period
761 * number.
762 * @return false if the thread was interrupted and should stop.
763 */
764static bool wait_for_cur_cbs_gp_end(bool expedite, rcu_gp_t *completed_gp)
765{
766 /*
767 * Use a possibly outdated version of completed_gp to bypass checking
768 * with the lock.
769 *
770 * Note that loading and storing rcu.completed_gp is not atomic
771 * (it is 64bit wide). Reading a clobbered value that is less than
772 * rcu.completed_gp is harmless - we'll recheck with a lock. The
773 * only way to read a clobbered value that is greater than the actual
774 * value is if the detector increases the higher-order word first and
775 * then decreases the lower-order word (or we see stores in that order),
776 * eg when incrementing from 2^32 - 1 to 2^32. The loaded value
777 * suddenly jumps by 2^32. It would take hours for such an increase
778 * to occur so it is safe to discard the value. We allow increases
779 * of up to half the maximum to generously accommodate for loading an
780 * outdated lower word.
781 */
782 rcu_gp_t compl_gp = ACCESS_ONCE(rcu.completed_gp);
783 if (CPU->rcu.cur_cbs_gp <= compl_gp
784 && compl_gp <= CPU->rcu.cur_cbs_gp + UINT32_MAX_HALF) {
785 *completed_gp = compl_gp;
786 return true;
787 }
788
789 spinlock_lock(&rcu.gp_lock);
790
791 if (CPU->rcu.cur_cbs_gp <= rcu.completed_gp) {
792 *completed_gp = rcu.completed_gp;
793 spinlock_unlock(&rcu.gp_lock);
794 return true;
795 }
796
797 ASSERT(CPU->rcu.cur_cbs_gp <= CPU->rcu.next_cbs_gp);
798 ASSERT(rcu.cur_gp <= CPU->rcu.cur_cbs_gp);
799
800 /*
801 * Notify the detector of how many GP ends we intend to wait for, so
802 * it can avoid going to sleep unnecessarily. Optimistically assume
803 * new callbacks will arrive while we're waiting; hence +1.
804 */
805 size_t remaining_gp_ends = (size_t) (CPU->rcu.next_cbs_gp - rcu.cur_gp);
806 req_detection(remaining_gp_ends + (arriving_cbs_empty() ? 0 : 1));
807
808 /*
809 * Ask the detector to speed up GP detection if there are too many
810 * pending callbacks and other reclaimers have not already done so.
811 */
812 if (expedite) {
813 if(0 == rcu.req_expedited_cnt)
814 condvar_signal(&rcu.expedite_now);
815
816 /*
817 * Expedite only cub_cbs. If there really is a surge of callbacks
818 * the arriving batch will expedite the GP for the huge number
819 * of callbacks currently in next_cbs
820 */
821 rcu.req_expedited_cnt = 1;
822 }
823
824 /* Wait for cur_cbs_gp to end. */
825 bool interrupted = cv_wait_for_gp(CPU->rcu.cur_cbs_gp);
826
827 *completed_gp = rcu.completed_gp;
828 spinlock_unlock(&rcu.gp_lock);
829
830 return !interrupted;
831}
832
833/** Requests the detector to detect at least req_cnt consecutive grace periods.*/
834static void req_detection(size_t req_cnt)
835{
836 if (rcu.req_gp_end_cnt < req_cnt) {
837 bool detector_idle = (0 == rcu.req_gp_end_cnt);
838 rcu.req_gp_end_cnt = req_cnt;
839
840 //printf("reqs:%d,idle:%d ", req_cnt, detector_idle);
841
842 if (detector_idle) {
843 ASSERT(rcu.cur_gp == rcu.completed_gp);
844 condvar_signal(&rcu.req_gp_changed);
845 }
846 } else {
847 //printf("myreqs:%d,detr:%d ", req_cnt, rcu.req_gp_end_cnt);
848 }
849}
850
851/** Waits for an announcement of the end of the grace period wait_on_gp. */
852static bool cv_wait_for_gp(rcu_gp_t wait_on_gp)
853{
854 ASSERT(spinlock_locked(&rcu.gp_lock));
855
856 bool interrupted = false;
857
858 /* Wait until wait_on_gp ends. */
859 while (rcu.completed_gp < wait_on_gp && !interrupted) {
860 int ret = _condvar_wait_timeout_spinlock(&rcu.gp_ended, &rcu.gp_lock,
861 SYNCH_NO_TIMEOUT, SYNCH_FLAGS_INTERRUPTIBLE);
862 interrupted = (ret == ESYNCH_INTERRUPTED);
863 }
864
865 ASSERT(wait_on_gp <= rcu.completed_gp);
866
867 return interrupted;
868}
869
870/** The detector thread detects and notifies reclaimers of grace period ends. */
871static void detector(void *arg)
872{
873 spinlock_lock(&rcu.gp_lock);
874
875 while (wait_for_detect_req()) {
876 /*
877 * Announce new GP started. Readers start lazily acknowledging that
878 * they passed a QS.
