source: mainline/kernel/generic/src/proc/scheduler.c@ 3fa4e22a

Last change on this file since 3fa4e22a was 3fa4e22a, checked in by Jiří Zárevúcky <zarevucky.jiri@…>, 17 months ago

Only do fpu_cleanup() once we are sure we are switching

  • Property mode set to 100644
File size: 19.5 KB
Line 
1/*
2 * Copyright (c) 2010 Jakub Jermar
3 * Copyright (c) 2023 Jiří Zárevúcky
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 *
10 * - Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * - Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * - The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */
29
30/** @addtogroup kernel_generic_proc
31 * @{
32 */
33
34/**
35 * @file
36 * @brief Scheduler and load balancing.
37 *
38 * This file contains the scheduler and kcpulb kernel thread which
39 * performs load-balancing of per-CPU run queues.
40 */
41
42#include <assert.h>
43#include <atomic.h>
44#include <proc/scheduler.h>
45#include <proc/thread.h>
46#include <proc/task.h>
47#include <mm/frame.h>
48#include <mm/page.h>
49#include <mm/as.h>
50#include <time/timeout.h>
51#include <time/delay.h>
52#include <arch/asm.h>
53#include <arch/cycle.h>
54#include <atomic.h>
55#include <synch/spinlock.h>
56#include <config.h>
57#include <context.h>
58#include <fpu_context.h>
59#include <halt.h>
60#include <arch.h>
61#include <adt/list.h>
62#include <panic.h>
63#include <cpu.h>
64#include <stdio.h>
65#include <log.h>
66#include <stacktrace.h>
67
68atomic_size_t nrdy; /**< Number of ready threads in the system. */
69
70#ifdef CONFIG_FPU_LAZY
71void scheduler_fpu_lazy_request(void)
72{
73 fpu_enable();
74
75 /* We need this lock to ensure synchronization with thread destructor. */
76 irq_spinlock_lock(&CPU->fpu_lock, false);
77
78 /* Save old context */
79 thread_t *owner = atomic_load_explicit(&CPU->fpu_owner, memory_order_relaxed);
80 if (owner != NULL) {
81 fpu_context_save(&owner->fpu_context);
82 atomic_store_explicit(&CPU->fpu_owner, NULL, memory_order_relaxed);
83 }
84
85 irq_spinlock_unlock(&CPU->fpu_lock, false);
86
87 if (THREAD->fpu_context_exists) {
88 fpu_context_restore(&THREAD->fpu_context);
89 } else {
90 fpu_init();
91 THREAD->fpu_context_exists = true;
92 }
93
94 atomic_store_explicit(&CPU->fpu_owner, THREAD, memory_order_relaxed);
95}
96#endif /* CONFIG_FPU_LAZY */
97
98/** Initialize scheduler
99 *
100 * Initialize kernel scheduler.
101 *
102 */
103void scheduler_init(void)
104{
105}
106
107/** Get thread to be scheduled
108 *
109 * Get the optimal thread to be scheduled
110 * according to thread accounting and scheduler
111 * policy.
112 *
113 * @return Thread to be scheduled.
114 *
115 */
116static thread_t *try_find_thread(int *rq_index)
117{
118 assert(interrupts_disabled());
119 assert(CPU != NULL);
120
121 if (atomic_load(&CPU->nrdy) == 0)
122 return NULL;
123
124 for (int i = 0; i < RQ_COUNT; i++) {
125 irq_spinlock_lock(&(CPU->rq[i].lock), false);
126 if (CPU->rq[i].n == 0) {
127 /*
128 * If this queue is empty, try a lower-priority queue.
129 */
130 irq_spinlock_unlock(&(CPU->rq[i].lock), false);
131 continue;
132 }
133
134 atomic_dec(&CPU->nrdy);
135 atomic_dec(&nrdy);
136 CPU->rq[i].n--;
137
138 /*
139 * Take the first thread from the queue.
140 */
141 thread_t *thread = list_get_instance(
142 list_first(&CPU->rq[i].rq), thread_t, rq_link);
143 list_remove(&thread->rq_link);
144
145 irq_spinlock_unlock(&(CPU->rq[i].lock), false);
146
147 *rq_index = i;
148 return thread;
149 }
150
151 return NULL;
152}
153
154/** Get thread to be scheduled
155 *
156 * Get the optimal thread to be scheduled
157 * according to thread accounting and scheduler
158 * policy.
