1 | /*
|
---|
2 | * Copyright (C) 2001-2004 Jakub Jermar
|
---|
3 | * All rights reserved.
|
---|
4 | *
|
---|
5 | * Redistribution and use in source and binary forms, with or without
|
---|
6 | * modification, are permitted provided that the following conditions
|
---|
7 | * are met:
|
---|
8 | *
|
---|
9 | * - Redistributions of source code must retain the above copyright
|
---|
10 | * notice, this list of conditions and the following disclaimer.
|
---|
11 | * - Redistributions in binary form must reproduce the above copyright
|
---|
12 | * notice, this list of conditions and the following disclaimer in the
|
---|
13 | * documentation and/or other materials provided with the distribution.
|
---|
14 | * - The name of the author may not be used to endorse or promote products
|
---|
15 | * derived from this software without specific prior written permission.
|
---|
16 | *
|
---|
17 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
---|
18 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
---|
19 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
---|
20 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
---|
21 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
---|
22 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
---|
23 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
---|
24 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
---|
25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
---|
26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
---|
27 | */
|
---|
28 |
|
---|
29 | /** @addtogroup genericproc
|
---|
30 | * @{
|
---|
31 | */
|
---|
32 |
|
---|
33 | /**
|
---|
34 | * @file
|
---|
35 | * @brief Scheduler and load balancing.
|
---|
36 | *
|
---|
37 | * This file contains the scheduler and kcpulb kernel thread which
|
---|
38 | * performs load-balancing of per-CPU run queues.
|
---|
39 | */
|
---|
40 |
|
---|
41 | #include <proc/scheduler.h>
|
---|
42 | #include <proc/thread.h>
|
---|
43 | #include <proc/task.h>
|
---|
44 | #include <mm/frame.h>
|
---|
45 | #include <mm/page.h>
|
---|
46 | #include <mm/as.h>
|
---|
47 | #include <time/delay.h>
|
---|
48 | #include <arch/asm.h>
|
---|
49 | #include <arch/faddr.h>
|
---|
50 | #include <atomic.h>
|
---|
51 | #include <synch/spinlock.h>
|
---|
52 | #include <config.h>
|
---|
53 | #include <context.h>
|
---|
54 | #include <func.h>
|
---|
55 | #include <arch.h>
|
---|
56 | #include <adt/list.h>
|
---|
57 | #include <panic.h>
|
---|
58 | #include <typedefs.h>
|
---|
59 | #include <cpu.h>
|
---|
60 | #include <print.h>
|
---|
61 | #include <debug.h>
|
---|
62 |
|
---|
63 | static void before_task_runs(void);
|
---|
64 | static void before_thread_runs(void);
|
---|
65 | static void after_thread_ran(void);
|
---|
66 | static void scheduler_separated_stack(void);
|
---|
67 |
|
---|
68 | atomic_t nrdy; /**< Number of ready threads in the system. */
|
---|
69 |
|
---|
70 | /** Carry out actions before new task runs. */
|
---|
71 | void before_task_runs(void)
|
---|
72 | {
|
---|
73 | before_task_runs_arch();
|
---|
74 | }
|
---|
75 |
|
---|
76 | /** Take actions before new thread runs.
|
---|
77 | *
|
---|
78 | * Perform actions that need to be
|
---|
79 | * taken before the newly selected
|
---|
80 | * tread is passed control.
|
---|
81 | *
|
---|
82 | * THREAD->lock is locked on entry
|
---|
83 | *
|
---|
84 | */
|
---|
85 | void before_thread_runs(void)
|
---|
86 | {
|
---|
87 | before_thread_runs_arch();
|
---|
88 | #ifdef CONFIG_FPU_LAZY
|
---|
89 | if(THREAD == CPU->fpu_owner)
|
---|
90 | fpu_enable();
|
---|
91 | else
|
---|
92 | fpu_disable();
|
---|
93 | #else
|
---|
94 | fpu_enable();
|
---|
95 | if (THREAD->fpu_context_exists)
|
---|
96 | fpu_context_restore(THREAD->saved_fpu_context);
|
---|
97 | else {
|
---|
98 | fpu_init();
|
---|
99 | THREAD->fpu_context_exists = 1;
|
---|
100 | }
|
---|
101 | #endif
|
---|
102 | }
|
---|
103 |
|
---|
104 | /** Take actions after THREAD had run.
|
---|
105 | *
|
---|
106 | * Perform actions that need to be
|
---|
107 | * taken after the running thread
|
---|
108 | * had been preempted by the scheduler.
