1 | /*
|
---|
2 | * Copyright (c) 2010 Jakub Jermar
|
---|
3 | * All rights reserved.
|
---|
4 | *
|
---|
5 | * Redistribution and use in source and binary forms, with or without
|
---|
6 | * modification, are permitted provided that the following conditions
|
---|
7 | * are met:
|
---|
8 | *
|
---|
9 | * - Redistributions of source code must retain the above copyright
|
---|
10 | * notice, this list of conditions and the following disclaimer.
|
---|
11 | * - Redistributions in binary form must reproduce the above copyright
|
---|
12 | * notice, this list of conditions and the following disclaimer in the
|
---|
13 | * documentation and/or other materials provided with the distribution.
|
---|
14 | * - The name of the author may not be used to endorse or promote products
|
---|
15 | * derived from this software without specific prior written permission.
|
---|
16 | *
|
---|
17 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
---|
18 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
---|
19 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
---|
20 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
---|
21 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
---|
22 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
---|
23 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
---|
24 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
---|
25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
---|
26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
---|
27 | */
|
---|
28 |
|
---|
29 | /** @addtogroup kernel_generic_proc
|
---|
30 | * @{
|
---|
31 | */
|
---|
32 |
|
---|
33 | /**
|
---|
34 | * @file
|
---|
35 | * @brief Scheduler and load balancing.
|
---|
36 | *
|
---|
37 | * This file contains the scheduler and kcpulb kernel thread which
|
---|
38 | * performs load-balancing of per-CPU run queues.
|
---|
39 | */
|
---|
40 |
|
---|
41 | #include <assert.h>
|
---|
42 | #include <atomic.h>
|
---|
43 | #include <proc/scheduler.h>
|
---|
44 | #include <proc/thread.h>
|
---|
45 | #include <proc/task.h>
|
---|
46 | #include <mm/frame.h>
|
---|
47 | #include <mm/page.h>
|
---|
48 | #include <mm/as.h>
|
---|
49 | #include <time/timeout.h>
|
---|
50 | #include <time/delay.h>
|
---|
51 | #include <arch/asm.h>
|
---|
52 | #include <arch/faddr.h>
|
---|
53 | #include <arch/cycle.h>
|
---|
54 | #include <atomic.h>
|
---|
55 | #include <synch/spinlock.h>
|
---|
56 | #include <config.h>
|
---|
57 | #include <context.h>
|
---|
58 | #include <fpu_context.h>
|
---|
59 | #include <halt.h>
|
---|
60 | #include <arch.h>
|
---|
61 | #include <adt/list.h>
|
---|
62 | #include <panic.h>
|
---|
63 | #include <cpu.h>
|
---|
64 | #include <stdio.h>
|
---|
65 | #include <log.h>
|
---|
66 | #include <stacktrace.h>
|
---|
67 |
|
---|
68 | static void scheduler_separated_stack(void);
|
---|
69 |
|
---|
70 | atomic_size_t nrdy; /**< Number of ready threads in the system. */
|
---|
71 |
|
---|
72 | /** Take actions before new thread runs.
|
---|
73 | *
|
---|
74 | * Perform actions that need to be
|
---|
75 | * taken before the newly selected
|
---|
76 | * thread is passed control.
|
---|
77 | *
|
---|
78 | * THREAD->lock is locked on entry
|
---|
79 | *
|
---|
80 | */
|
---|
81 | static void before_thread_runs(void)
|
---|
82 | {
|
---|
83 | before_thread_runs_arch();
|
---|
84 |
|
---|
85 | #ifdef CONFIG_FPU_LAZY
|
---|
86 | /*
|
---|
87 | * The only concurrent modification possible for fpu_owner here is
|
---|
88 | * another thread changing it from itself to NULL in its destructor.