159 *
160 * @return Thread to be scheduled.
161 *
162 */
163static thread_t *find_best_thread(int *rq_index)
164{
165 assert(interrupts_disabled());
166 assert(CPU != NULL);
167
168 while (true) {
169 thread_t *thread = try_find_thread(rq_index);
170
171 if (thread != NULL)
172 return thread;
173
174 /*
175 * For there was nothing to run, the CPU goes to sleep
176 * until a hardware interrupt or an IPI comes.
177 * This improves energy saving and hyperthreading.
178 */
179 CPU_LOCAL->idle = true;
180
181 /*
182 * Go to sleep with interrupts enabled.
183 * Ideally, this should be atomic, but this is not guaranteed on
184 * all platforms yet, so it is possible we will go sleep when
185 * a thread has just become available.
186 */
187 cpu_interruptible_sleep();
188 }
189}
190
191static void switch_task(task_t *task)
192{
193 /* If the task stays the same, a lot of work is avoided. */
194 if (TASK == task)
195 return;
196
197 as_t *old_as = AS;
198 as_t *new_as = task->as;
199
200 /* It is possible for two tasks to share one address space. */
201 if (old_as != new_as)
202 as_switch(old_as, new_as);
203
204 if (TASK)
205 task_release(TASK);
206
207 TASK = task;
208
209 task_hold(TASK);
210
211 before_task_runs_arch();
212}
213
214/** Prevent rq starvation
215 *
216 * Prevent low priority threads from starving in rq's.
217 *
218 * When the function decides to relink rq's, it reconnects
219 * respective pointers so that in result threads with 'pri'
220 * greater or equal start are moved to a higher-priority queue.
221 *
222 * @param start Threshold priority.
223 *
224 */
225static void relink_rq(int start)
226{
227 assert(interrupts_disabled());
228
229 if (CPU_LOCAL->current_clock_tick < CPU_LOCAL->relink_deadline)
230 return;
231
232 CPU_LOCAL->relink_deadline = CPU_LOCAL->current_clock_tick + NEEDS_RELINK_MAX;
233
234 /* Temporary cache for lists we are moving. */
235 list_t list;
236 list_initialize(&list);
237
238 size_t n = 0;
239
240 /* Move every list (except the one with highest priority) one level up. */
241 for (int i = RQ_COUNT - 1; i > start; i--) {
242 irq_spinlock_lock(&CPU->rq[i].lock, false);
243
244 /* Swap lists. */
245 list_swap(&CPU->rq[i].rq, &list);
246
247 /* Swap number of items. */
248 size_t tmpn = CPU->rq[i].n;
249 CPU->rq[i].n = n;
250 n = tmpn;
251
252 irq_spinlock_unlock(&CPU->rq[i].lock, false);
253 }
254
255 /* Append the contents of rq[start + 1] to rq[start]. */
256 if (n != 0) {
257 irq_spinlock_lock(&CPU->rq[start].lock, false);
258 list_concat(&CPU->rq[start].rq, &list);
259 CPU->rq[start].n += n;
260 irq_spinlock_unlock(&CPU->rq[start].lock, false);
261 }
262}
263
264/**
265 * Do whatever needs to be done with current FPU state before we switch to
266 * another thread.
267 */
268static void fpu_cleanup(void)
269{
270#if (defined CONFIG_FPU) && (!defined CONFIG_FPU_LAZY)
271 fpu_context_save(&THREAD->fpu_context);
272#endif
273}
274
275/**
276 * Set correct FPU state for this thread after switch from another thread.
277 */
278static void fpu_restore(void)
279{
280#ifdef CONFIG_FPU_LAZY
281 /*
282 * The only concurrent modification possible for fpu_owner here is
283 * another thread changing it from itself to NULL in its destructor.
284 */
285 thread_t *owner = atomic_load_explicit(&CPU->fpu_owner,
286 memory_order_relaxed);
287
288 if (THREAD == owner)
289 fpu_enable();
290 else
291 fpu_disable();
292
293#elif defined CONFIG_FPU
294 fpu_enable();
295 if (THREAD->fpu_context_exists)
296 fpu_context_restore(&THREAD->fpu_context);
297 else {
298 fpu_init();
299 THREAD->fpu_context_exists = true;
300 }
301#endif
302}
303
304/** Things to do before we switch to THREAD context.