879 */
880 start_new_gp();
881
882 spinlock_unlock(&rcu.gp_lock);
883
884 if (!wait_for_readers())
885 goto unlocked_out;
886
887 spinlock_lock(&rcu.gp_lock);
888
889 /* Notify reclaimers that they may now invoke queued callbacks. */
890 end_cur_gp();
891 }
892
893 spinlock_unlock(&rcu.gp_lock);
894
895unlocked_out:
896 return;
897}
898
899/** Waits for a request from a reclaimer thread to detect a grace period. */
900static bool wait_for_detect_req(void)
901{
902 ASSERT(spinlock_locked(&rcu.gp_lock));
903
904 bool interrupted = false;
905
906 while (0 == rcu.req_gp_end_cnt && !interrupted) {
907 int ret = _condvar_wait_timeout_spinlock(&rcu.req_gp_changed,
908 &rcu.gp_lock, SYNCH_NO_TIMEOUT, SYNCH_FLAGS_INTERRUPTIBLE);
909
910 interrupted = (ret == ESYNCH_INTERRUPTED);
911 }
912
913 return !interrupted;
914}
915
916/** Announces the start of a new grace period for preexisting readers to ack. */
917static void start_new_gp(void)
918{
919 ASSERT(spinlock_locked(&rcu.gp_lock));
920
921 irq_spinlock_lock(&rcu.preempt_lock, true);
922
923 /* Start a new GP. Announce to readers that a quiescent state is needed. */
924 ++rcu.cur_gp;
925
926 /*
927 * Readers preempted before the start of this GP (next_preempted)
928 * are preexisting readers now that a GP started and will hold up
929 * the current GP until they exit their reader sections.
930 *
931 * Preempted readers from the previous GP have finished so
932 * cur_preempted is empty, but see comment in record_qs().
933 */
934 list_concat(&rcu.cur_preempted, &rcu.next_preempted);
935
936 irq_spinlock_unlock(&rcu.preempt_lock, true);
937}
938
939static void end_cur_gp(void)
940{
941 ASSERT(spinlock_locked(&rcu.gp_lock));
942
943 rcu.completed_gp = rcu.cur_gp;
944 --rcu.req_gp_end_cnt;
945
946 condvar_broadcast(&rcu.gp_ended);
947}
948
949/** Waits for readers that started before the current GP started to finish. */
950static bool wait_for_readers(void)
951{
952 DEFINE_CPU_MASK(reading_cpus);
953
954 /* All running cpus have potential readers. */
955 cpu_mask_active(reading_cpus);
956
957 /*
958 * Ensure the announcement of the start of a new GP (ie up-to-date
959 * cur_gp) propagates to cpus that are just coming out of idle
960 * mode before we sample their idle state flag.
961 *
962 * Cpus guarantee that after they set CPU->idle = true they will not
963 * execute any RCU reader sections without first setting idle to
964 * false and issuing a memory barrier. Therefore, if rm_quiescent_cpus()
965 * later on sees an idle cpu, but the cpu is just exiting its idle mode,
966 * the cpu must not have yet executed its memory barrier (otherwise
967 * it would pair up with this mem barrier and we would see idle == false).
968 * That memory barrier will pair up with the one below and ensure
969 * that a reader on the now-non-idle cpu will see the most current
970 * cur_gp. As a result, such a reader will never attempt to semaphore_up(
971 * pending_readers) during this GP, which allows the detector to
972 * ignore that cpu (the detector thinks it is idle). Moreover, any
973 * changes made by RCU updaters will have propagated to readers
974 * on the previously idle cpu -- again thanks to issuing a memory
975 * barrier after returning from idle mode.
976 *
977 * idle -> non-idle cpu | detector | reclaimer
978 * ------------------------------------------------------
979 * rcu reader 1 | | rcu_call()
980 * MB X | |
981 * idle = true | | rcu_call()
982 * (no rcu readers allowed ) | | MB A in advance_cbs()
983 * MB Y | (...) | (...)