|
---|
89 | */
|
---|
90 | thread_t *owner = atomic_load_explicit(&CPU->fpu_owner,
|
---|
91 | memory_order_relaxed);
|
---|
92 |
|
---|
93 | if (THREAD == owner)
|
---|
94 | fpu_enable();
|
---|
95 | else
|
---|
96 | fpu_disable();
|
---|
97 | #elif defined CONFIG_FPU
|
---|
98 | fpu_enable();
|
---|
99 | if (THREAD->fpu_context_exists)
|
---|
100 | fpu_context_restore(&THREAD->fpu_context);
|
---|
101 | else {
|
---|
102 | fpu_init();
|
---|
103 | THREAD->fpu_context_exists = true;
|
---|
104 | }
|
---|
105 | #endif
|
---|
106 |
|
---|
107 | #ifdef CONFIG_UDEBUG
|
---|
108 | if (THREAD->btrace) {
|
---|
109 | istate_t *istate = THREAD->udebug.uspace_state;
|
---|
110 | if (istate != NULL) {
|
---|
111 | printf("Thread %" PRIu64 " stack trace:\n", THREAD->tid);
|
---|
112 | stack_trace_istate(istate);
|
---|
113 | }
|
---|
114 |
|
---|
115 | THREAD->btrace = false;
|
---|
116 | }
|
---|
117 | #endif
|
---|
118 | }
|
---|
119 |
|
---|
120 | /** Take actions after THREAD had run.
|
---|
121 | *
|
---|
122 | * Perform actions that need to be
|
---|
123 | * taken after the running thread
|
---|
124 | * had been preempted by the scheduler.
|
---|
125 | *
|
---|
126 | * THREAD->lock is locked on entry
|
---|
127 | *
|
---|
128 | */
|
---|
129 | static void after_thread_ran(void)
|
---|
130 | {
|
---|
131 | after_thread_ran_arch();
|
---|
132 | }
|
---|
133 |
|
---|
134 | #ifdef CONFIG_FPU_LAZY
|
---|
135 | void scheduler_fpu_lazy_request(void)
|
---|
136 | {
|
---|
137 | fpu_enable();
|
---|
138 |
|
---|
139 | /* We need this lock to ensure synchronization with thread destructor. */
|
---|
140 | irq_spinlock_lock(&CPU->fpu_lock, false);
|
---|
141 |
|
---|
142 | /* Save old context */
|
---|
143 | thread_t *owner = atomic_load_explicit(&CPU->fpu_owner, memory_order_relaxed);
|
---|
144 | if (owner != NULL) {
|
---|
145 | fpu_context_save(&owner->fpu_context);
|
---|
146 | atomic_store_explicit(&CPU->fpu_owner, NULL, memory_order_relaxed);
|
---|
147 | }
|
---|
148 |
|
---|
149 | irq_spinlock_unlock(&CPU->fpu_lock, false);
|
---|
150 |
|
---|
151 | if (THREAD->fpu_context_exists) {
|
---|
152 | fpu_context_restore(&THREAD->fpu_context);
|
---|
153 | } else {
|
---|
154 | fpu_init();
|
---|
155 | THREAD->fpu_context_exists = true;
|
---|
156 | }
|
---|
157 |
|
---|
158 | atomic_store_explicit(&CPU->fpu_owner, THREAD, memory_order_relaxed);
|
---|
159 | }
|
---|
160 | #endif /* CONFIG_FPU_LAZY */
|
---|
161 |
|
---|
162 | /** Initialize scheduler
|
---|
163 | *
|
---|
164 | * Initialize kernel scheduler.
|
---|
165 | *
|
---|
166 | */
|
---|
167 | void scheduler_init(void)
|
---|
168 | {
|
---|
169 | }
|
---|
170 |
|
---|
171 | /** Get thread to be scheduled
|
---|
172 | *
|
---|
173 | * Get the optimal thread to be scheduled
|
---|
174 | * according to thread accounting and scheduler
|
---|
175 | * policy.
|
---|
176 | *
|
---|
177 | * @return Thread to be scheduled.
