1 | /*
|
---|
2 | * Copyright (C) 2001-2004 Jakub Jermar
|
---|
3 | * All rights reserved.
|
---|
4 | *
|
---|
5 | * Redistribution and use in source and binary forms, with or without
|
---|
6 | * modification, are permitted provided that the following conditions
|
---|
7 | * are met:
|
---|
8 | *
|
---|
9 | * - Redistributions of source code must retain the above copyright
|
---|
10 | * notice, this list of conditions and the following disclaimer.
|
---|
11 | * - Redistributions in binary form must reproduce the above copyright
|
---|
12 | * notice, this list of conditions and the following disclaimer in the
|
---|
13 | * documentation and/or other materials provided with the distribution.
|
---|
14 | * - The name of the author may not be used to endorse or promote products
|
---|
15 | * derived from this software without specific prior written permission.
|
---|
16 | *
|
---|
17 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
---|
18 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
---|
19 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
---|
20 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
---|
21 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
---|
22 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
---|
23 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
---|
24 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
---|
25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
---|
26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
---|
27 | */
|
---|
28 |
|
---|
29 | /** @addtogroup genericproc
|
---|
30 | * @{
|
---|
31 | */
|
---|
32 |
|
---|
33 | /**
|
---|
34 | * @file
|
---|
35 | * @brief Scheduler and load balancing.
|
---|
36 | *
|
---|
37 | * This file contains the scheduler and kcpulb kernel thread which
|
---|
38 | * performs load-balancing of per-CPU run queues.
|
---|
39 | */
|
---|
40 |
|
---|
41 | #include <proc/scheduler.h>
|
---|
42 | #include <proc/thread.h>
|
---|
43 | #include <proc/task.h>
|
---|
44 | #include <mm/frame.h>
|
---|
45 | #include <mm/page.h>
|
---|
46 | #include <mm/as.h>
|
---|
47 | #include <time/delay.h>
|
---|
48 | #include <arch/asm.h>
|
---|
49 | #include <arch/faddr.h>
|
---|
50 | #include <arch/cycle.h>
|
---|
51 | #include <atomic.h>
|
---|
52 | #include <synch/spinlock.h>
|
---|
53 | #include <config.h>
|
---|
54 | #include <context.h>
|
---|
55 | #include <func.h>
|
---|
56 | #include <arch.h>
|
---|
57 | #include <adt/list.h>
|
---|
58 | #include <panic.h>
|
---|
59 | #include <typedefs.h>
|
---|
60 | #include <cpu.h>
|
---|
61 | #include <print.h>
|
---|
62 | #include <debug.h>
|
---|
63 |
|
---|
64 | static void before_task_runs(void);
|
---|
65 | static void before_thread_runs(void);
|
---|
66 | static void after_thread_ran(void);
|
---|
67 | static void scheduler_separated_stack(void);
|
---|
68 |
|
---|
69 | atomic_t nrdy; /**< Number of ready threads in the system. */
|
---|
70 |
|
---|
71 | /** Carry out actions before new task runs. */
|
---|
72 | void before_task_runs(void)
|
---|
73 | {
|
---|
74 | before_task_runs_arch();
|
---|
75 | }
|
---|
76 |
|
---|
77 | /** Take actions before new thread runs.
|
---|
78 | *
|
---|
79 | * Perform actions that need to be
|
---|
80 | * taken before the newly selected
|
---|
81 | * tread is passed control.
|
---|
82 | *
|
---|
83 | * THREAD->lock is locked on entry
|
---|
84 | *
|
---|
85 | */
|
---|
86 | void before_thread_runs(void)
|
---|
87 | {
|
---|
88 | before_thread_runs_arch();
|
---|
89 | #ifdef CONFIG_FPU_LAZY
|
---|
90 | if(THREAD == CPU->fpu_owner)
|
---|
91 | fpu_enable();
|
---|
92 | else
|
---|
93 | fpu_disable();
|
---|
94 | #else
|
---|
95 | fpu_enable();
|
---|
96 | if (THREAD->fpu_context_exists)
|
---|
97 | fpu_context_restore(THREAD->saved_fpu_context);
|
---|
98 | else {
|
---|
99 | fpu_init();
|
---|
100 | THREAD->fpu_context_exists = 1;
|
---|
101 | }
|
---|
102 | #endif
|
---|
103 | }
|
---|
104 |
|
---|
105 | /** Take actions after THREAD had run.
