source: mainline/kernel/generic/src/proc/scheduler.c

Last change on this file was d23712e, checked in by Jiří Zárevúcky <zarevucky.jiri@…>, 17 months ago

Use thread state variable instead of a cpu local variable to pass state

  • Property mode set to 100644
File size: 19.0 KB
Line 
1/*
2 * Copyright (c) 2010 Jakub Jermar
3 * Copyright (c) 2023 Jiří Zárevúcky
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 *
10 * - Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * - Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * - The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */
29
30/** @addtogroup kernel_generic_proc
31 * @{
32 */
33
34/**
35 * @file
36 * @brief Scheduler and load balancing.
37 *
38 * This file contains the scheduler and kcpulb kernel thread which
39 * performs load-balancing of per-CPU run queues.
40 */
41
42#include <assert.h>
43#include <atomic.h>
44#include <proc/scheduler.h>
45#include <proc/thread.h>
46#include <proc/task.h>
47#include <mm/frame.h>
48#include <mm/page.h>
49#include <mm/as.h>
50#include <time/timeout.h>
51#include <time/delay.h>
52#include <arch/asm.h>
53#include <arch/cycle.h>
54#include <atomic.h>
55#include <synch/spinlock.h>
56#include <config.h>
57#include <context.h>
58#include <fpu_context.h>
59#include <halt.h>
60#include <arch.h>
61#include <adt/list.h>
62#include <panic.h>
63#include <cpu.h>
64#include <stdio.h>
65#include <log.h>
66#include <stacktrace.h>
67
68atomic_size_t nrdy; /**< Number of ready threads in the system. */
69
70#ifdef CONFIG_FPU_LAZY
71void scheduler_fpu_lazy_request(void)
72{
73 fpu_enable();
74
75 /* We need this lock to ensure synchronization with thread destructor. */
76 irq_spinlock_lock(&CPU->fpu_lock, false);
77
78 /* Save old context */
79 thread_t *owner = atomic_load_explicit(&CPU->fpu_owner, memory_order_relaxed);
80 if (owner != NULL) {
81 fpu_context_save(&owner->fpu_context);
82 atomic_store_explicit(&CPU->fpu_owner, NULL, memory_order_relaxed);
83 }
84
85 irq_spinlock_unlock(&CPU->fpu_lock, false);
86
87 if (THREAD->fpu_context_exists) {
88 fpu_context_restore(&THREAD->fpu_context);
89 } else {
90 fpu_init();
91 THREAD->fpu_context_exists = true;
92 }
93
94 atomic_store_explicit(&CPU->fpu_owner, THREAD, memory_order_relaxed);
95}
96#endif /* CONFIG_FPU_LAZY */
97
98/** Initialize scheduler
99 *
100 * Initialize kernel scheduler.
101 *
102 */
103void scheduler_init(void)
104{
105}
106
107/** Get thread to be scheduled
108 *
109 * Get the optimal thread to be scheduled
110 * according to thread accounting and scheduler
111 * policy.
112 *
113 * @return Thread to be scheduled.
114 *
115 */
116static thread_t *try_find_thread(int *rq_index)
117{
118 assert(interrupts_disabled());
119 assert(CPU != NULL);
120
121 if (atomic_load(&CPU->nrdy) == 0)
122 return NULL;
123
124 for (int i = 0; i < RQ_COUNT; i++) {
125 irq_spinlock_lock(&(CPU->rq[i].lock), false);
126 if (CPU->rq[i].n == 0) {
127 /*
128 * If this queue is empty, try a lower-priority queue.
129 */
130 irq_spinlock_unlock(&(CPU->rq[i].lock), false);
131 continue;
132 }
133
134 atomic_dec(&CPU->nrdy);
135 atomic_dec(&nrdy);
136 CPU->rq[i].n--;
137
138 /*
139 * Take the first thread from the queue.
140 */
141 thread_t *thread = list_get_instance(
142 list_first(&CPU->rq[i].rq), thread_t, rq_link);
143 list_remove(&thread->rq_link);
144
145 irq_spinlock_unlock(&(CPU->rq[i].lock), false);
146
147 *rq_index = i;
148 return thread;
149 }
150
151 return NULL;
152}
153
154/** Get thread to be scheduled
155 *
156 * Get the optimal thread to be scheduled
157 * according to thread accounting and scheduler
158 * policy.