305 */
306static void prepare_to_run_thread(int rq_index)
307{
308 relink_rq(rq_index);
309
310 switch_task(THREAD->task);
311
312 irq_spinlock_lock(&THREAD->lock, false);
313 assert(atomic_get_unordered(&THREAD->cpu) == CPU);
314
315 atomic_set_unordered(&THREAD->state, Running);
316 atomic_set_unordered(&THREAD->priority, rq_index); /* Correct rq index */
317
318 /*
319 * Clear the stolen flag so that it can be migrated
320 * when load balancing needs emerge.
321 */
322 THREAD->stolen = false;
323
324#ifdef SCHEDULER_VERBOSE
325 log(LF_OTHER, LVL_DEBUG,
326 "cpu%u: tid %" PRIu64 " (priority=%d, ticks=%" PRIu64
327 ", nrdy=%zu)", CPU->id, THREAD->tid, rq_index,
328 THREAD->ticks, atomic_load(&CPU->nrdy));
329#endif
330
331 /*
332 * Some architectures provide late kernel PA2KA(identity)
333 * mapping in a page fault handler. However, the page fault
334 * handler uses the kernel stack of the running thread and
335 * therefore cannot be used to map it. The kernel stack, if
336 * necessary, is to be mapped in before_thread_runs(). This
337 * function must be executed before the switch to the new stack.
338 */
339 before_thread_runs_arch();
340
341#ifdef CONFIG_UDEBUG
342 if (atomic_get_unordered(&THREAD->btrace)) {
343 istate_t *istate = THREAD->udebug.uspace_state;
344 if (istate != NULL) {
345 printf("Thread %" PRIu64 " stack trace:\n", THREAD->tid);
346 stack_trace_istate(istate);
347 } else {
348 printf("Thread %" PRIu64 " interrupt state not available\n", THREAD->tid);
349 }
350
351 atomic_set_unordered(&THREAD->btrace, false);
352 }
353#endif
354
355 fpu_restore();
356
357 /* Time allocation in microseconds. */
358 uint64_t time_to_run = (rq_index + 1) * 10000;
359
360 /* Set the time of next preemption. */
361 CPU_LOCAL->preempt_deadline =
362 CPU_LOCAL->current_clock_tick + us2ticks(time_to_run);
363
364 /* Save current CPU cycle */
365 THREAD->last_cycle = get_cycle();
366
367 irq_spinlock_unlock(&THREAD->lock, false);
368}
369
370static void add_to_rq(thread_t *thread, cpu_t *cpu, int i)
371{
372 /* Add to the appropriate runqueue. */
373 runq_t *rq = &cpu->rq[i];
374
375 irq_spinlock_lock(&rq->lock, false);
376 list_append(&thread->rq_link, &rq->rq);
377 rq->n++;
378 irq_spinlock_unlock(&rq->lock, false);
379
380 atomic_inc(&nrdy);
381 atomic_inc(&cpu->nrdy);
382}
383
384/** Requeue a thread that was just preempted on this CPU.
385 */
386static void thread_requeue_preempted(thread_t *thread)
387{
388 irq_spinlock_lock(&thread->lock, false);
389
390 assert(atomic_get_unordered(&thread->state) == Running);
391 assert(atomic_get_unordered(&thread->cpu) == CPU);
392
393 int prio = atomic_get_unordered(&thread->priority);
394
395 if (prio < RQ_COUNT - 1) {
396 prio++;
397 atomic_set_unordered(&thread->priority, prio);
398 }
399
400 atomic_set_unordered(&thread->state, Ready);
401
402 irq_spinlock_unlock(&thread->lock, false);
403
404 add_to_rq(thread, CPU, prio);
405}
406
407void thread_requeue_sleeping(thread_t *thread)
408{
409 ipl_t ipl = interrupts_disable();
410
411 irq_spinlock_lock(&thread->lock, false);
412
413 assert(atomic_get_unordered(&thread->state) == Sleeping || atomic_get_unordered(&thread->state) == Entering);
414
415 atomic_set_unordered(&thread->priority, 0);
416 atomic_set_unordered(&thread->state, Ready);
417
418 /* Prefer the CPU on which the thread ran last */
419 cpu_t *cpu = atomic_get_unordered(&thread->cpu);
420
421 if (!cpu) {
422 cpu = CPU;
423 atomic_set_unordered(&thread->cpu, CPU);
424 }
425
426 irq_spinlock_unlock(&thread->lock, false);
427
428 add_to_rq(thread, cpu, 0);
429
430 interrupts_restore(ipl);
431}
432
433static void cleanup_after_thread(thread_t *thread, state_t out_state)
434{
435 assert(CURRENT->mutex_locks == 0);
436 assert(interrupts_disabled());
437
438 int expected;
439
440 switch (out_state) {
441 case Running:
442 thread_requeue_preempted(thread);
443 break;
444
445 case Exiting:
446 waitq_close(&thread->join_wq);
447
448 /*
449 * Release the reference CPU has for the thread.