|
---|
106 | *
|
---|
107 | * Perform actions that need to be
|
---|
108 | * taken after the running thread
|
---|
109 | * had been preempted by the scheduler.
|
---|
110 | *
|
---|
111 | * THREAD->lock is locked on entry
|
---|
112 | *
|
---|
113 | */
|
---|
114 | void after_thread_ran(void)
|
---|
115 | {
|
---|
116 | after_thread_ran_arch();
|
---|
117 | }
|
---|
118 |
|
---|
119 | #ifdef CONFIG_FPU_LAZY
|
---|
120 | void scheduler_fpu_lazy_request(void)
|
---|
121 | {
|
---|
122 | restart:
|
---|
123 | fpu_enable();
|
---|
124 | spinlock_lock(&CPU->lock);
|
---|
125 |
|
---|
126 | /* Save old context */
|
---|
127 | if (CPU->fpu_owner != NULL) {
|
---|
128 | spinlock_lock(&CPU->fpu_owner->lock);
|
---|
129 | fpu_context_save(CPU->fpu_owner->saved_fpu_context);
|
---|
130 | /* don't prevent migration */
|
---|
131 | CPU->fpu_owner->fpu_context_engaged = 0;
|
---|
132 | spinlock_unlock(&CPU->fpu_owner->lock);
|
---|
133 | CPU->fpu_owner = NULL;
|
---|
134 | }
|
---|
135 |
|
---|
136 | spinlock_lock(&THREAD->lock);
|
---|
137 | if (THREAD->fpu_context_exists) {
|
---|
138 | fpu_context_restore(THREAD->saved_fpu_context);
|
---|
139 | } else {
|
---|
140 | /* Allocate FPU context */
|
---|
141 | if (!THREAD->saved_fpu_context) {
|
---|
142 | /* Might sleep */
|
---|
143 | spinlock_unlock(&THREAD->lock);
|
---|
144 | spinlock_unlock(&CPU->lock);
|
---|
145 | THREAD->saved_fpu_context = slab_alloc(fpu_context_slab, 0);
|
---|
146 | /* We may have switched CPUs during slab_alloc */
|
---|
147 | goto restart;
|
---|
148 | }
|
---|
149 | fpu_init();
|
---|
150 | THREAD->fpu_context_exists = 1;
|
---|
151 | }
|
---|
152 | CPU->fpu_owner = THREAD;
|
---|
153 | THREAD->fpu_context_engaged = 1;
|
---|
154 | spinlock_unlock(&THREAD->lock);
|
---|
155 |
|
---|
156 | spinlock_unlock(&CPU->lock);
|
---|
157 | }
|
---|
158 | #endif
|
---|
159 |
|
---|
160 | /** Initialize scheduler
|
---|
161 | *
|
---|
162 | * Initialize kernel scheduler.
|
---|
163 | *
|
---|
164 | */
|
---|
165 | void scheduler_init(void)
|
---|
166 | {
|
---|
167 | }
|
---|
168 |
|
---|
169 | /** Get thread to be scheduled
|
---|
170 | *
|
---|
171 | * Get the optimal thread to be scheduled
|
---|
172 | * according to thread accounting and scheduler
|
---|
173 | * policy.
|
---|
174 | *
|
---|
175 | * @return Thread to be scheduled.
|
---|
176 | *
|
---|
177 | */
|
---|
178 | static thread_t *find_best_thread(void)
|
---|
179 | {
|
---|
180 | thread_t *t;
|
---|
181 | runq_t *r;
|
---|
182 | int i;
|
---|
183 |
|
---|
184 | ASSERT(CPU != NULL);
|
---|
185 |
|
---|
186 | loop:
|
---|
187 | interrupts_enable();
|
---|
188 |
|
---|
189 | if (atomic_get(&CPU->nrdy) == 0) {
|
---|
190 | /*
|
---|
191 | * For there was nothing to run, the CPU goes to sleep
|
---|
192 | * until a hardware interrupt or an IPI comes.