984 * (no rcu readers allowed) | | MB B in advance_cbs()
985 * idle = false | ++cur_gp |
986 * (no rcu readers allowed) | MB C |
987 * MB Z | signal gp_end |
988 * rcu reader 2 | | exec_cur_cbs()
989 *
990 *
991 * MB Y orders visibility of changes to idle for detector's sake.
992 *
993 * MB Z pairs up with MB C. The cpu making a transition from idle
994 * will see the most current value of cur_gp and will not attempt
995 * to notify the detector even if preempted during this GP.
996 *
997 * MB Z pairs up with MB A from the previous batch. Updaters' changes
998 * are visible to reader 2 even when the detector thinks the cpu is idle
999 * but it is not anymore.
1000 *
1001 * MB X pairs up with MB B. Late mem accesses of reader 1 are contained
1002 * and visible before idling and before any callbacks are executed
1003 * by reclaimers.
1004 *
1005 * In summary, the detector does not know of or wait for reader 2, but
1006 * it does not have to since it is a new reader that will not access
1007 * data from previous GPs and will see any changes.
1008 */
1009 memory_barrier(); /* MB C */
1010
1011 /*
1012 * Give readers time to pass through a QS. Also, batch arriving
1013 * callbacks in order to amortize detection overhead.
1014 */
1015 if (!gp_sleep())
1016 return false;
1017
1018 /* Non-intrusively determine which cpus have yet to pass a QS. */
1019 rm_quiescent_cpus(reading_cpus);
1020
1021 /* Actively interrupt cpus delaying the current GP and demand a QS. */
1022 interrupt_delaying_cpus(reading_cpus);
1023
1024 /* Wait for the interrupted cpus to notify us that they reached a QS. */
1025 if (!wait_for_delaying_cpus())
1026 return false;
1027 /*
1028 * All cpus recorded a QS or are still idle. Any new readers will be added
1029 * to next_preempt if preempted, ie the number of readers in cur_preempted
1030 * monotonically descreases.
1031 */
1032
1033 /* Wait for the last reader in cur_preempted to notify us it is done. */
1034 if (!wait_for_preempt_reader())
1035 return false;
1036
1037 return true;
1038}
1039
1040/** Remove those cpus from the mask that have already passed a quiescent
1041 * state since the start of the current grace period.
1042 */
1043static void rm_quiescent_cpus(cpu_mask_t *cpu_mask)
1044{
1045 cpu_mask_for_each(*cpu_mask, cpu_id) {
1046 /*
1047 * The cpu already checked for and passed through a quiescent
1048 * state since the beginning of this GP.
1049 *
1050 * rcu.cur_gp is modified by local detector thread only.
1051 * Therefore, it is up-to-date even without a lock.
1052 */
1053 bool cpu_acked_gp = (cpus[cpu_id].rcu.last_seen_gp == rcu.cur_gp);
1054
1055 /*
1056 * Either the cpu is idle or it is exiting away from idle mode
1057 * and already sees the most current rcu.cur_gp. See comment
1058 * in wait_for_readers().
1059 */
1060 bool cpu_idle = cpus[cpu_id].idle;
1061
1062 if (cpu_acked_gp || cpu_idle) {
1063 cpu_mask_reset(cpu_mask, cpu_id);
1064 }
1065 }
1066}
1067
1068/** Sleeps a while if the current grace period is not to be expedited. */
1069static bool gp_sleep(void)
1070{
1071 spinlock_lock(&rcu.gp_lock);
1072
1073 int ret = 0;
1074 while (0 == rcu.req_expedited_cnt && 0 == ret) {
1075 /* minor bug: sleeps for the same duration if woken up spuriously. */
1076 ret = _condvar_wait_timeout_spinlock(&rcu.expedite_now, &rcu.gp_lock,
1077 DETECT_SLEEP_MS * 1000, SYNCH_FLAGS_INTERRUPTIBLE);
1078 }
1079
1080 if (0 < rcu.req_expedited_cnt) {
1081 --rcu.req_expedited_cnt;
1082 /* Update statistic. */
1083 ++rcu.stat_expedited_cnt;
1084 }
1085
1086 spinlock_unlock(&rcu.gp_lock);
1087
1088 return (ret != ESYNCH_INTERRUPTED);
1089}
1090
1091/** Actively interrupts and checks the offending cpus for quiescent states. */
1092static void interrupt_delaying_cpus(cpu_mask_t *cpu_mask)
1093{
1094 const size_t max_conconcurrent_calls = 16;
1095 smp_call_t call[max_conconcurrent_calls];
1096 size_t outstanding_calls = 0;
1097
1098 atomic_set(&rcu.delaying_cpu_cnt, 0);
1099
1100 cpu_mask_for_each(*cpu_mask, cpu_id) {
1101 smp_call_async(cpu_id, sample_local_cpu, 0, &call[outstanding_calls]);
1102 ++outstanding_calls;
1103
1104 /* Update statistic. */
1105 if (CPU->id != cpu_id)
1106 ++rcu.stat_smp_call_cnt;
1107
1108 if (outstanding_calls == max_conconcurrent_calls) {
1109 for (size_t k = 0; k < outstanding_calls; ++k) {
1110 smp_call_wait(&call[k]);
1111 }
1112
1113 outstanding_calls = 0;
1114 }
1115 }
1116
1117 for (size_t k = 0; k < outstanding_calls; ++k) {
1118 smp_call_wait(&call[k]);
1119 }
1120}
1121
1122/** Invoked on a cpu delaying grace period detection.
