source: mainline/kernel/generic/src/proc/scheduler.c@ 4ed7870

Last change on this file since 4ed7870 was 4ed7870, checked in by Jiří Zárevúcky <zarevucky.jiri@…>, 18 months ago

Revert part of commit 5861b602

  • Property mode set to 100644
File size: 16.9 KB
Line 
1/*
2 * Copyright (c) 2010 Jakub Jermar
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/** @addtogroup kernel_generic_proc
30 * @{
31 */
32
33/**
34 * @file
35 * @brief Scheduler and load balancing.
36 *
37 * This file contains the scheduler and kcpulb kernel thread which
38 * performs load-balancing of per-CPU run queues.
39 */
40
41#include <assert.h>
42#include <atomic.h>
43#include <proc/scheduler.h>
44#include <proc/thread.h>
45#include <proc/task.h>
46#include <mm/frame.h>
47#include <mm/page.h>
48#include <mm/as.h>
49#include <time/timeout.h>
50#include <time/delay.h>
51#include <arch/asm.h>
52#include <arch/faddr.h>
53#include <arch/cycle.h>
54#include <atomic.h>
55#include <synch/spinlock.h>
56#include <config.h>
57#include <context.h>
58#include <fpu_context.h>
59#include <halt.h>
60#include <arch.h>
61#include <adt/list.h>
62#include <panic.h>
63#include <cpu.h>
64#include <stdio.h>
65#include <log.h>
66#include <stacktrace.h>
67
68static void scheduler_separated_stack(void);
69
70atomic_size_t nrdy; /**< Number of ready threads in the system. */
71
72#ifdef CONFIG_FPU_LAZY
73void scheduler_fpu_lazy_request(void)
74{
75 fpu_enable();
76
77 /* We need this lock to ensure synchronization with thread destructor. */
78 irq_spinlock_lock(&CPU->fpu_lock, false);
79
80 /* Save old context */
81 thread_t *owner = atomic_load_explicit(&CPU->fpu_owner, memory_order_relaxed);
82 if (owner != NULL) {
83 fpu_context_save(&owner->fpu_context);
84 atomic_store_explicit(&CPU->fpu_owner, NULL, memory_order_relaxed);
85 }
86
87 irq_spinlock_unlock(&CPU->fpu_lock, false);
88
89 if (THREAD->fpu_context_exists) {
90 fpu_context_restore(&THREAD->fpu_context);
91 } else {
92 fpu_init();
93 THREAD->fpu_context_exists = true;
94 }
95
96 atomic_store_explicit(&CPU->fpu_owner, THREAD, memory_order_relaxed);
97}
98#endif /* CONFIG_FPU_LAZY */
99
100/** Initialize scheduler
101 *
102 * Initialize kernel scheduler.
103 *
104 */
105void scheduler_init(void)
106{
107}
108
109/** Get thread to be scheduled
110 *
111 * Get the optimal thread to be scheduled
112 * according to thread accounting and scheduler
113 * policy.
114 *
115 * @return Thread to be scheduled.
116 *
117 */
118static thread_t *try_find_thread(int *rq_index)
119{
120 assert(interrupts_disabled());
121 assert(CPU != NULL);
122
123 if (atomic_load(&CPU->nrdy) == 0)
124 return NULL;
125
126 for (int i = 0; i < RQ_COUNT; i++) {
127 irq_spinlock_lock(&(CPU->rq[i].lock), false);
128 if (CPU->rq[i].n == 0) {
129 /*
130 * If this queue is empty, try a lower-priority queue.
131 */
132 irq_spinlock_unlock(&(CPU->rq[i].lock), false);
133 continue;
134 }
135
136 atomic_dec(&CPU->nrdy);
137 atomic_dec(&nrdy);
138 CPU->rq[i].n--;
139
140 /*
141 * Take the first thread from the queue.
142 */
143 thread_t *thread = list_get_instance(
144 list_first(&CPU->rq[i].rq), thread_t, rq_link);
145 list_remove(&thread->rq_link);
146
147 irq_spinlock_unlock(&(CPU->rq[i].lock), false);
148
149 *rq_index = i;
150 return thread;
151 }
152
153 return NULL;
154}
155
156/** Get thread to be scheduled
157 *
158 * Get the optimal thread to be scheduled
159 * according to thread accounting and scheduler
160 * policy.
161 *
162 * @return Thread to be scheduled.