450 * If there are no other references (e.g. threads calling join),
451 * the thread structure is deallocated.
452 */
453 thread_put(thread);
454 break;
455
456 case Sleeping:
457 expected = SLEEP_INITIAL;
458
459 /* Only set SLEEP_ASLEEP in sleep pad if it's still in initial state */
460 if (!atomic_compare_exchange_strong_explicit(&thread->sleep_state,
461 &expected, SLEEP_ASLEEP,
462 memory_order_acq_rel, memory_order_acquire)) {
463
464 assert(expected == SLEEP_WOKE);
465 /* The thread has already been woken up, requeue immediately. */
466 thread_requeue_sleeping(thread);
467 }
468 break;
469
470 default:
471 /*
472 * Entering state is unexpected.
473 */
474 panic("tid%" PRIu64 ": unexpected state %s.",
475 thread->tid, thread_states[out_state]);
476 break;
477 }
478}
479
480/** Switch to scheduler context to let other threads run. */
481void scheduler_enter(state_t new_state)
482{
483 ipl_t ipl = interrupts_disable();
484
485 assert(CPU != NULL);
486 assert(THREAD != NULL);
487
488 if (atomic_load(&haltstate))
489 halt();
490
491 /* Check if we have a thread to switch to. */
492
493 int rq_index;
494 thread_t *new_thread = try_find_thread(&rq_index);
495
496 if (new_thread == NULL && new_state == Running) {
497 /* No other thread to run, but we still have work to do here. */
498 interrupts_restore(ipl);
499 return;
500 }
501
502 irq_spinlock_lock(&THREAD->lock, false);
503
504 atomic_set_unordered(&THREAD->state, new_state);
505
506 /* Update thread kernel accounting */
507 atomic_time_increment(&THREAD->kcycles, get_cycle() - THREAD->last_cycle);
508
509 fpu_cleanup();
510
511 /*
512 * On Sparc, this saves some extra userspace state that's not
513 * covered by context_save()/context_restore().
514 */
515 after_thread_ran_arch();
516
517 irq_spinlock_unlock(&THREAD->lock, false);
518
519 CPU_LOCAL->exiting_state = new_state;
520
521 if (new_thread) {
522 thread_t *old_thread = THREAD;
523 CPU_LOCAL->prev_thread = old_thread;
524 THREAD = new_thread;
525 /* No waiting necessary, we can switch to the new thread directly. */
526 prepare_to_run_thread(rq_index);
527
528 current_copy(CURRENT, (current_t *) new_thread->kstack);
529 context_swap(&old_thread->saved_context, &new_thread->saved_context);
530 } else {
531 /*
532 * A new thread isn't immediately available, switch to a separate
533 * stack to sleep or do other idle stuff.
534 */
535 current_copy(CURRENT, (current_t *) CPU_LOCAL->stack);
536 context_swap(&THREAD->saved_context, &CPU_LOCAL->scheduler_context);
537 }
538
539 assert(CURRENT->mutex_locks == 0);
540 assert(interrupts_disabled());
541
542 /* Check if we need to clean up after another thread. */
543 if (CPU_LOCAL->prev_thread) {
544 cleanup_after_thread(CPU_LOCAL->prev_thread, CPU_LOCAL->exiting_state);
545 CPU_LOCAL->prev_thread = NULL;
546 }
547
548 interrupts_restore(ipl);
549}
550
551/** Enter main scheduler loop. Never returns.