159 *
160 * @return Thread to be scheduled.
161 *
162 */
163static thread_t *find_best_thread(int *rq_index)
164{
165 assert(interrupts_disabled());
166 assert(CPU != NULL);
167
168 while (true) {
169 thread_t *thread = try_find_thread(rq_index);
170
171 if (thread != NULL)
172 return thread;
173
174 /*
175 * For there was nothing to run, the CPU goes to sleep
176 * until a hardware interrupt or an IPI comes.
177 * This improves energy saving and hyperthreading.
178 */
179 CPU_LOCAL->idle = true;
180
181 /*
182 * Go to sleep with interrupts enabled.
183 * Ideally, this should be atomic, but this is not guaranteed on
184 * all platforms yet, so it is possible we will go sleep when
185 * a thread has just become available.
186 */
187 cpu_interruptible_sleep();
188 }
189}
190
191static void switch_task(task_t *task)
192{
193 /* If the task stays the same, a lot of work is avoided. */
194 if (TASK == task)
195 return;
196
197 as_t *old_as = AS;
198 as_t *new_as = task->as;
199
200 /* It is possible for two tasks to share one address space. */
201 if (old_as != new_as)
202 as_switch(old_as, new_as);
203
204 if (TASK)
205 task_release(TASK);
206
207 TASK = task;
208
209 task_hold(TASK);
210
211 before_task_runs_arch();
212}
213
214/** Prevent rq starvation
215 *
216 * Prevent low priority threads from starving in rq's.
217 *
218 * When the function decides to relink rq's, it reconnects
219 * respective pointers so that in result threads with 'pri'
220 * greater or equal start are moved to a higher-priority queue.
221 *
222 * @param start Threshold priority.
223 *
224 */
225static void relink_rq(int start)
226{
227 assert(interrupts_disabled());
228
229 if (CPU_LOCAL->current_clock_tick < CPU_LOCAL->relink_deadline)
230 return;
231
232 CPU_LOCAL->relink_deadline = CPU_LOCAL->current_clock_tick + NEEDS_RELINK_MAX;
233
234 /* Temporary cache for lists we are moving. */
235 list_t list;
236 list_initialize(&list);
237
238 size_t n = 0;
239
240 /* Move every list (except the one with highest priority) one level up. */
241 for (int i = RQ_COUNT - 1; i > start; i--) {
242 irq_spinlock_lock(&CPU->rq[i].lock, false);
243
244 /* Swap lists. */
245 list_swap(&CPU->rq[i].rq, &list);
246
247 /* Swap number of items. */
248 size_t tmpn = CPU->rq[i].n;
249 CPU->rq[i].n = n;
250 n = tmpn;
251
252 irq_spinlock_unlock(&CPU->rq[i].lock, false);
253 }
254
255 /* Append the contents of rq[start + 1] to rq[start]. */
256 if (n != 0) {
257 irq_spinlock_lock(&CPU->rq[start].lock, false);
258 list_concat(&CPU->rq[start].rq, &list);
259 CPU->rq[start].n += n;
260 irq_spinlock_unlock(&CPU->rq[start].lock, false);
261 }
262}
263
264/**
265 * Do whatever needs to be done with current FPU state before we switch to
266 * another thread.
267 */
268static void fpu_cleanup(void)
269{
270#if (defined CONFIG_FPU) && (!defined CONFIG_FPU_LAZY)
271 fpu_context_save(&THREAD->fpu_context);
272#endif
273}
274
275/**
276 * Set correct FPU state for this thread after switch from another thread.
277 */
278static void fpu_restore(void)
279{
280#ifdef CONFIG_FPU_LAZY
281 /*
282 * The only concurrent modification possible for fpu_owner here is
283 * another thread changing it from itself to NULL in its destructor.