|
---|
178 | *
|
---|
179 | */
|
---|
180 | static thread_t *find_best_thread(int *rq_index)
|
---|
181 | {
|
---|
182 | assert(CPU != NULL);
|
---|
183 |
|
---|
184 | loop:
|
---|
185 | if (atomic_load(&CPU->nrdy) == 0) {
|
---|
186 | /*
|
---|
187 | * For there was nothing to run, the CPU goes to sleep
|
---|
188 | * until a hardware interrupt or an IPI comes.
|
---|
189 | * This improves energy saving and hyperthreading.
|
---|
190 | */
|
---|
191 | CPU->idle = true;
|
---|
192 |
|
---|
193 | /*
|
---|
194 | * Go to sleep with interrupts enabled.
|
---|
195 | * Ideally, this should be atomic, but this is not guaranteed on
|
---|
196 | * all platforms yet, so it is possible we will go sleep when
|
---|
197 | * a thread has just become available.
|
---|
198 | */
|
---|
199 | cpu_interruptible_sleep();
|
---|
200 |
|
---|
201 | /* Interrupts are disabled again. */
|
---|
202 | goto loop;
|
---|
203 | }
|
---|
204 |
|
---|
205 | assert(!CPU->idle);
|
---|
206 |
|
---|
207 | unsigned int i;
|
---|
208 | for (i = 0; i < RQ_COUNT; i++) {
|
---|
209 | irq_spinlock_lock(&(CPU->rq[i].lock), false);
|
---|
210 | if (CPU->rq[i].n == 0) {
|
---|
211 | /*
|
---|
212 | * If this queue is empty, try a lower-priority queue.
|
---|
213 | */
|
---|
214 | irq_spinlock_unlock(&(CPU->rq[i].lock), false);
|
---|
215 | continue;
|
---|
216 | }
|
---|
217 |
|
---|
218 | atomic_dec(&CPU->nrdy);
|
---|
219 | atomic_dec(&nrdy);
|
---|
220 | CPU->rq[i].n--;
|
---|
221 |
|
---|
222 | /*
|
---|
223 | * Take the first thread from the queue.
|
---|
224 | */
|
---|
225 | thread_t *thread = list_get_instance(
|
---|
226 | list_first(&CPU->rq[i].rq), thread_t, rq_link);
|
---|
227 | list_remove(&thread->rq_link);
|
---|
228 |
|
---|
229 | irq_spinlock_pass(&(CPU->rq[i].lock), &thread->lock);
|
---|
230 |
|
---|
231 | thread->cpu = CPU;
|
---|
232 | thread->priority = i; /* Correct rq index */
|
---|
233 |
|
---|
234 | /* Time allocation in microseconds. */
|
---|
235 | uint64_t time_to_run = (i + 1) * 10000;
|
---|
236 |
|
---|
237 | /* This is safe because interrupts are disabled. */
|
---|
238 | CPU->preempt_deadline = CPU->current_clock_tick + us2ticks(time_to_run);
|
---|
239 |
|
---|
240 | /*
|
---|
241 | * Clear the stolen flag so that it can be migrated
|
---|
242 | * when load balancing needs emerge.
|
---|
243 | */
|
---|
244 | thread->stolen = false;
|
---|
245 | irq_spinlock_unlock(&thread->lock, false);
|
---|
246 |
|
---|
247 | *rq_index = i;
|
---|
248 | return thread;
|
---|
249 | }
|
---|
250 |
|
---|
251 | goto loop;
|
---|
252 | }
|
---|
253 |
|
---|
254 | static void switch_task(task_t *task)
|
---|
255 | {
|
---|
256 | /* If the task stays the same, a lot of work is avoided. */
|
---|
257 | if (TASK == task)
|
---|
258 | return;
|
---|
259 |
|
---|
260 | as_t *old_as = AS;
|
---|
261 | as_t *new_as = task->as;
|
---|
262 |
|
---|
263 | /* It is possible for two tasks to share one address space. */
|
---|
264 | if (old_as != new_as)
|
---|
265 | as_switch(old_as, new_as);
|
---|
266 |
|
---|
267 | if (TASK)
|
---|
268 | task_release(TASK);
|
---|
269 |
|
---|
270 | TASK = task;
|
---|
271 |
|
---|
272 | task_hold(TASK);
|
---|
273 |
|
---|
274 | before_task_runs_arch();
|
---|
275 | }
|
---|
276 |
|
---|
277 | /** Prevent rq starvation
|
---|
278 | *
|
---|
279 | * Prevent low priority threads from starving in rq's.