163 *
164 */
165static thread_t *find_best_thread(int *rq_index)
166{
167 assert(interrupts_disabled());
168 assert(CPU != NULL);
169
170 while (true) {
171 thread_t *thread = try_find_thread(rq_index);
172
173 if (thread != NULL)
174 return thread;
175
176 /*
177 * For there was nothing to run, the CPU goes to sleep
178 * until a hardware interrupt or an IPI comes.
179 * This improves energy saving and hyperthreading.
180 */
181 CPU_LOCAL->idle = true;
182
183 /*
184 * Go to sleep with interrupts enabled.
185 * Ideally, this should be atomic, but this is not guaranteed on
186 * all platforms yet, so it is possible we will go sleep when
187 * a thread has just become available.
188 */
189 cpu_interruptible_sleep();
190 }
191}
192
193static void switch_task(task_t *task)
194{
195 /* If the task stays the same, a lot of work is avoided. */
196 if (TASK == task)
197 return;
198
199 as_t *old_as = AS;
200 as_t *new_as = task->as;
201
202 /* It is possible for two tasks to share one address space. */
203 if (old_as != new_as)
204 as_switch(old_as, new_as);
205
206 if (TASK)
207 task_release(TASK);
208
209 TASK = task;
210
211 task_hold(TASK);
212
213 before_task_runs_arch();
214}
215
216/** Prevent rq starvation
217 *
218 * Prevent low priority threads from starving in rq's.
219 *
220 * When the function decides to relink rq's, it reconnects
221 * respective pointers so that in result threads with 'pri'
222 * greater or equal start are moved to a higher-priority queue.
223 *
224 * @param start Threshold priority.
225 *
226 */
227static void relink_rq(int start)
228{
229 if (CPU_LOCAL->current_clock_tick < CPU_LOCAL->relink_deadline)
230 return;
231
232 CPU_LOCAL->relink_deadline = CPU_LOCAL->current_clock_tick + NEEDS_RELINK_MAX;
233
234 /* Temporary cache for lists we are moving. */
235 list_t list;
236 list_initialize(&list);
237
238 size_t n = 0;
239
240 /* Move every list (except the one with highest priority) one level up. */
241 for (int i = RQ_COUNT - 1; i > start; i--) {
242 irq_spinlock_lock(&CPU->rq[i].lock, false);
243
244 /* Swap lists. */
245 list_swap(&CPU->rq[i].rq, &list);
246
247 /* Swap number of items. */
248 size_t tmpn = CPU->rq[i].n;
249 CPU->rq[i].n = n;
250 n = tmpn;
251
252 irq_spinlock_unlock(&CPU->rq[i].lock, false);
253 }
254
255 /* Append the contents of rq[start + 1] to rq[start]. */
256 if (n != 0) {
257 irq_spinlock_lock(&CPU->rq[start].lock, false);
258 list_concat(&CPU->rq[start].rq, &list);
259 CPU->rq[start].n += n;
260 irq_spinlock_unlock(&CPU->rq[start].lock, false);
261 }
262}
263
264/**
265 * Do whatever needs to be done with current FPU state before we switch to
266 * another thread.
267 */
268static void fpu_cleanup(void)
269{
270#if (defined CONFIG_FPU) && (!defined CONFIG_FPU_LAZY)
271 fpu_context_save(&THREAD->fpu_context);
272#endif
273}
274
275/**
276 * Set correct FPU state for this thread after switch from another thread.
277 */
278static void fpu_restore(void)
279{
280#ifdef CONFIG_FPU_LAZY
281 /*
282 * The only concurrent modification possible for fpu_owner here is
283 * another thread changing it from itself to NULL in its destructor.
284 */
285 thread_t *owner = atomic_load_explicit(&CPU->fpu_owner,
286 memory_order_relaxed);
287
288 if (THREAD == owner)
289 fpu_enable();
290 else
291 fpu_disable();
292
293#elif defined CONFIG_FPU
294 fpu_enable();
295 if (THREAD->fpu_context_exists)
296 fpu_context_restore(&THREAD->fpu_context);
297 else {
298 fpu_init();
299 THREAD->fpu_context_exists = true;
300 }
301#endif
302}
303
304void scheduler_run(void)
305{
306 assert(interrupts_disabled());
307 assert(THREAD == NULL);
308 assert(CPU != NULL);
309
310 current_copy(CURRENT, (current_t *) CPU_LOCAL->stack);
311
312 context_t ctx;
313 context_save(&ctx);
314 context_set(&ctx, FADDR(scheduler_separated_stack),
315 (uintptr_t) CPU_LOCAL->stack, STACK_SIZE);
316 context_restore(&ctx);
317
318 unreachable();
319}
320
321/** Things to do before we switch to THREAD context.