1123 *
1124 * Induces a quiescent state for the cpu or it instructs remaining
1125 * readers to notify the detector once they finish.
1126 */
1127static void sample_local_cpu(void *arg)
1128{
1129 ASSERT(interrupts_disabled());
1130 ASSERT(!CPU->rcu.is_delaying_gp);
1131
1132 /* Cpu did not pass a quiescent state yet. */
1133 if (CPU->rcu.last_seen_gp != rcu.cur_gp) {
1134 /* Interrupted a reader in a reader critical section. */
1135 if (0 < (*CPU->rcu.pnesting_cnt)) {
1136 ASSERT(!CPU->idle);
1137 /* Note to notify the detector from rcu_read_unlock(). */
1138 CPU->rcu.is_delaying_gp = true;
1139 atomic_inc(&rcu.delaying_cpu_cnt);
1140 } else {
1141 /*
1142 * The cpu did not enter any rcu reader sections since
1143 * the start of the current GP. Record a quiescent state.
1144 *
1145 * Or, we interrupted rcu_read_unlock_impl() right before
1146 * it recorded a QS. Record a QS for it. The memory barrier
1147 * contains the reader section's mem accesses before
1148 * updating last_seen_gp.
1149 *
1150 * Or, we interrupted rcu_read_lock() right after it recorded
1151 * a QS for the previous GP but before it got a chance to
1152 * increment its nesting count. The memory barrier again
1153 * stops the CS code from spilling out of the CS.
1154 */
1155 memory_barrier();
1156 CPU->rcu.last_seen_gp = rcu.cur_gp;
1157 }
1158 } else {
1159 /*
1160 * This cpu already acknowledged that it had passed through
1161 * a quiescent state since the start of cur_gp.
1162 */
1163 }
1164
1165 /*
1166 * smp_call() makes sure any changes propagate back to the caller.
1167 * In particular, it makes the most current last_seen_gp visible
1168 * to the detector.
1169 */
1170}
1171
1172/** Waits for cpus delaying the current grace period if there are any. */
1173static bool wait_for_delaying_cpus(void)
1174{
1175 int delaying_cpu_cnt = atomic_get(&rcu.delaying_cpu_cnt);
1176
1177 for (int i = 0; i < delaying_cpu_cnt; ++i){
1178 if (!semaphore_down_interruptable(&rcu.remaining_readers))
1179 return false;
1180 }
1181
1182 /* Update statistic. */
1183 rcu.stat_delayed_cnt += delaying_cpu_cnt;
1184
1185 return true;
1186}
1187
1188/** Waits for any preempted readers blocking this grace period to finish.*/
1189static bool wait_for_preempt_reader(void)
1190{
1191 irq_spinlock_lock(&rcu.preempt_lock, true);
1192
1193 bool reader_exists = !list_empty(&rcu.cur_preempted);
1194 rcu.preempt_blocking_det = reader_exists;
1195
1196 irq_spinlock_unlock(&rcu.preempt_lock, true);
1197
1198 if (reader_exists) {
1199 /* Update statistic. */
1200 ++rcu.stat_preempt_blocking_cnt;
1201
1202 return semaphore_down_interruptable(&rcu.remaining_readers);
1203 }
1204
1205 return true;
1206}
1207
1208/** Called by the scheduler() when switching away from the current thread. */
1209void rcu_after_thread_ran(void)
1210{
1211 ASSERT(interrupts_disabled());
1212 ASSERT(CPU->rcu.pnesting_cnt == &THREAD->rcu.nesting_cnt);
1213
1214 /* Preempted a reader critical section for the first time. */
1215 if (0 < THREAD->rcu.nesting_cnt && !THREAD->rcu.was_preempted) {
1216 THREAD->rcu.was_preempted = true;
1217
1218 irq_spinlock_lock(&rcu.preempt_lock, false);
1219
1220 if (CPU->rcu.last_seen_gp != rcu.cur_gp) {
1221 /* The reader started before the GP started - we must wait for it.*/
1222 list_append(&THREAD->rcu.preempt_link, &rcu.cur_preempted);
1223 } else {
1224 /*
1225 * The reader started after the GP started and this cpu
1226 * already noted a quiescent state. We might block the next GP.