|
---|
193 | * This improves energy saving and hyperthreading.
|
---|
194 | */
|
---|
195 |
|
---|
196 | /*
|
---|
197 | * An interrupt might occur right now and wake up a thread.
|
---|
198 | * In such case, the CPU will continue to go to sleep
|
---|
199 | * even though there is a runnable thread.
|
---|
200 | */
|
---|
201 |
|
---|
202 | cpu_sleep();
|
---|
203 | goto loop;
|
---|
204 | }
|
---|
205 |
|
---|
206 | interrupts_disable();
|
---|
207 |
|
---|
208 | for (i = 0; i<RQ_COUNT; i++) {
|
---|
209 | r = &CPU->rq[i];
|
---|
210 | spinlock_lock(&r->lock);
|
---|
211 | if (r->n == 0) {
|
---|
212 | /*
|
---|
213 | * If this queue is empty, try a lower-priority queue.
|
---|
214 | */
|
---|
215 | spinlock_unlock(&r->lock);
|
---|
216 | continue;
|
---|
217 | }
|
---|
218 |
|
---|
219 | atomic_dec(&CPU->nrdy);
|
---|
220 | atomic_dec(&nrdy);
|
---|
221 | r->n--;
|
---|
222 |
|
---|
223 | /*
|
---|
224 | * Take the first thread from the queue.
|
---|
225 | */
|
---|
226 | t = list_get_instance(r->rq_head.next, thread_t, rq_link);
|
---|
227 | list_remove(&t->rq_link);
|
---|
228 |
|
---|
229 | spinlock_unlock(&r->lock);
|
---|
230 |
|
---|
231 | spinlock_lock(&t->lock);
|
---|
232 | t->cpu = CPU;
|
---|
233 |
|
---|
234 | t->ticks = us2ticks((i+1)*10000);
|
---|
235 | t->priority = i; /* correct rq index */
|
---|
236 |
|
---|
237 | /*
|
---|
238 | * Clear the THREAD_FLAG_STOLEN flag so that t can be migrated
|
---|
239 | * when load balancing needs emerge.
|
---|
240 | */
|
---|
241 | t->flags &= ~THREAD_FLAG_STOLEN;
|
---|
242 | spinlock_unlock(&t->lock);
|
---|
243 |
|
---|
244 | return t;
|
---|
245 | }
|
---|
246 | goto loop;
|
---|
247 |
|
---|
248 | }
|
---|
249 |
|
---|
250 | /** Prevent rq starvation
|
---|
251 | *
|
---|
252 | * Prevent low priority threads from starving in rq's.
|
---|
253 | *
|
---|
254 | * When the function decides to relink rq's, it reconnects
|
---|
255 | * respective pointers so that in result threads with 'pri'
|
---|
256 | * greater or equal start are moved to a higher-priority queue.
|
---|
257 | *
|
---|
258 | * @param start Threshold priority.
|
---|
259 | *
|
---|
260 | */
|
---|
261 | static void relink_rq(int start)
|
---|
262 | {
|
---|
263 | link_t head;
|
---|
264 | runq_t *r;
|
---|
265 | int i, n;
|
---|
266 |
|
---|
267 | list_initialize(&head);
|
---|
268 | spinlock_lock(&CPU->lock);
|
---|
269 | if (CPU->needs_relink > NEEDS_RELINK_MAX) {
|
---|
270 | for (i = start; i<RQ_COUNT-1; i++) {
|
---|
271 | /* remember and empty rq[i + 1] */
|
---|
272 | r = &CPU->rq[i + 1];
|
---|
273 | spinlock_lock(&r->lock);
|
---|
274 | list_concat(&head, &r->rq_head);
|
---|
275 | n = r->n;
|
---|
276 | r->n = 0;
|
---|
277 | spinlock_unlock(&r->lock);
|
---|
278 |
|
---|
279 | /* append rq[i + 1] to rq[i] */
|
---|
280 | r = &CPU->rq[i];
|
---|
281 | spinlock_lock(&r->lock);
|
---|
282 | list_concat(&r->rq_head, &head);
|
---|
283 | r->n += n;
|
---|
284 | spinlock_unlock(&r->lock);
|
---|
285 | }
|
---|
286 | CPU->needs_relink = 0;
|
---|
287 | }
|
---|
288 | spinlock_unlock(&CPU->lock);
|
---|
289 |
|
---|
290 | }
|
---|
291 |
|
---|
292 | /** The scheduler
|
---|
293 | *
|
---|
294 | * The thread scheduling procedure.