322 */
323static void prepare_to_run_thread(int rq_index)
324{
325 relink_rq(rq_index);
326
327 switch_task(THREAD->task);
328
329 irq_spinlock_lock(&THREAD->lock, false);
330 THREAD->state = Running;
331 THREAD->cpu = CPU;
332 THREAD->priority = rq_index; /* Correct rq index */
333
334 /*
335 * Clear the stolen flag so that it can be migrated
336 * when load balancing needs emerge.
337 */
338 THREAD->stolen = false;
339
340#ifdef SCHEDULER_VERBOSE
341 log(LF_OTHER, LVL_DEBUG,
342 "cpu%u: tid %" PRIu64 " (priority=%d, ticks=%" PRIu64
343 ", nrdy=%zu)", CPU->id, THREAD->tid, THREAD->priority,
344 THREAD->ticks, atomic_load(&CPU->nrdy));
345#endif
346
347 /*
348 * Some architectures provide late kernel PA2KA(identity)
349 * mapping in a page fault handler. However, the page fault
350 * handler uses the kernel stack of the running thread and
351 * therefore cannot be used to map it. The kernel stack, if
352 * necessary, is to be mapped in before_thread_runs(). This
353 * function must be executed before the switch to the new stack.
354 */
355 before_thread_runs_arch();
356
357#ifdef CONFIG_UDEBUG
358 if (THREAD->btrace) {
359 istate_t *istate = THREAD->udebug.uspace_state;
360 if (istate != NULL) {
361 printf("Thread %" PRIu64 " stack trace:\n", THREAD->tid);
362 stack_trace_istate(istate);
363 }
364
365 THREAD->btrace = false;
366 }
367#endif
368
369 fpu_restore();
370
371 /* Time allocation in microseconds. */
372 uint64_t time_to_run = (rq_index + 1) * 10000;
373
374 /* Set the time of next preemption. */
375 CPU_LOCAL->preempt_deadline =
376 CPU_LOCAL->current_clock_tick + us2ticks(time_to_run);
377
378 /* Save current CPU cycle */
379 THREAD->last_cycle = get_cycle();
380}
381
382static void cleanup_after_thread(thread_t *thread, state_t out_state)
383{
384 assert(CURRENT->mutex_locks == 0);
385 assert(interrupts_disabled());
386
387 int expected;
388
389 switch (out_state) {
390 case Running:
391 thread_ready(thread);
392 break;
393
394 case Exiting:
395 waitq_close(&thread->join_wq);
396
397 /*
398 * Release the reference CPU has for the thread.
399 * If there are no other references (e.g. threads calling join),
400 * the thread structure is deallocated.
401 */
402 thread_put(thread);
403 break;
404
405 case Sleeping:
406 expected = SLEEP_INITIAL;
407
408 /* Only set SLEEP_ASLEEP in sleep pad if it's still in initial state */
409 if (!atomic_compare_exchange_strong_explicit(&thread->sleep_state,
410 &expected, SLEEP_ASLEEP,
411 memory_order_acq_rel, memory_order_acquire)) {
412
413 assert(expected == SLEEP_WOKE);
414 /* The thread has already been woken up, requeue immediately. */
415 thread_ready(thread);
416 }
417 break;
418
419 default:
420 /*
421 * Entering state is unexpected.
422 */
423 panic("tid%" PRIu64 ": unexpected state %s.",
424 thread->tid, thread_states[thread->state]);
425 break;
426 }
427}
428
429/** The scheduler
430 *
431 * The thread scheduling procedure.
432 * Passes control directly to
433 * scheduler_separated_stack().