1227 */
1228 list_append(&THREAD->rcu.preempt_link, &rcu.next_preempted);
1229 }
1230
1231 irq_spinlock_unlock(&rcu.preempt_lock, false);
1232 }
1233
1234 /*
1235 * The preempted reader has been noted globally. There are therefore
1236 * no readers running on this cpu so this is a quiescent state.
1237 */
1238 record_qs();
1239
1240 /*
1241 * This cpu is holding up the current GP. Let the detector know
1242 * it has just passed a quiescent state.
1243 *
1244 * The detector waits separately for preempted readers, so we have
1245 * to notify the detector even if we have just preempted a reader.
1246 */
1247 if (CPU->rcu.is_delaying_gp) {
1248 CPU->rcu.is_delaying_gp = false;
1249 semaphore_up(&rcu.remaining_readers);
1250 }
1251
1252 /*
1253 * After this point THREAD is 0 and stays 0 until the scheduler()
1254 * switches to a new thread. Use a temporary nesting counter for readers
1255 * in handlers of interrupts that are raised while idle in the scheduler.
1256 */
1257 CPU->rcu.pnesting_cnt = &CPU->rcu.tmp_nesting_cnt;
1258
1259 /*
1260 * Forcefully associate the detector with the highest priority
1261 * even if preempted due to its time slice running out.
1262 *
1263 * todo: Replace with strict scheduler priority classes.
1264 */
1265 if (THREAD == rcu.detector_thr) {
1266 THREAD->priority = -1;
1267 }
1268}
1269
1270/** Called by the scheduler() when switching to a newly scheduled thread. */
1271void rcu_before_thread_runs(void)
1272{
1273 ASSERT(PREEMPTION_DISABLED || interrupts_disabled());
1274 ASSERT(&CPU->rcu.tmp_nesting_cnt == CPU->rcu.pnesting_cnt);
1275
1276 CPU->rcu.pnesting_cnt = &THREAD->rcu.nesting_cnt;
1277}
1278
1279
1280/** Prints RCU run-time statistics. */
1281void rcu_print_stat(void)
1282{
1283 /* Don't take locks. Worst case is we get out-dated values. */
1284 printf("Configuration: expedite_threshold=%d, detect_sleep=%dms\n",
1285 EXPEDITE_THRESHOLD, DETECT_SLEEP_MS);
1286 printf("Completed GPs: %" PRIu64 "\n", rcu.completed_gp);
1287 printf("Expedited GPs: %zu\n", rcu.stat_expedited_cnt);
1288 printf("Delayed GPs: %zu (cpus w/ still running readers after gp sleep)\n",
1289 rcu.stat_delayed_cnt);
1290 printf("Preempt blocked GPs: %zu (waited for preempted readers; "
1291 "running or not)\n", rcu.stat_preempt_blocking_cnt);
1292 printf("Smp calls: %zu\n", rcu.stat_smp_call_cnt);
1293
1294 printf("Max callbacks per GP:\n");
1295 for (unsigned i = 0; i < config.cpu_count; ++i) {
1296 printf(" %zu", cpus[i].rcu.stat_max_cbs);
1297 }
1298
1299 printf("\nAvg callbacks per GP (nonempty batches only):\n");
1300 for (unsigned i = 0; i < config.cpu_count; ++i) {
1301 printf(" %zu", cpus[i].rcu.stat_avg_cbs);
1302 }
1303
1304 printf("\nMissed GP notifications:\n");
1305 for (unsigned i = 0; i < config.cpu_count; ++i) {
1306 printf(" %zu", cpus[i].rcu.stat_missed_gps);
1307 }
1308 printf("\n");
1309}
1310
1311/** @}
1312 */
Note: See TracBrowser for help on using the repository browser.