552 *
553 * This function switches to a runnable thread as soon as one is available,
554 * after which it is only switched back to if a thread is stopping and there is
555 * no other thread to run in its place. We need a separate context for that
556 * because we're going to block the CPU, which means we need another context
557 * to clean up after the previous thread.
558 */
559void scheduler_run(void)
560{
561 assert(interrupts_disabled());
562
563 assert(CPU != NULL);
564 assert(TASK == NULL);
565 assert(THREAD == NULL);
566 assert(interrupts_disabled());
567
568 while (!atomic_load(&haltstate)) {
569 assert(CURRENT->mutex_locks == 0);
570
571 int rq_index;
572 THREAD = find_best_thread(&rq_index);
573 prepare_to_run_thread(rq_index);
574
575 /*
576 * Copy the knowledge of CPU, TASK, THREAD and preemption counter to
577 * thread's stack.
578 */
579 current_copy(CURRENT, (current_t *) THREAD->kstack);
580
581 /* Switch to thread context. */
582 context_swap(&CPU_LOCAL->scheduler_context, &THREAD->saved_context);
583
584 /* Back from another thread. */
585 assert(CPU != NULL);
586 assert(THREAD != NULL);
587 assert(CURRENT->mutex_locks == 0);
588 assert(interrupts_disabled());
589
590 cleanup_after_thread(THREAD, CPU_LOCAL->exiting_state);
591
592 /*
593 * Necessary because we're allowing interrupts in find_best_thread(),
594 * so we need to avoid other code referencing the thread we left.
595 */
596 THREAD = NULL;
597 }
598
599 halt();
600}
601
602/** Thread wrapper.
603 *
604 * This wrapper is provided to ensure that a starting thread properly handles
605 * everything it needs to do when first scheduled, and when it exits.
606 */
607void thread_main_func(void)
608{
609 assert(interrupts_disabled());
610
611 void (*f)(void *) = THREAD->thread_code;
612 void *arg = THREAD->thread_arg;
613
614 /* This is where each thread wakes up after its creation */
615
616 /* Check if we need to clean up after another thread. */
617 if (CPU_LOCAL->prev_thread) {
618 cleanup_after_thread(CPU_LOCAL->prev_thread, CPU_LOCAL->exiting_state);
619 CPU_LOCAL->prev_thread = NULL;
620 }
621
622 interrupts_enable();
623
624 f(arg);
625
626 thread_exit();
627
628 /* Not reached */
629}
630
631#ifdef CONFIG_SMP
632
633static thread_t *steal_thread_from(cpu_t *old_cpu, int i)
634{
635 runq_t *old_rq = &old_cpu->rq[i];
636 runq_t *new_rq = &CPU->rq[i];
637
638 ipl_t ipl = interrupts_disable();
639
640 irq_spinlock_lock(&old_rq->lock, false);
641
642 /*
643 * If fpu_owner is any thread in the list, its store is seen here thanks to
644 * the runqueue lock.
645 */
646 thread_t *fpu_owner = atomic_load_explicit(&old_cpu->fpu_owner,
647 memory_order_relaxed);
648
649 /* Search rq from the back */
650 list_foreach_rev(old_rq->rq, rq_link, thread_t, thread) {
651
652 irq_spinlock_lock(&thread->lock, false);
653
654 /*
655 * Do not steal CPU-wired threads, threads
656 * already stolen, threads for which migration
657 * was temporarily disabled or threads whose
658 * FPU context is still in the CPU.