|
---|
295 | * Passes control directly to
|
---|
296 | * scheduler_separated_stack().
|
---|
297 | *
|
---|
298 | */
|
---|
299 | void scheduler(void)
|
---|
300 | {
|
---|
301 | volatile ipl_t ipl;
|
---|
302 |
|
---|
303 | ASSERT(CPU != NULL);
|
---|
304 |
|
---|
305 | ipl = interrupts_disable();
|
---|
306 |
|
---|
307 | if (atomic_get(&haltstate))
|
---|
308 | halt();
|
---|
309 |
|
---|
310 | if (THREAD) {
|
---|
311 | spinlock_lock(&THREAD->lock);
|
---|
312 |
|
---|
313 | /* Update thread accounting */
|
---|
314 | THREAD->cycles += get_cycle() - THREAD->last_cycle;
|
---|
315 |
|
---|
316 | #ifndef CONFIG_FPU_LAZY
|
---|
317 | fpu_context_save(THREAD->saved_fpu_context);
|
---|
318 | #endif
|
---|
319 | if (!context_save(&THREAD->saved_context)) {
|
---|
320 | /*
|
---|
321 | * This is the place where threads leave scheduler();
|
---|
322 | */
|
---|
323 |
|
---|
324 | /* Save current CPU cycle */
|
---|
325 | THREAD->last_cycle = get_cycle();
|
---|
326 |
|
---|
327 | spinlock_unlock(&THREAD->lock);
|
---|
328 | interrupts_restore(THREAD->saved_context.ipl);
|
---|
329 |
|
---|
330 | return;
|
---|
331 | }
|
---|
332 |
|
---|
333 | /*
|
---|
334 | * Interrupt priority level of preempted thread is recorded here
|
---|
335 | * to facilitate scheduler() invocations from interrupts_disable()'d
|
---|
336 | * code (e.g. waitq_sleep_timeout()).
|
---|
337 | */
|
---|
338 | THREAD->saved_context.ipl = ipl;
|
---|
339 | }
|
---|
340 |
|
---|
341 | /*
|
---|
342 | * Through the 'THE' structure, we keep track of THREAD, TASK, CPU, VM
|
---|
343 | * and preemption counter. At this point THE could be coming either
|
---|
344 | * from THREAD's or CPU's stack.
|
---|
345 | */
|
---|
346 | the_copy(THE, (the_t *) CPU->stack);
|
---|
347 |
|
---|
348 | /*
|
---|
349 | * We may not keep the old stack.
|
---|
350 | * Reason: If we kept the old stack and got blocked, for instance, in
|
---|
351 | * find_best_thread(), the old thread could get rescheduled by another
|
---|
352 | * CPU and overwrite the part of its own stack that was also used by
|
---|
353 | * the scheduler on this CPU.
|
---|
354 | *
|
---|
355 | * Moreover, we have to bypass the compiler-generated POP sequence
|
---|
356 | * which is fooled by SP being set to the very top of the stack.
|
---|
357 | * Therefore the scheduler() function continues in
|
---|
358 | * scheduler_separated_stack().