284 */
285 thread_t *owner = atomic_load_explicit(&CPU->fpu_owner,
286 memory_order_relaxed);
287
288 if (THREAD == owner)
289 fpu_enable();
290 else
291 fpu_disable();
292
293#elif defined CONFIG_FPU
294 fpu_enable();
295 if (THREAD->fpu_context_exists)
296 fpu_context_restore(&THREAD->fpu_context);
297 else {
298 fpu_init();
299 THREAD->fpu_context_exists = true;
300 }
301#endif
302}
303
304/** Things to do before we switch to THREAD context.
305 */
306static void prepare_to_run_thread(int rq_index)
307{
308 relink_rq(rq_index);
309
310 switch_task(THREAD->task);
311
312 assert(atomic_get_unordered(&THREAD->cpu) == CPU);
313
314 atomic_set_unordered(&THREAD->state, Running);
315 atomic_set_unordered(&THREAD->priority, rq_index); /* Correct rq index */
316
317 /*
318 * Clear the stolen flag so that it can be migrated
319 * when load balancing needs emerge.
320 */
321 THREAD->stolen = false;
322
323#ifdef SCHEDULER_VERBOSE
324 log(LF_OTHER, LVL_DEBUG,
325 "cpu%u: tid %" PRIu64 " (priority=%d, ticks=%" PRIu64
326 ", nrdy=%zu)", CPU->id, THREAD->tid, rq_index,
327 THREAD->ticks, atomic_load(&CPU->nrdy));
328#endif
329
330 /*
331 * Some architectures provide late kernel PA2KA(identity)
332 * mapping in a page fault handler. However, the page fault
333 * handler uses the kernel stack of the running thread and
334 * therefore cannot be used to map it. The kernel stack, if
335 * necessary, is to be mapped in before_thread_runs(). This
336 * function must be executed before the switch to the new stack.
337 */
338 before_thread_runs_arch();
339
340#ifdef CONFIG_UDEBUG
341 if (atomic_get_unordered(&THREAD->btrace)) {
342 istate_t *istate = THREAD->udebug.uspace_state;
343 if (istate != NULL) {
344 printf("Thread %" PRIu64 " stack trace:\n", THREAD->tid);
345 stack_trace_istate(istate);
346 } else {
347 printf("Thread %" PRIu64 " interrupt state not available\n", THREAD->tid);
348 }
349
350 atomic_set_unordered(&THREAD->btrace, false);
351 }
352#endif
353
354 fpu_restore();
355
356 /* Time allocation in microseconds. */
357 uint64_t time_to_run = (rq_index + 1) * 10000;
358
359 /* Set the time of next preemption. */
360 CPU_LOCAL->preempt_deadline =
361 CPU_LOCAL->current_clock_tick + us2ticks(time_to_run);
362
363 /* Save current CPU cycle */
364 THREAD->last_cycle = get_cycle();
365}
366
367static void add_to_rq(thread_t *thread, cpu_t *cpu, int i)
368{
369 /* Add to the appropriate runqueue. */
370 runq_t *rq = &cpu->rq[i];
371
372 irq_spinlock_lock(&rq->lock, false);
373 list_append(&thread->rq_link, &rq->rq);
374 rq->n++;
375 irq_spinlock_unlock(&rq->lock, false);
376
377 atomic_inc(&nrdy);
378 atomic_inc(&cpu->nrdy);
379}
380
381/** Requeue a thread that was just preempted on this CPU.