|
---|
280 | *
|
---|
281 | * When the function decides to relink rq's, it reconnects
|
---|
282 | * respective pointers so that in result threads with 'pri'
|
---|
283 | * greater or equal start are moved to a higher-priority queue.
|
---|
284 | *
|
---|
285 | * @param start Threshold priority.
|
---|
286 | *
|
---|
287 | */
|
---|
288 | static void relink_rq(int start)
|
---|
289 | {
|
---|
290 | if (CPU->current_clock_tick < CPU->relink_deadline)
|
---|
291 | return;
|
---|
292 |
|
---|
293 | CPU->relink_deadline = CPU->current_clock_tick + NEEDS_RELINK_MAX;
|
---|
294 |
|
---|
295 | /* Temporary cache for lists we are moving. */
|
---|
296 | list_t list;
|
---|
297 | list_initialize(&list);
|
---|
298 |
|
---|
299 | size_t n = 0;
|
---|
300 |
|
---|
301 | /* Move every list (except the one with highest priority) one level up. */
|
---|
302 | for (int i = RQ_COUNT - 1; i > start; i--) {
|
---|
303 | irq_spinlock_lock(&CPU->rq[i].lock, false);
|
---|
304 |
|
---|
305 | /* Swap lists. */
|
---|
306 | list_swap(&CPU->rq[i].rq, &list);
|
---|
307 |
|
---|
308 | /* Swap number of items. */
|
---|
309 | size_t tmpn = CPU->rq[i].n;
|
---|
310 | CPU->rq[i].n = n;
|
---|
311 | n = tmpn;
|
---|
312 |
|
---|
313 | irq_spinlock_unlock(&CPU->rq[i].lock, false);
|
---|
314 | }
|
---|
315 |
|
---|
316 | /* Append the contents of rq[start + 1] to rq[start]. */
|
---|
317 | if (n != 0) {
|
---|
318 | irq_spinlock_lock(&CPU->rq[start].lock, false);
|
---|
319 | list_concat(&CPU->rq[start].rq, &list);
|
---|
320 | CPU->rq[start].n += n;
|
---|
321 | irq_spinlock_unlock(&CPU->rq[start].lock, false);
|
---|
322 | }
|
---|
323 | }
|
---|
324 |
|
---|
325 | void scheduler(void)
|
---|
326 | {
|
---|
327 | ipl_t ipl = interrupts_disable();
|
---|
328 |
|
---|
329 | if (atomic_load(&haltstate))
|
---|
330 | halt();
|
---|
331 |
|
---|
332 | if (THREAD) {
|
---|
333 | irq_spinlock_lock(&THREAD->lock, false);
|
---|
334 | }
|
---|
335 |
|
---|
336 | scheduler_locked(ipl);
|
---|
337 | }
|
---|
338 |
|
---|
339 | /** The scheduler
|
---|
340 | *
|
---|
341 | * The thread scheduling procedure.
|
---|
342 | * Passes control directly to
|
---|
343 | * scheduler_separated_stack().