|
---|
359 | */
|
---|
360 | context_save(&CPU->saved_context);
|
---|
361 | context_set(&CPU->saved_context, FADDR(scheduler_separated_stack),
|
---|
362 | (uintptr_t) CPU->stack, CPU_STACK_SIZE);
|
---|
363 | context_restore(&CPU->saved_context);
|
---|
364 | /* not reached */
|
---|
365 | }
|
---|
366 |
|
---|
367 | /** Scheduler stack switch wrapper
|
---|
368 | *
|
---|
369 | * Second part of the scheduler() function
|
---|
370 | * using new stack. Handling the actual context
|
---|
371 | * switch to a new thread.
|
---|
372 | *
|
---|
373 | * Assume THREAD->lock is held.
|
---|
374 | */
|
---|
375 | void scheduler_separated_stack(void)
|
---|
376 | {
|
---|
377 | int priority;
|
---|
378 |
|
---|
379 | ASSERT(CPU != NULL);
|
---|
380 |
|
---|
381 | if (THREAD) {
|
---|
382 | /* must be run after the switch to scheduler stack */
|
---|
383 | after_thread_ran();
|
---|
384 |
|
---|
385 | switch (THREAD->state) {
|
---|
386 | case Running:
|
---|
387 | spinlock_unlock(&THREAD->lock);
|
---|
388 | thread_ready(THREAD);
|
---|
389 | break;
|
---|
390 |
|
---|
391 | case Exiting:
|
---|
392 | repeat:
|
---|
393 | if (THREAD->detached) {
|
---|
394 | thread_destroy(THREAD);
|
---|
395 | } else {
|
---|
396 | /*
|
---|
397 | * The thread structure is kept allocated until somebody
|
---|
398 | * calls thread_detach() on it.
|
---|
399 | */
|
---|
400 | if (!spinlock_trylock(&THREAD->join_wq.lock)) {
|
---|
401 | /*
|
---|
402 | * Avoid deadlock.
|
---|
403 | */
|
---|
404 | spinlock_unlock(&THREAD->lock);
|
---|
405 | delay(10);
|
---|
406 | spinlock_lock(&THREAD->lock);
|
---|
407 | goto repeat;
|
---|
408 | }
|
---|
409 | _waitq_wakeup_unsafe(&THREAD->join_wq, false);
|
---|
410 | spinlock_unlock(&THREAD->join_wq.lock);
|
---|
411 |
|
---|
412 | THREAD->state = Undead;
|
---|
413 | spinlock_unlock(&THREAD->lock);
|
---|
414 | }
|
---|
415 | break;
|
---|
416 |
|
---|
417 | case Sleeping:
|
---|
418 | /*
|
---|
419 | * Prefer the thread after it's woken up.
|
---|
420 | */
|
---|
421 | THREAD->priority = -1;
|
---|
422 |
|
---|
423 | /*
|
---|
424 | * We need to release wq->lock which we locked in waitq_sleep().
|
---|
425 | * Address of wq->lock is kept in THREAD->sleep_queue.
|
---|
426 | */
|
---|
427 | spinlock_unlock(&THREAD->sleep_queue->lock);
|
---|
428 |
|
---|
429 | /*
|
---|
430 | * Check for possible requests for out-of-context invocation.
|
---|
431 | */
|
---|
432 | if (THREAD->call_me) {
|
---|
433 | THREAD->call_me(THREAD->call_me_with);
|
---|
434 | THREAD->call_me = NULL;
|
---|
435 | THREAD->call_me_with = NULL;
|
---|
436 | }
|
---|
437 |
|
---|
438 | spinlock_unlock(&THREAD->lock);
|
---|
439 |
|
---|
440 | break;
|
---|
441 |
|
---|
442 | default:
|
---|
443 | /*
|
---|
444 | * Entering state is unexpected.
|
---|
445 | */
|
---|
446 | panic("tid%d: unexpected state %s\n", THREAD->tid, thread_states[THREAD->state]);
|
---|
447 | break;
|
---|
448 | }
|
---|
449 |
|
---|
450 | THREAD = NULL;
|
---|
451 | }
|
---|
452 |
|
---|
453 | THREAD = find_best_thread();
|
---|
454 |
|
---|
455 | spinlock_lock(&THREAD->lock);
|
---|
456 | priority = THREAD->priority;
|
---|
457 | spinlock_unlock(&THREAD->lock);
|
---|
458 |
|
---|
459 | relink_rq(priority);
|
---|
460 |
|
---|
461 | /*
|
---|
462 | * If both the old and the new task are the same, lots of work is avoided.