382 */
383static void thread_requeue_preempted(thread_t *thread)
384{
385 assert(interrupts_disabled());
386 assert(atomic_get_unordered(&thread->state) == Running);
387 assert(atomic_get_unordered(&thread->cpu) == CPU);
388
389 int prio = atomic_get_unordered(&thread->priority);
390
391 if (prio < RQ_COUNT - 1) {
392 prio++;
393 atomic_set_unordered(&thread->priority, prio);
394 }
395
396 atomic_set_unordered(&thread->state, Ready);
397
398 add_to_rq(thread, CPU, prio);
399}
400
401void thread_requeue_sleeping(thread_t *thread)
402{
403 ipl_t ipl = interrupts_disable();
404
405 assert(atomic_get_unordered(&thread->state) == Sleeping || atomic_get_unordered(&thread->state) == Entering);
406
407 atomic_set_unordered(&thread->priority, 0);
408 atomic_set_unordered(&thread->state, Ready);
409
410 /* Prefer the CPU on which the thread ran last */
411 cpu_t *cpu = atomic_get_unordered(&thread->cpu);
412
413 if (!cpu) {
414 cpu = CPU;
415 atomic_set_unordered(&thread->cpu, CPU);
416 }
417
418 add_to_rq(thread, cpu, 0);
419
420 interrupts_restore(ipl);
421}
422
423static void cleanup_after_thread(thread_t *thread)
424{
425 assert(CURRENT->mutex_locks == 0);
426 assert(interrupts_disabled());
427
428 int expected;
429
430 switch (atomic_get_unordered(&thread->state)) {
431 case Running:
432 thread_requeue_preempted(thread);
433 break;
434
435 case Exiting:
436 waitq_close(&thread->join_wq);
437
438 /*
439 * Release the reference CPU has for the thread.
440 * If there are no other references (e.g. threads calling join),
441 * the thread structure is deallocated.
442 */
443 thread_put(thread);
444 break;
445
446 case Sleeping:
447 expected = SLEEP_INITIAL;
448
449 /* Only set SLEEP_ASLEEP in sleep pad if it's still in initial state */
450 if (!atomic_compare_exchange_strong_explicit(&thread->sleep_state,
451 &expected, SLEEP_ASLEEP,
452 memory_order_acq_rel, memory_order_acquire)) {
453
454 assert(expected == SLEEP_WOKE);
455 /* The thread has already been woken up, requeue immediately. */
456 thread_requeue_sleeping(thread);
457 }
458 break;
459
460 default:
461 /*
462 * Entering state is unexpected.
463 */
464 panic("tid%" PRIu64 ": unexpected state %s.",
465 thread->tid, thread_states[atomic_get_unordered(&thread->state)]);
466 break;
467 }
468}
469
470/** Switch to scheduler context to let other threads run. */
471void scheduler_enter(state_t new_state)
472{
473 ipl_t ipl = interrupts_disable();
474
475 assert(CPU != NULL);
476 assert(THREAD != NULL);
477
478 if (atomic_load(&haltstate))
479 halt();
480
481 /* Check if we have a thread to switch to. */
482
483 int rq_index;
484 thread_t *new_thread = try_find_thread(&rq_index);
485
486 if (new_thread == NULL && new_state == Running) {
487 /* No other thread to run, but we still have work to do here. */
488 interrupts_restore(ipl);
489 return;
490 }
491
492 atomic_set_unordered(&THREAD->state, new_state);
493
494 /* Update thread kernel accounting */
495 atomic_time_increment(&THREAD->kcycles, get_cycle() - THREAD->last_cycle);
496
497 fpu_cleanup();
498
499 /*
500 * On Sparc, this saves some extra userspace state that's not
501 * covered by context_save()/context_restore().
502 */
503 after_thread_ran_arch();
504
505 if (new_thread) {
506 thread_t *old_thread = THREAD;
507 CPU_LOCAL->prev_thread = old_thread;
508 THREAD = new_thread;
509 /* No waiting necessary, we can switch to the new thread directly. */
510 prepare_to_run_thread(rq_index);
511
512 current_copy(CURRENT, (current_t *) new_thread->kstack);
513 context_swap(&old_thread->saved_context, &new_thread->saved_context);
514 } else {
515 /*
516 * A new thread isn't immediately available, switch to a separate
517 * stack to sleep or do other idle stuff.
518 */
519 current_copy(CURRENT, (current_t *) CPU_LOCAL->stack);
520 context_swap(&THREAD->saved_context, &CPU_LOCAL->scheduler_context);
521 }
522
523 assert(CURRENT->mutex_locks == 0);
524 assert(interrupts_disabled());
525
526 /* Check if we need to clean up after another thread. */
527 if (CPU_LOCAL->prev_thread) {
528 cleanup_after_thread(CPU_LOCAL->prev_thread);
529 CPU_LOCAL->prev_thread = NULL;
530 }
531
532 interrupts_restore(ipl);
533}
534
535/** Enter main scheduler loop. Never returns.