|
---|
344 | *
|
---|
345 | */
|
---|
346 | void scheduler_locked(ipl_t ipl)
|
---|
347 | {
|
---|
348 | assert(CPU != NULL);
|
---|
349 |
|
---|
350 | if (THREAD) {
|
---|
351 | /* Update thread kernel accounting */
|
---|
352 | THREAD->kcycles += get_cycle() - THREAD->last_cycle;
|
---|
353 |
|
---|
354 | #if (defined CONFIG_FPU) && (!defined CONFIG_FPU_LAZY)
|
---|
355 | fpu_context_save(&THREAD->fpu_context);
|
---|
356 | #endif
|
---|
357 | if (!context_save(&THREAD->saved_context)) {
|
---|
358 | /*
|
---|
359 | * This is the place where threads leave scheduler();
|
---|
360 | */
|
---|
361 |
|
---|
362 | /* Save current CPU cycle */
|
---|
363 | THREAD->last_cycle = get_cycle();
|
---|
364 |
|
---|
365 | irq_spinlock_unlock(&THREAD->lock, false);
|
---|
366 | interrupts_restore(THREAD->saved_ipl);
|
---|
367 |
|
---|
368 | return;
|
---|
369 | }
|
---|
370 |
|
---|
371 | /*
|
---|
372 | * Interrupt priority level of preempted thread is recorded
|
---|
373 | * here to facilitate scheduler() invocations from
|
---|
374 | * interrupts_disable()'d code (e.g. waitq_sleep_timeout()).
|
---|
375 | *
|
---|
376 | */
|
---|
377 | THREAD->saved_ipl = ipl;
|
---|
378 | }
|
---|
379 |
|
---|
380 | /*
|
---|
381 | * Through the 'CURRENT' structure, we keep track of THREAD, TASK, CPU, AS
|
---|
382 | * and preemption counter. At this point CURRENT could be coming either
|
---|
383 | * from THREAD's or CPU's stack.
|
---|
384 | *
|
---|
385 | */
|
---|
386 | current_copy(CURRENT, (current_t *) CPU->stack);
|
---|
387 |
|
---|
388 | /*
|
---|
389 | * We may not keep the old stack.
|
---|
390 | * Reason: If we kept the old stack and got blocked, for instance, in
|
---|
391 | * find_best_thread(), the old thread could get rescheduled by another
|
---|
392 | * CPU and overwrite the part of its own stack that was also used by
|
---|
393 | * the scheduler on this CPU.
|
---|
394 | *
|
---|
395 | * Moreover, we have to bypass the compiler-generated POP sequence
|
---|
396 | * which is fooled by SP being set to the very top of the stack.
|
---|
397 | * Therefore the scheduler() function continues in
|
---|
398 | * scheduler_separated_stack().
|
---|
399 | *
|
---|
400 | */
|
---|
401 | context_t ctx;
|
---|
402 | context_save(&ctx);
|
---|
403 | context_set(&ctx, FADDR(scheduler_separated_stack),
|
---|
404 | (uintptr_t) CPU->stack, STACK_SIZE);
|
---|
405 | context_restore(&ctx);
|
---|
406 |
|
---|
407 | /* Not reached */
|
---|
408 | }
|
---|
409 |
|
---|
410 | /** Scheduler stack switch wrapper
|
---|
411 | *
|
---|
412 | * Second part of the scheduler() function
|
---|
413 | * using new stack. Handling the actual context
|
---|
414 | * switch to a new thread.
|
---|
415 | *
|
---|
416 | */
|
---|
417 | void scheduler_separated_stack(void)
|
---|
418 | {
|
---|
419 | assert((!THREAD) || (irq_spinlock_locked(&THREAD->lock)));
|
---|
420 | assert(CPU != NULL);
|
---|
421 | assert(interrupts_disabled());
|
---|
422 |
|
---|
423 | if (THREAD) {
|
---|
424 | /* Must be run after the switch to scheduler stack */
|
---|
425 | after_thread_ran();
|
---|
426 |
|
---|
427 | switch (THREAD->state) {
|
---|
428 | case Running:
|
---|
429 | irq_spinlock_unlock(&THREAD->lock, false);
|
---|
430 | thread_ready(THREAD);
|
---|
431 | break;
|
---|
432 |
|
---|
433 | case Exiting:
|
---|
434 | irq_spinlock_unlock(&THREAD->lock, false);
|
---|
435 | waitq_close(&THREAD->join_wq);
|
---|
436 |
|
---|
437 | /*
|
---|
438 | * Release the reference CPU has for the thread.
|
---|
439 | * If there are no other references (e.g. threads calling join),
|
---|
440 | * the thread structure is deallocated.