659 */
660 if (thread->stolen || thread->nomigrate ||
661 thread == fpu_owner) {
662 irq_spinlock_unlock(&thread->lock, false);
663 continue;
664 }
665
666 thread->stolen = true;
667 atomic_set_unordered(&thread->cpu, CPU);
668
669 irq_spinlock_unlock(&thread->lock, false);
670
671 /*
672 * Ready thread on local CPU
673 */
674
675#ifdef KCPULB_VERBOSE
676 log(LF_OTHER, LVL_DEBUG,
677 "kcpulb%u: TID %" PRIu64 " -> cpu%u, "
678 "nrdy=%ld, avg=%ld", CPU->id, thread->tid,
679 CPU->id, atomic_load(&CPU->nrdy),
680 atomic_load(&nrdy) / config.cpu_active);
681#endif
682
683 /* Remove thread from ready queue. */
684 old_rq->n--;
685 list_remove(&thread->rq_link);
686 irq_spinlock_unlock(&old_rq->lock, false);
687
688 /* Append thread to local queue. */
689 irq_spinlock_lock(&new_rq->lock, false);
690 list_append(&thread->rq_link, &new_rq->rq);
691 new_rq->n++;
692 irq_spinlock_unlock(&new_rq->lock, false);
693
694 atomic_dec(&old_cpu->nrdy);
695 atomic_inc(&CPU->nrdy);
696 interrupts_restore(ipl);
697 return thread;
698 }
699
700 irq_spinlock_unlock(&old_rq->lock, false);
701 interrupts_restore(ipl);
702 return NULL;
703}
704
705/** Load balancing thread
706 *
707 * SMP load balancing thread, supervising thread supplies
708 * for the CPU it's wired to.
709 *
710 * @param arg Generic thread argument (unused).
711 *
712 */
713void kcpulb(void *arg)
714{
715 size_t average;
716 size_t rdy;
717
718loop:
719 /*
720 * Work in 1s intervals.
721 */
722 thread_sleep(1);
723
724not_satisfied:
725 /*
726 * Calculate the number of threads that will be migrated/stolen from
727 * other CPU's. Note that situation can have changed between two
728 * passes. Each time get the most up to date counts.
729 *
730 */
731 average = atomic_load(&nrdy) / config.cpu_active + 1;
732 rdy = atomic_load(&CPU->nrdy);
733
734 if (average <= rdy)
735 goto satisfied;
736
737 size_t count = average - rdy;
738
739 /*
740 * Searching least priority queues on all CPU's first and most priority
741 * queues on all CPU's last.
742 */
743 size_t acpu;
744 int rq;
745
746 for (rq = RQ_COUNT - 1; rq >= 0; rq--) {
747 for (acpu = 0; acpu < config.cpu_active; acpu++) {
748 cpu_t *cpu = &cpus[acpu];
749
750 /*
751 * Not interested in ourselves.
752 * Doesn't require interrupt disabling for kcpulb has
753 * THREAD_FLAG_WIRED.
754 *
755 */
756 if (CPU == cpu)
757 continue;
758
759 if (atomic_load(&cpu->nrdy) <= average)
760 continue;
761
762 if (steal_thread_from(cpu, rq) && --count == 0)
763 goto satisfied;
764 }
765 }
766
767 if (atomic_load(&CPU->nrdy)) {
768 /*
769 * Be a little bit light-weight and let migrated threads run.
770 *
771 */
772 thread_yield();
773 } else {
774 /*
775 * We failed to migrate a single thread.
776 * Give up this turn.
777 *
778 */
779 goto loop;
780 }
781
782 goto not_satisfied;
783
784satisfied:
785 goto loop;
786}
787#endif /* CONFIG_SMP */
788
789/** Print information about threads & scheduler queues
790 *
791 */
792void sched_print_list(void)
793{
794 size_t cpu;
795 for (cpu = 0; cpu < config.cpu_count; cpu++) {
796 if (!cpus[cpu].active)
797 continue;
798
799 printf("cpu%u: address=%p, nrdy=%zu\n",
800 cpus[cpu].id, &cpus[cpu], atomic_load(&cpus[cpu].nrdy));
801
802 unsigned int i;
803 for (i = 0; i < RQ_COUNT; i++) {
804 irq_spinlock_lock(&(cpus[cpu].rq[i].lock), false);
805 if (cpus[cpu].rq[i].n == 0) {
806 irq_spinlock_unlock(&(cpus[cpu].rq[i].lock), false);
807 continue;
808 }
809
810 printf("\trq[%u]: ", i);
811 list_foreach(cpus[cpu].rq[i].rq, rq_link, thread_t,
812 thread) {
813 printf("%" PRIu64 "(%s) ", thread->tid,
814 thread_states[atomic_get_unordered(&thread->state)]);
815 }
816 printf("\n");
817
818 irq_spinlock_unlock(&(cpus[cpu].rq[i].lock), false);
819 }
820 }
821}
822
823/** @}
824 */
Note: See TracBrowser for help on using the repository browser.