536 *
537 * This function switches to a runnable thread as soon as one is available,
538 * after which it is only switched back to if a thread is stopping and there is
539 * no other thread to run in its place. We need a separate context for that
540 * because we're going to block the CPU, which means we need another context
541 * to clean up after the previous thread.
542 */
543void scheduler_run(void)
544{
545 assert(interrupts_disabled());
546
547 assert(CPU != NULL);
548 assert(TASK == NULL);
549 assert(THREAD == NULL);
550 assert(interrupts_disabled());
551
552 while (!atomic_load(&haltstate)) {
553 assert(CURRENT->mutex_locks == 0);
554
555 int rq_index;
556 THREAD = find_best_thread(&rq_index);
557 prepare_to_run_thread(rq_index);
558
559 /*
560 * Copy the knowledge of CPU, TASK, THREAD and preemption counter to
561 * thread's stack.
562 */
563 current_copy(CURRENT, (current_t *) THREAD->kstack);
564
565 /* Switch to thread context. */
566 context_swap(&CPU_LOCAL->scheduler_context, &THREAD->saved_context);
567
568 /* Back from another thread. */
569 assert(CPU != NULL);
570 assert(THREAD != NULL);
571 assert(CURRENT->mutex_locks == 0);
572 assert(interrupts_disabled());
573
574 cleanup_after_thread(THREAD);
575
576 /*
577 * Necessary because we're allowing interrupts in find_best_thread(),
578 * so we need to avoid other code referencing the thread we left.
579 */
580 THREAD = NULL;
581 }
582
583 halt();
584}
585
586/** Thread wrapper.
587 *
588 * This wrapper is provided to ensure that a starting thread properly handles
589 * everything it needs to do when first scheduled, and when it exits.
590 */
591void thread_main_func(void)
592{
593 assert(interrupts_disabled());
594
595 void (*f)(void *) = THREAD->thread_code;
596 void *arg = THREAD->thread_arg;
597
598 /* This is where each thread wakes up after its creation */
599
600 /* Check if we need to clean up after another thread. */
601 if (CPU_LOCAL->prev_thread) {
602 cleanup_after_thread(CPU_LOCAL->prev_thread);
603 CPU_LOCAL->prev_thread = NULL;
604 }
605
606 interrupts_enable();
607
608 f(arg);
609
610 thread_exit();
611
612 /* Not reached */
613}
614
615#ifdef CONFIG_SMP
616
617static thread_t *steal_thread_from(cpu_t *old_cpu, int i)
618{
619 runq_t *old_rq = &old_cpu->rq[i];
620 runq_t *new_rq = &CPU->rq[i];
621
622 ipl_t ipl = interrupts_disable();
623
624 irq_spinlock_lock(&old_rq->lock, false);
625
626 /*
627 * If fpu_owner is any thread in the list, its store is seen here thanks to
628 * the runqueue lock.
629 */
630 thread_t *fpu_owner = atomic_load_explicit(&old_cpu->fpu_owner,
631 memory_order_relaxed);
632
633 /* Search rq from the back */
634 list_foreach_rev(old_rq->rq, rq_link, thread_t, thread) {
635
636 /*
637 * Do not steal CPU-wired threads, threads
638 * already stolen, threads for which migration
639 * was temporarily disabled or threads whose
640 * FPU context is still in the CPU.