434 *
435 */
436void scheduler_enter(state_t new_state)
437{
438 ipl_t ipl = interrupts_disable();
439
440 assert(CPU != NULL);
441 assert(THREAD != NULL);
442
443 fpu_cleanup();
444
445 irq_spinlock_lock(&THREAD->lock, false);
446 THREAD->state = new_state;
447
448 /* Update thread kernel accounting */
449 THREAD->kcycles += get_cycle() - THREAD->last_cycle;
450
451 if (new_state == Sleeping) {
452 /* Prefer the thread after it's woken up. */
453 THREAD->priority = -1;
454 }
455
456 if (!context_save(&THREAD->saved_context)) {
457 /*
458 * This is the place where threads leave scheduler();
459 */
460
461 irq_spinlock_unlock(&THREAD->lock, false);
462 interrupts_restore(ipl);
463 return;
464 }
465
466 /*
467 * Through the 'CURRENT' structure, we keep track of THREAD, TASK, CPU, AS
468 * and preemption counter. At this point CURRENT could be coming either
469 * from THREAD's or CPU's stack.
470 *
471 */
472 current_copy(CURRENT, (current_t *) CPU_LOCAL->stack);
473
474 /*
475 * We may not keep the old stack.
476 * Reason: If we kept the old stack and got blocked, for instance, in
477 * find_best_thread(), the old thread could get rescheduled by another
478 * CPU and overwrite the part of its own stack that was also used by
479 * the scheduler on this CPU.
480 *
481 * Moreover, we have to bypass the compiler-generated POP sequence
482 * which is fooled by SP being set to the very top of the stack.
483 * Therefore the scheduler() function continues in
484 * scheduler_separated_stack().
485 *
486 */
487 context_t ctx;
488 context_save(&ctx);
489 context_set(&ctx, FADDR(scheduler_separated_stack),
490 (uintptr_t) CPU_LOCAL->stack, STACK_SIZE);
491 context_restore(&ctx);
492
493 /* Not reached */
494}
495
496/** Scheduler stack switch wrapper
497 *
498 * Second part of the scheduler() function
499 * using new stack. Handling the actual context
500 * switch to a new thread.
501 *
502 */
503void scheduler_separated_stack(void)
504{
505 assert((!THREAD) || (irq_spinlock_locked(&THREAD->lock)));
506 assert(CPU != NULL);
507 assert(interrupts_disabled());
508
509 if (atomic_load(&haltstate))
510 halt();
511
512 if (THREAD) {
513 /*
514 * On Sparc, this saves some extra userspace state that's not
515 * covered by context_save()/context_restore().
516 */
517 after_thread_ran_arch();
518
519 state_t state = THREAD->state;
520 irq_spinlock_unlock(&THREAD->lock, false);
521
522 cleanup_after_thread(THREAD, state);
523
524 THREAD = NULL;
525 }
526
527 int rq_index;
528 THREAD = find_best_thread(&rq_index);
529
530 prepare_to_run_thread(rq_index);
531
532 /*
533 * Copy the knowledge of CPU, TASK, THREAD and preemption counter to
534 * thread's stack.
535 */
536 current_copy(CURRENT, (current_t *) THREAD->kstack);
537
538 context_restore(&THREAD->saved_context);
539
540 /* Not reached */
541}
542
543#ifdef CONFIG_SMP
544
545static thread_t *steal_thread_from(cpu_t *old_cpu, int i)
546{
547 runq_t *old_rq = &old_cpu->rq[i];
548 runq_t *new_rq = &CPU->rq[i];
549
550 ipl_t ipl = interrupts_disable();
551
552 irq_spinlock_lock(&old_rq->lock, false);
553
554 /*
555 * If fpu_owner is any thread in the list, its store is seen here thanks to
556 * the runqueue lock.
557 */
558 thread_t *fpu_owner = atomic_load_explicit(&old_cpu->fpu_owner,
559 memory_order_relaxed);
560
561 /* Search rq from the back */
562 list_foreach_rev(old_rq->rq, rq_link, thread_t, thread) {
563
564 irq_spinlock_lock(&thread->lock, false);
565
566 /*
567 * Do not steal CPU-wired threads, threads
568 * already stolen, threads for which migration
569 * was temporarily disabled or threads whose
570 * FPU context is still in the CPU.