|
---|
109 | *
|
---|
110 | * THREAD->lock is locked on entry
|
---|
111 | *
|
---|
112 | */
|
---|
113 | void after_thread_ran(void)
|
---|
114 | {
|
---|
115 | after_thread_ran_arch();
|
---|
116 | }
|
---|
117 |
|
---|
118 | #ifdef CONFIG_FPU_LAZY
|
---|
119 | void scheduler_fpu_lazy_request(void)
|
---|
120 | {
|
---|
121 | restart:
|
---|
122 | fpu_enable();
|
---|
123 | spinlock_lock(&CPU->lock);
|
---|
124 |
|
---|
125 | /* Save old context */
|
---|
126 | if (CPU->fpu_owner != NULL) {
|
---|
127 | spinlock_lock(&CPU->fpu_owner->lock);
|
---|
128 | fpu_context_save(CPU->fpu_owner->saved_fpu_context);
|
---|
129 | /* don't prevent migration */
|
---|
130 | CPU->fpu_owner->fpu_context_engaged = 0;
|
---|
131 | spinlock_unlock(&CPU->fpu_owner->lock);
|
---|
132 | CPU->fpu_owner = NULL;
|
---|
133 | }
|
---|
134 |
|
---|
135 | spinlock_lock(&THREAD->lock);
|
---|
136 | if (THREAD->fpu_context_exists) {
|
---|
137 | fpu_context_restore(THREAD->saved_fpu_context);
|
---|
138 | } else {
|
---|
139 | /* Allocate FPU context */
|
---|
140 | if (!THREAD->saved_fpu_context) {
|
---|
141 | /* Might sleep */
|
---|
142 | spinlock_unlock(&THREAD->lock);
|
---|
143 | spinlock_unlock(&CPU->lock);
|
---|
144 | THREAD->saved_fpu_context = slab_alloc(fpu_context_slab, 0);
|
---|
145 | /* We may have switched CPUs during slab_alloc */
|
---|
146 | goto restart;
|
---|
147 | }
|
---|
148 | fpu_init();
|
---|
149 | THREAD->fpu_context_exists = 1;
|
---|
150 | }
|
---|
151 | CPU->fpu_owner = THREAD;
|
---|
152 | THREAD->fpu_context_engaged = 1;
|
---|
153 | spinlock_unlock(&THREAD->lock);
|
---|
154 |
|
---|
155 | spinlock_unlock(&CPU->lock);
|
---|
156 | }
|
---|
157 | #endif
|
---|
158 |
|
---|
159 | /** Initialize scheduler
|
---|
160 | *
|
---|
161 | * Initialize kernel scheduler.
|
---|
162 | *
|
---|
163 | */
|
---|
164 | void scheduler_init(void)
|
---|
165 | {
|
---|
166 | }
|
---|
167 |
|
---|
168 | /** Get thread to be scheduled
|
---|
169 | *
|
---|
170 | * Get the optimal thread to be scheduled
|
---|
171 | * according to thread accounting and scheduler
|
---|
172 | * policy.
|
---|
173 | *
|
---|
174 | * @return Thread to be scheduled.
|
---|
175 | *
|
---|
176 | */
|
---|
177 | static thread_t *find_best_thread(void)
|
---|
178 | {
|
---|
179 | thread_t *t;
|
---|
180 | runq_t *r;
|
---|
181 | int i;
|
---|
182 |
|
---|
183 | ASSERT(CPU != NULL);
|
---|
184 |
|
---|
185 | loop:
|
---|
186 | interrupts_enable();
|
---|
187 |
|
---|
188 | if (atomic_get(&CPU->nrdy) == 0) {
|
---|
189 | /*
|
---|
190 | * For there was nothing to run, the CPU goes to sleep
|
---|
191 | * until a hardware interrupt or an IPI comes.
|
---|
192 | * This improves energy saving and hyperthreading.
|
---|
193 | */
|
---|
194 |
|
---|
195 | /*
|
---|
196 | * An interrupt might occur right now and wake up a thread.
|
---|
197 | * In such case, the CPU will continue to go to sleep
|
---|
198 | * even though there is a runnable thread.
|
---|
199 | */
|
---|
200 |
|
---|
201 | cpu_sleep();
|
---|
202 | goto loop;
|
---|
203 | }
|
---|
204 |
|
---|
205 | interrupts_disable();
|
---|
206 |
|
---|
207 | for (i = 0; i<RQ_COUNT; i++) {
|
---|
208 | r = &CPU->rq[i];
|
---|
209 | spinlock_lock(&r->lock);
|
---|
210 | if (r->n == 0) {
|
---|
211 | /*
|
---|
212 | * If this queue is empty, try a lower-priority queue.
|
---|
213 | */
|
---|
214 | spinlock_unlock(&r->lock);
|
---|
215 | continue;
|
---|
216 | }
|
---|
217 |
|
---|
218 | atomic_dec(&CPU->nrdy);
|
---|
219 | atomic_dec(&nrdy);
|
---|
220 | r->n--;
|
---|
221 |
|
---|
222 | /*
|
---|
223 | * Take the first thread from the queue.