641 */
642 if (thread->stolen || thread->nomigrate || thread == fpu_owner) {
643 continue;
644 }
645
646 thread->stolen = true;
647 atomic_set_unordered(&thread->cpu, CPU);
648
649 /*
650 * Ready thread on local CPU
651 */
652
653#ifdef KCPULB_VERBOSE
654 log(LF_OTHER, LVL_DEBUG,
655 "kcpulb%u: TID %" PRIu64 " -> cpu%u, "
656 "nrdy=%ld, avg=%ld", CPU->id, thread->tid,
657 CPU->id, atomic_load(&CPU->nrdy),
658 atomic_load(&nrdy) / config.cpu_active);
659#endif
660
661 /* Remove thread from ready queue. */
662 old_rq->n--;
663 list_remove(&thread->rq_link);
664 irq_spinlock_unlock(&old_rq->lock, false);
665
666 /* Append thread to local queue. */
667 irq_spinlock_lock(&new_rq->lock, false);
668 list_append(&thread->rq_link, &new_rq->rq);
669 new_rq->n++;
670 irq_spinlock_unlock(&new_rq->lock, false);
671
672 atomic_dec(&old_cpu->nrdy);
673 atomic_inc(&CPU->nrdy);
674 interrupts_restore(ipl);
675 return thread;
676 }
677
678 irq_spinlock_unlock(&old_rq->lock, false);
679 interrupts_restore(ipl);
680 return NULL;
681}
682
683/** Load balancing thread
684 *
685 * SMP load balancing thread, supervising thread supplies
686 * for the CPU it's wired to.
687 *
688 * @param arg Generic thread argument (unused).
689 *
690 */
691void kcpulb(void *arg)
692{
693 size_t average;
694 size_t rdy;
695
696loop:
697 /*
698 * Work in 1s intervals.
699 */
700 thread_sleep(1);
701
702not_satisfied:
703 /*
704 * Calculate the number of threads that will be migrated/stolen from
705 * other CPU's. Note that situation can have changed between two
706 * passes. Each time get the most up to date counts.
707 *
708 */
709 average = atomic_load(&nrdy) / config.cpu_active + 1;
710 rdy = atomic_load(&CPU->nrdy);
711
712 if (average <= rdy)
713 goto satisfied;
714
715 size_t count = average - rdy;
716
717 /*
718 * Searching least priority queues on all CPU's first and most priority
719 * queues on all CPU's last.
720 */
721 size_t acpu;
722 int rq;
723
724 for (rq = RQ_COUNT - 1; rq >= 0; rq--) {
725 for (acpu = 0; acpu < config.cpu_active; acpu++) {
726 cpu_t *cpu = &cpus[acpu];
727
728 /*
729 * Not interested in ourselves.
730 * Doesn't require interrupt disabling for kcpulb has
731 * THREAD_FLAG_WIRED.
732 *
733 */
734 if (CPU == cpu)
735 continue;
736
737 if (atomic_load(&cpu->nrdy) <= average)
738 continue;
739
740 if (steal_thread_from(cpu, rq) && --count == 0)
741 goto satisfied;
742 }
743 }
744
745 if (atomic_load(&CPU->nrdy)) {
746 /*
747 * Be a little bit light-weight and let migrated threads run.
748 *
749 */
750 thread_yield();
751 } else {
752 /*
753 * We failed to migrate a single thread.
754 * Give up this turn.
755 *
756 */
757 goto loop;
758 }
759
760 goto not_satisfied;
761
762satisfied:
763 goto loop;
764}
765#endif /* CONFIG_SMP */
766
767/** Print information about threads & scheduler queues
768 *
769 */
770void sched_print_list(void)
771{
772 size_t cpu;
773 for (cpu = 0; cpu < config.cpu_count; cpu++) {
774 if (!cpus[cpu].active)
775 continue;
776
777 printf("cpu%u: address=%p, nrdy=%zu\n",
778 cpus[cpu].id, &cpus[cpu], atomic_load(&cpus[cpu].nrdy));
779
780 unsigned int i;
781 for (i = 0; i < RQ_COUNT; i++) {
782 irq_spinlock_lock(&(cpus[cpu].rq[i].lock), false);
783 if (cpus[cpu].rq[i].n == 0) {
784 irq_spinlock_unlock(&(cpus[cpu].rq[i].lock), false);
785 continue;
786 }
787
788 printf("\trq[%u]: ", i);
789 list_foreach(cpus[cpu].rq[i].rq, rq_link, thread_t,
790 thread) {
791 printf("%" PRIu64 "(%s) ", thread->tid,
792 thread_states[atomic_get_unordered(&thread->state)]);
793 }
794 printf("\n");
795
796 irq_spinlock_unlock(&(cpus[cpu].rq[i].lock), false);
797 }
798 }
799}
800
801/** @}
802 */
Note: See TracBrowser for help on using the repository browser.