|
---|
441 | */
|
---|
442 | thread_put(THREAD);
|
---|
443 | break;
|
---|
444 |
|
---|
445 | case Sleeping:
|
---|
446 | /*
|
---|
447 | * Prefer the thread after it's woken up.
|
---|
448 | */
|
---|
449 | THREAD->priority = -1;
|
---|
450 | irq_spinlock_unlock(&THREAD->lock, false);
|
---|
451 | break;
|
---|
452 |
|
---|
453 | default:
|
---|
454 | /*
|
---|
455 | * Entering state is unexpected.
|
---|
456 | */
|
---|
457 | panic("tid%" PRIu64 ": unexpected state %s.",
|
---|
458 | THREAD->tid, thread_states[THREAD->state]);
|
---|
459 | break;
|
---|
460 | }
|
---|
461 |
|
---|
462 | THREAD = NULL;
|
---|
463 | }
|
---|
464 |
|
---|
465 | int rq_index;
|
---|
466 | THREAD = find_best_thread(&rq_index);
|
---|
467 |
|
---|
468 | relink_rq(rq_index);
|
---|
469 |
|
---|
470 | switch_task(THREAD->task);
|
---|
471 |
|
---|
472 | irq_spinlock_lock(&THREAD->lock, false);
|
---|
473 | THREAD->state = Running;
|
---|
474 |
|
---|
475 | #ifdef SCHEDULER_VERBOSE
|
---|
476 | log(LF_OTHER, LVL_DEBUG,
|
---|
477 | "cpu%u: tid %" PRIu64 " (priority=%d, ticks=%" PRIu64
|
---|
478 | ", nrdy=%zu)", CPU->id, THREAD->tid, THREAD->priority,
|
---|
479 | THREAD->ticks, atomic_load(&CPU->nrdy));
|
---|
480 | #endif
|
---|
481 |
|
---|
482 | /*
|
---|
483 | * Some architectures provide late kernel PA2KA(identity)
|
---|
484 | * mapping in a page fault handler. However, the page fault
|
---|
485 | * handler uses the kernel stack of the running thread and
|
---|
486 | * therefore cannot be used to map it. The kernel stack, if
|
---|
487 | * necessary, is to be mapped in before_thread_runs(). This
|
---|
488 | * function must be executed before the switch to the new stack.
|
---|
489 | */
|
---|
490 | before_thread_runs();
|
---|
491 |
|
---|
492 | /*
|
---|
493 | * Copy the knowledge of CPU, TASK, THREAD and preemption counter to
|
---|
494 | * thread's stack.
|
---|
495 | */
|
---|
496 | current_copy(CURRENT, (current_t *) THREAD->kstack);
|
---|
497 |
|
---|
498 | context_restore(&THREAD->saved_context);
|
---|
499 |
|
---|
500 | /* Not reached */
|
---|
501 | }
|
---|
502 |
|
---|
503 | #ifdef CONFIG_SMP
|
---|
504 |
|
---|
505 | static thread_t *steal_thread_from(cpu_t *old_cpu, int i)
|
---|
506 | {
|
---|
507 | runq_t *old_rq = &old_cpu->rq[i];
|
---|
508 | runq_t *new_rq = &CPU->rq[i];
|
---|
509 |
|
---|
510 | ipl_t ipl = interrupts_disable();
|
---|
511 |
|
---|
512 | irq_spinlock_lock(&old_rq->lock, false);
|
---|
513 |
|
---|
514 | /*
|
---|
515 | * If fpu_owner is any thread in the list, its store is seen here thanks to
|
---|
516 | * the runqueue lock.
|
---|
517 | */
|
---|
518 | thread_t *fpu_owner = atomic_load_explicit(&old_cpu->fpu_owner,
|
---|
519 | memory_order_relaxed);
|
---|
520 |
|
---|
521 | /* Search rq from the back */
|
---|
522 | list_foreach_rev(old_rq->rq, rq_link, thread_t, thread) {
|
---|
523 |
|
---|
524 | irq_spinlock_lock(&thread->lock, false);
|
---|
525 |
|
---|
526 | /*
|
---|
527 | * Do not steal CPU-wired threads, threads
|
---|
528 | * already stolen, threads for which migration
|
---|
529 | * was temporarily disabled or threads whose
|
---|
530 | * FPU context is still in the CPU.