|
---|
463 | */
|
---|
464 | if (TASK != THREAD->task) {
|
---|
465 | as_t *as1 = NULL;
|
---|
466 | as_t *as2;
|
---|
467 |
|
---|
468 | if (TASK) {
|
---|
469 | spinlock_lock(&TASK->lock);
|
---|
470 | as1 = TASK->as;
|
---|
471 | spinlock_unlock(&TASK->lock);
|
---|
472 | }
|
---|
473 |
|
---|
474 | spinlock_lock(&THREAD->task->lock);
|
---|
475 | as2 = THREAD->task->as;
|
---|
476 | spinlock_unlock(&THREAD->task->lock);
|
---|
477 |
|
---|
478 | /*
|
---|
479 | * Note that it is possible for two tasks to share one address space.
|
---|
480 | */
|
---|
481 | if (as1 != as2) {
|
---|
482 | /*
|
---|
483 | * Both tasks and address spaces are different.
|
---|
484 | * Replace the old one with the new one.
|
---|
485 | */
|
---|
486 | as_switch(as1, as2);
|
---|
487 | }
|
---|
488 | TASK = THREAD->task;
|
---|
489 | before_task_runs();
|
---|
490 | }
|
---|
491 |
|
---|
492 | spinlock_lock(&THREAD->lock);
|
---|
493 | THREAD->state = Running;
|
---|
494 |
|
---|
495 | #ifdef SCHEDULER_VERBOSE
|
---|
496 | printf("cpu%d: tid %d (priority=%d,ticks=%lld,nrdy=%ld)\n",
|
---|
497 | CPU->id, THREAD->tid, THREAD->priority, THREAD->ticks, atomic_get(&CPU->nrdy));
|
---|
498 | #endif
|
---|
499 |
|
---|
500 | /*
|
---|
501 | * Some architectures provide late kernel PA2KA(identity)
|
---|
502 | * mapping in a page fault handler. However, the page fault
|
---|
503 | * handler uses the kernel stack of the running thread and
|
---|
504 | * therefore cannot be used to map it. The kernel stack, if
|
---|
505 | * necessary, is to be mapped in before_thread_runs(). This
|
---|
506 | * function must be executed before the switch to the new stack.
|
---|
507 | */
|
---|
508 | before_thread_runs();
|
---|
509 |
|
---|
510 | /*
|
---|
511 | * Copy the knowledge of CPU, TASK, THREAD and preemption counter to thread's stack.
|
---|
512 | */
|
---|
513 | the_copy(THE, (the_t *) THREAD->kstack);
|
---|
514 |
|
---|
515 | context_restore(&THREAD->saved_context);
|
---|
516 | /* not reached */
|
---|
517 | }
|
---|
518 |
|
---|
519 | #ifdef CONFIG_SMP
|
---|
520 | /** Load balancing thread
|
---|
521 | *
|
---|
522 | * SMP load balancing thread, supervising thread supplies
|
---|
523 | * for the CPU it's wired to.
|
---|
524 | *
|
---|
525 | * @param arg Generic thread argument (unused).
|
---|
526 | *
|
---|
527 | */
|
---|
528 | void kcpulb(void *arg)
|
---|
529 | {
|
---|
530 | thread_t *t;
|
---|
531 | int count, average, i, j, k = 0;
|
---|
532 | ipl_t ipl;
|
---|
533 |
|
---|
534 | /*
|
---|
535 | * Detach kcpulb as nobody will call thread_join_timeout() on it.
|
---|
536 | */
|
---|
537 | thread_detach(THREAD);
|
---|
538 |
|
---|
539 | loop:
|
---|
540 | /*
|
---|
541 | * Work in 1s intervals.