571 */
572 if (thread->stolen || thread->nomigrate ||
573 thread == fpu_owner) {
574 irq_spinlock_unlock(&thread->lock, false);
575 continue;
576 }
577
578 thread->stolen = true;
579 thread->cpu = CPU;
580
581 irq_spinlock_unlock(&thread->lock, false);
582
583 /*
584 * Ready thread on local CPU
585 */
586
587#ifdef KCPULB_VERBOSE
588 log(LF_OTHER, LVL_DEBUG,
589 "kcpulb%u: TID %" PRIu64 " -> cpu%u, "
590 "nrdy=%ld, avg=%ld", CPU->id, thread->tid,
591 CPU->id, atomic_load(&CPU->nrdy),
592 atomic_load(&nrdy) / config.cpu_active);
593#endif
594
595 /* Remove thread from ready queue. */
596 old_rq->n--;
597 list_remove(&thread->rq_link);
598 irq_spinlock_unlock(&old_rq->lock, false);
599
600 /* Append thread to local queue. */
601 irq_spinlock_lock(&new_rq->lock, false);
602 list_append(&thread->rq_link, &new_rq->rq);
603 new_rq->n++;
604 irq_spinlock_unlock(&new_rq->lock, false);
605
606 atomic_dec(&old_cpu->nrdy);
607 atomic_inc(&CPU->nrdy);
608 interrupts_restore(ipl);
609 return thread;
610 }
611
612 irq_spinlock_unlock(&old_rq->lock, false);
613 interrupts_restore(ipl);
614 return NULL;
615}
616
617/** Load balancing thread
618 *
619 * SMP load balancing thread, supervising thread supplies
620 * for the CPU it's wired to.
621 *
622 * @param arg Generic thread argument (unused).
623 *
624 */
625void kcpulb(void *arg)
626{
627 size_t average;
628 size_t rdy;
629
630loop:
631 /*
632 * Work in 1s intervals.
633 */
634 thread_sleep(1);
635
636not_satisfied:
637 /*
638 * Calculate the number of threads that will be migrated/stolen from
639 * other CPU's. Note that situation can have changed between two
640 * passes. Each time get the most up to date counts.
641 *
642 */
643 average = atomic_load(&nrdy) / config.cpu_active + 1;
644 rdy = atomic_load(&CPU->nrdy);
645
646 if (average <= rdy)
647 goto satisfied;
648
649 size_t count = average - rdy;
650
651 /*
652 * Searching least priority queues on all CPU's first and most priority
653 * queues on all CPU's last.
654 */
655 size_t acpu;
656 int rq;
657
658 for (rq = RQ_COUNT - 1; rq >= 0; rq--) {
659 for (acpu = 0; acpu < config.cpu_active; acpu++) {
660 cpu_t *cpu = &cpus[acpu];
661
662 /*
663 * Not interested in ourselves.
664 * Doesn't require interrupt disabling for kcpulb has
665 * THREAD_FLAG_WIRED.
666 *
667 */
668 if (CPU == cpu)
669 continue;
670
671 if (atomic_load(&cpu->nrdy) <= average)
672 continue;
673
674 if (steal_thread_from(cpu, rq) && --count == 0)
675 goto satisfied;
676 }
677 }
678
679 if (atomic_load(&CPU->nrdy)) {
680 /*
681 * Be a little bit light-weight and let migrated threads run.
682 *
683 */
684 thread_yield();
685 } else {
686 /*
687 * We failed to migrate a single thread.
688 * Give up this turn.
689 *
690 */
691 goto loop;
692 }
693
694 goto not_satisfied;
695
696satisfied:
697 goto loop;
698}
699#endif /* CONFIG_SMP */
700
701/** Print information about threads & scheduler queues
702 *
703 */
704void sched_print_list(void)
705{
706 size_t cpu;
707 for (cpu = 0; cpu < config.cpu_count; cpu++) {
708 if (!cpus[cpu].active)
709 continue;
710
711 printf("cpu%u: address=%p, nrdy=%zu\n",
712 cpus[cpu].id, &cpus[cpu], atomic_load(&cpus[cpu].nrdy));
713
714 unsigned int i;
715 for (i = 0; i < RQ_COUNT; i++) {
716 irq_spinlock_lock(&(cpus[cpu].rq[i].lock), false);
717 if (cpus[cpu].rq[i].n == 0) {
718 irq_spinlock_unlock(&(cpus[cpu].rq[i].lock), false);
719 continue;
720 }
721
722 printf("\trq[%u]: ", i);
723 list_foreach(cpus[cpu].rq[i].rq, rq_link, thread_t,
724 thread) {
725 printf("%" PRIu64 "(%s) ", thread->tid,
726 thread_states[thread->state]);
727 }
728 printf("\n");
729
730 irq_spinlock_unlock(&(cpus[cpu].rq[i].lock), false);
731 }
732 }
733}
734
735/** @}
736 */
Note: See TracBrowser for help on using the repository browser.