|
---|
531 | */
|
---|
532 | if (thread->stolen || thread->nomigrate ||
|
---|
533 | thread == fpu_owner) {
|
---|
534 | irq_spinlock_unlock(&thread->lock, false);
|
---|
535 | continue;
|
---|
536 | }
|
---|
537 |
|
---|
538 | thread->stolen = true;
|
---|
539 | thread->cpu = CPU;
|
---|
540 |
|
---|
541 | irq_spinlock_unlock(&thread->lock, false);
|
---|
542 |
|
---|
543 | /*
|
---|
544 | * Ready thread on local CPU
|
---|
545 | */
|
---|
546 |
|
---|
547 | #ifdef KCPULB_VERBOSE
|
---|
548 | log(LF_OTHER, LVL_DEBUG,
|
---|
549 | "kcpulb%u: TID %" PRIu64 " -> cpu%u, "
|
---|
550 | "nrdy=%ld, avg=%ld", CPU->id, thread->tid,
|
---|
551 | CPU->id, atomic_load(&CPU->nrdy),
|
---|
552 | atomic_load(&nrdy) / config.cpu_active);
|
---|
553 | #endif
|
---|
554 |
|
---|
555 | /* Remove thread from ready queue. */
|
---|
556 | old_rq->n--;
|
---|
557 | list_remove(&thread->rq_link);
|
---|
558 | irq_spinlock_unlock(&old_rq->lock, false);
|
---|
559 |
|
---|
560 | /* Append thread to local queue. */
|
---|
561 | irq_spinlock_lock(&new_rq->lock, false);
|
---|
562 | list_append(&thread->rq_link, &new_rq->rq);
|
---|
563 | new_rq->n++;
|
---|
564 | irq_spinlock_unlock(&new_rq->lock, false);
|
---|
565 |
|
---|
566 | atomic_dec(&old_cpu->nrdy);
|
---|
567 | atomic_inc(&CPU->nrdy);
|
---|
568 | interrupts_restore(ipl);
|
---|
569 | return thread;
|
---|
570 | }
|
---|
571 |
|
---|
572 | irq_spinlock_unlock(&old_rq->lock, false);
|
---|
573 | interrupts_restore(ipl);
|
---|
574 | return NULL;
|
---|
575 | }
|
---|
576 |
|
---|
577 | /** Load balancing thread
|
---|
578 | *
|
---|
579 | * SMP load balancing thread, supervising thread supplies
|
---|
580 | * for the CPU it's wired to.
|
---|
581 | *
|
---|
582 | * @param arg Generic thread argument (unused).
|
---|
583 | *
|
---|
584 | */
|
---|
585 | void kcpulb(void *arg)
|
---|
586 | {
|
---|
587 | size_t average;
|
---|
588 | size_t rdy;
|
---|
589 |
|
---|
590 | loop:
|
---|
591 | /*
|
---|
592 | * Work in 1s intervals.
|
---|
593 | */
|
---|
594 | thread_sleep(1);
|
---|
595 |
|
---|
596 | not_satisfied:
|
---|
597 | /*
|
---|
598 | * Calculate the number of threads that will be migrated/stolen from
|
---|
599 | * other CPU's. Note that situation can have changed between two
|
---|
600 | * passes. Each time get the most up to date counts.
|
---|
601 | *
|
---|
602 | */
|
---|
603 | average = atomic_load(&nrdy) / config.cpu_active + 1;
|
---|
604 | rdy = atomic_load(&CPU->nrdy);
|
---|
605 |
|
---|
606 | if (average <= rdy)
|
---|
607 | goto satisfied;
|
---|
608 |
|
---|
609 | size_t count = average - rdy;
|
---|
610 |
|
---|
611 | /*
|
---|
612 | * Searching least priority queues on all CPU's first and most priority
|
---|
613 | * queues on all CPU's last.