|
---|
542 | */
|
---|
543 | thread_sleep(1);
|
---|
544 |
|
---|
545 | not_satisfied:
|
---|
546 | /*
|
---|
547 | * Calculate the number of threads that will be migrated/stolen from
|
---|
548 | * other CPU's. Note that situation can have changed between two
|
---|
549 | * passes. Each time get the most up to date counts.
|
---|
550 | */
|
---|
551 | average = atomic_get(&nrdy) / config.cpu_active + 1;
|
---|
552 | count = average - atomic_get(&CPU->nrdy);
|
---|
553 |
|
---|
554 | if (count <= 0)
|
---|
555 | goto satisfied;
|
---|
556 |
|
---|
557 | /*
|
---|
558 | * Searching least priority queues on all CPU's first and most priority queues on all CPU's last.
|
---|
559 | */
|
---|
560 | for (j=RQ_COUNT-1; j >= 0; j--) {
|
---|
561 | for (i=0; i < config.cpu_active; i++) {
|
---|
562 | link_t *l;
|
---|
563 | runq_t *r;
|
---|
564 | cpu_t *cpu;
|
---|
565 |
|
---|
566 | cpu = &cpus[(i + k) % config.cpu_active];
|
---|
567 |
|
---|
568 | /*
|
---|
569 | * Not interested in ourselves.
|
---|
570 | * Doesn't require interrupt disabling for kcpulb has THREAD_FLAG_WIRED.
|
---|
571 | */
|
---|
572 | if (CPU == cpu)
|
---|
573 | continue;
|
---|
574 | if (atomic_get(&cpu->nrdy) <= average)
|
---|
575 | continue;
|
---|
576 |
|
---|
577 | ipl = interrupts_disable();
|
---|
578 | r = &cpu->rq[j];
|
---|
579 | spinlock_lock(&r->lock);
|
---|
580 | if (r->n == 0) {
|
---|
581 | spinlock_unlock(&r->lock);
|
---|
582 | interrupts_restore(ipl);
|
---|
583 | continue;
|
---|
584 | }
|
---|
585 |
|
---|
586 | t = NULL;
|
---|
587 | l = r->rq_head.prev; /* search rq from the back */
|
---|
588 | while (l != &r->rq_head) {
|
---|
589 | t = list_get_instance(l, thread_t, rq_link);
|
---|
590 | /*
|
---|
591 | * We don't want to steal CPU-wired threads neither threads already
|
---|
592 | * stolen. The latter prevents threads from migrating between CPU's
|
---|
593 | * without ever being run. We don't want to steal threads whose FPU
|
---|
594 | * context is still in CPU.
|
---|
595 | */
|
---|
596 | spinlock_lock(&t->lock);
|
---|
597 | if ((!(t->flags & (THREAD_FLAG_WIRED | THREAD_FLAG_STOLEN))) &&
|
---|
598 | (!(t->fpu_context_engaged)) ) {
|
---|
599 | /*
|
---|
600 | * Remove t from r.
|
---|
601 | */
|
---|
602 | spinlock_unlock(&t->lock);
|
---|
603 |
|
---|
604 | atomic_dec(&cpu->nrdy);
|
---|
605 | atomic_dec(&nrdy);
|
---|
606 |
|
---|
607 | r->n--;
|
---|
608 | list_remove(&t->rq_link);
|
---|
609 |
|
---|
610 | break;
|
---|
611 | }
|
---|
612 | spinlock_unlock(&t->lock);
|
---|
613 | l = l->prev;
|
---|
614 | t = NULL;
|
---|
615 | }
|
---|
616 | spinlock_unlock(&r->lock);
|
---|
617 |
|
---|
618 | if (t) {
|
---|
619 | /*
|
---|
620 | * Ready t on local CPU
|
---|
621 | */
|
---|
622 | spinlock_lock(&t->lock);
|
---|
623 | #ifdef KCPULB_VERBOSE
|
---|
624 | printf("kcpulb%d: TID %d -> cpu%d, nrdy=%ld, avg=%nd\n",
|
---|
625 | CPU->id, t->tid, CPU->id, atomic_get(&CPU->nrdy),
|
---|
626 | atomic_get(&nrdy) / config.cpu_active);
|
---|
627 | #endif
|
---|
628 | t->flags |= THREAD_FLAG_STOLEN;
|
---|
629 | t->state = Entering;
|
---|
630 | spinlock_unlock(&t->lock);
|
---|
631 |
|
---|
632 | thread_ready(t);
|
---|
633 |
|
---|
634 | interrupts_restore(ipl);
|
---|
635 |
|
---|
636 | if (--count == 0)
|
---|
637 | goto satisfied;
|
---|
638 |
|
---|
639 | /*
|
---|
640 | * We are not satisfied yet, focus on another CPU next time.
|
---|
641 | */
|
---|
642 | k++;
|
---|
643 |
|
---|
644 | continue;
|
---|
645 | }
|
---|
646 | interrupts_restore(ipl);
|
---|
647 | }
|
---|
648 | }
|
---|
649 |
|
---|
650 | if (atomic_get(&CPU->nrdy)) {
|
---|
651 | /*
|
---|
652 | * Be a little bit light-weight and let migrated threads run.
|
---|
653 | */
|
---|
654 | scheduler();
|
---|
655 | } else {
|
---|
656 | /*
|
---|
657 | * We failed to migrate a single thread.
|
---|
658 | * Give up this turn.
|
---|
659 | */
|
---|
660 | goto loop;
|
---|
661 | }
|
---|
662 |
|
---|
663 | goto not_satisfied;
|
---|
664 |
|
---|
665 | satisfied:
|
---|
666 | goto loop;
|
---|
667 | }
|
---|
668 |
|
---|
669 | #endif /* CONFIG_SMP */
|
---|
670 |
|
---|
671 |
|
---|
672 | /** Print information about threads & scheduler queues */
|
---|
673 | void sched_print_list(void)
|
---|
674 | {
|
---|
675 | ipl_t ipl;
|
---|
676 | int cpu,i;
|
---|
677 | runq_t *r;
|
---|
678 | thread_t *t;
|
---|
679 | link_t *cur;
|
---|
680 |
|
---|
681 | /* We are going to mess with scheduler structures,
|
---|
682 | * let's not be interrupted */
|
---|
683 | ipl = interrupts_disable();
|
---|
684 | for (cpu=0;cpu < config.cpu_count; cpu++) {
|
---|
685 |
|
---|
686 | if (!cpus[cpu].active)
|
---|
687 | continue;
|
---|
688 |
|
---|
689 | spinlock_lock(&cpus[cpu].lock);
|
---|
690 | printf("cpu%d: address=%p, nrdy=%ld, needs_relink=%ld\n",
|
---|
691 | cpus[cpu].id, &cpus[cpu], atomic_get(&cpus[cpu].nrdy), cpus[cpu].needs_relink);
|
---|
692 |
|
---|
693 | for (i=0; i<RQ_COUNT; i++) {
|
---|
694 | r = &cpus[cpu].rq[i];
|
---|
695 | spinlock_lock(&r->lock);
|
---|
696 | if (!r->n) {
|
---|
697 | spinlock_unlock(&r->lock);
|
---|
698 | continue;
|
---|
699 | }
|
---|
700 | printf("\trq[%d]: ", i);
|
---|
701 | for (cur=r->rq_head.next; cur!=&r->rq_head; cur=cur->next) {
|
---|
702 | t = list_get_instance(cur, thread_t, rq_link);
|
---|
703 | printf("%d(%s) ", t->tid,
|
---|
704 | thread_states[t->state]);
|
---|
705 | }
|
---|
706 | printf("\n");
|
---|
707 | spinlock_unlock(&r->lock);
|
---|
708 | }
|
---|
709 | spinlock_unlock(&cpus[cpu].lock);
|
---|
710 | }
|
---|
711 |
|
---|
712 | interrupts_restore(ipl);
|
---|
713 | }
|
---|
714 |
|
---|
715 | /** @}
|
---|
716 | */
|
---|