|
---|
614 | */
|
---|
615 | size_t acpu;
|
---|
616 | int rq;
|
---|
617 |
|
---|
618 | for (rq = RQ_COUNT - 1; rq >= 0; rq--) {
|
---|
619 | for (acpu = 0; acpu < config.cpu_active; acpu++) {
|
---|
620 | cpu_t *cpu = &cpus[acpu];
|
---|
621 |
|
---|
622 | /*
|
---|
623 | * Not interested in ourselves.
|
---|
624 | * Doesn't require interrupt disabling for kcpulb has
|
---|
625 | * THREAD_FLAG_WIRED.
|
---|
626 | *
|
---|
627 | */
|
---|
628 | if (CPU == cpu)
|
---|
629 | continue;
|
---|
630 |
|
---|
631 | if (atomic_load(&cpu->nrdy) <= average)
|
---|
632 | continue;
|
---|
633 |
|
---|
634 | if (steal_thread_from(cpu, rq) && --count == 0)
|
---|
635 | goto satisfied;
|
---|
636 | }
|
---|
637 | }
|
---|
638 |
|
---|
639 | if (atomic_load(&CPU->nrdy)) {
|
---|
640 | /*
|
---|
641 | * Be a little bit light-weight and let migrated threads run.
|
---|
642 | *
|
---|
643 | */
|
---|
644 | scheduler();
|
---|
645 | } else {
|
---|
646 | /*
|
---|
647 | * We failed to migrate a single thread.
|
---|
648 | * Give up this turn.
|
---|
649 | *
|
---|
650 | */
|
---|
651 | goto loop;
|
---|
652 | }
|
---|
653 |
|
---|
654 | goto not_satisfied;
|
---|
655 |
|
---|
656 | satisfied:
|
---|
657 | goto loop;
|
---|
658 | }
|
---|
659 | #endif /* CONFIG_SMP */
|
---|
660 |
|
---|
661 | /** Print information about threads & scheduler queues
|
---|
662 | *
|
---|
663 | */
|
---|
664 | void sched_print_list(void)
|
---|
665 | {
|
---|
666 | size_t cpu;
|
---|
667 | for (cpu = 0; cpu < config.cpu_count; cpu++) {
|
---|
668 | if (!cpus[cpu].active)
|
---|
669 | continue;
|
---|
670 |
|
---|
671 | /* Technically a data race, but we don't really care in this case. */
|
---|
672 | int needs_relink = cpus[cpu].relink_deadline - cpus[cpu].current_clock_tick;
|
---|
673 |
|
---|
674 | printf("cpu%u: address=%p, nrdy=%zu, needs_relink=%d\n",
|
---|
675 | cpus[cpu].id, &cpus[cpu], atomic_load(&cpus[cpu].nrdy),
|
---|
676 | needs_relink);
|
---|
677 |
|
---|
678 | unsigned int i;
|
---|
679 | for (i = 0; i < RQ_COUNT; i++) {
|
---|
680 | irq_spinlock_lock(&(cpus[cpu].rq[i].lock), false);
|
---|
681 | if (cpus[cpu].rq[i].n == 0) {
|
---|
682 | irq_spinlock_unlock(&(cpus[cpu].rq[i].lock), false);
|
---|
683 | continue;
|
---|
684 | }
|
---|
685 |
|
---|
686 | printf("\trq[%u]: ", i);
|
---|
687 | list_foreach(cpus[cpu].rq[i].rq, rq_link, thread_t,
|
---|
688 | thread) {
|
---|
689 | printf("%" PRIu64 "(%s) ", thread->tid,
|
---|
690 | thread_states[thread->state]);
|
---|
691 | }
|
---|
692 | printf("\n");
|
---|
693 |
|
---|
694 | irq_spinlock_unlock(&(cpus[cpu].rq[i].lock), false);
|
---|
695 | }
|
---|
696 | }
|
---|
697 | }
|
---|
698 |
|
---|
699 | /** @}
|
---|
700 | */
|
---|