|
---|
224 | */
|
---|
225 | t = list_get_instance(r->rq_head.next, thread_t, rq_link);
|
---|
226 | list_remove(&t->rq_link);
|
---|
227 |
|
---|
228 | spinlock_unlock(&r->lock);
|
---|
229 |
|
---|
230 | spinlock_lock(&t->lock);
|
---|
231 | t->cpu = CPU;
|
---|
232 |
|
---|
233 | t->ticks = us2ticks((i+1)*10000);
|
---|
234 | t->priority = i; /* correct rq index */
|
---|
235 |
|
---|
236 | /*
|
---|
237 | * Clear the THREAD_FLAG_STOLEN flag so that t can be migrated
|
---|
238 | * when load balancing needs emerge.
|
---|
239 | */
|
---|
240 | t->flags &= ~THREAD_FLAG_STOLEN;
|
---|
241 | spinlock_unlock(&t->lock);
|
---|
242 |
|
---|
243 | return t;
|
---|
244 | }
|
---|
245 | goto loop;
|
---|
246 |
|
---|
247 | }
|
---|
248 |
|
---|
249 | /** Prevent rq starvation
|
---|
250 | *
|
---|
251 | * Prevent low priority threads from starving in rq's.
|
---|
252 | *
|
---|
253 | * When the function decides to relink rq's, it reconnects
|
---|
254 | * respective pointers so that in result threads with 'pri'
|
---|
255 | * greater or equal start are moved to a higher-priority queue.
|
---|
256 | *
|
---|
257 | * @param start Threshold priority.
|
---|
258 | *
|
---|
259 | */
|
---|
260 | static void relink_rq(int start)
|
---|
261 | {
|
---|
262 | link_t head;
|
---|
263 | runq_t *r;
|
---|
264 | int i, n;
|
---|
265 |
|
---|
266 | list_initialize(&head);
|
---|
267 | spinlock_lock(&CPU->lock);
|
---|
268 | if (CPU->needs_relink > NEEDS_RELINK_MAX) {
|
---|
269 | for (i = start; i<RQ_COUNT-1; i++) {
|
---|
270 | /* remember and empty rq[i + 1] */
|
---|
271 | r = &CPU->rq[i + 1];
|
---|
272 | spinlock_lock(&r->lock);
|
---|
273 | list_concat(&head, &r->rq_head);
|
---|
274 | n = r->n;
|
---|
275 | r->n = 0;
|
---|
276 | spinlock_unlock(&r->lock);
|
---|
277 |
|
---|
278 | /* append rq[i + 1] to rq[i] */
|
---|
279 | r = &CPU->rq[i];
|
---|
280 | spinlock_lock(&r->lock);
|
---|
281 | list_concat(&r->rq_head, &head);
|
---|
282 | r->n += n;
|
---|
283 | spinlock_unlock(&r->lock);
|
---|
284 | }
|
---|
285 | CPU->needs_relink = 0;
|
---|
286 | }
|
---|
287 | spinlock_unlock(&CPU->lock);
|
---|
288 |
|
---|
289 | }
|
---|
290 |
|
---|
291 | /** The scheduler
|
---|
292 | *
|
---|
293 | * The thread scheduling procedure.
|
---|
294 | * Passes control directly to
|
---|
295 | * scheduler_separated_stack().
|
---|
296 | *
|
---|
297 | */
|
---|
298 | void scheduler(void)
|
---|
299 | {
|
---|
300 | volatile ipl_t ipl;
|
---|
301 |
|
---|
302 | ASSERT(CPU != NULL);
|
---|
303 |
|
---|
304 | ipl = interrupts_disable();
|
---|
305 |
|
---|
306 | if (atomic_get(&haltstate))
|
---|
307 | halt();
|
---|
308 |
|
---|
309 | if (THREAD) {
|
---|
310 | spinlock_lock(&THREAD->lock);
|
---|
311 | #ifndef CONFIG_FPU_LAZY
|
---|
312 | fpu_context_save(THREAD->saved_fpu_context);
|
---|
313 | #endif
|
---|
314 | if (!context_save(&THREAD->saved_context)) {
|
---|
315 | /*
|
---|
316 | * This is the place where threads leave scheduler();
|
---|
317 | */
|
---|
318 | spinlock_unlock(&THREAD->lock);
|
---|
319 | interrupts_restore(THREAD->saved_context.ipl);
|
---|
320 |
|
---|
321 | return;
|
---|
322 | }
|
---|
323 |
|
---|
324 | /*
|
---|
325 | * Interrupt priority level of preempted thread is recorded here
|
---|
326 | * to facilitate scheduler() invocations from interrupts_disable()'d
|
---|
327 | * code (e.g. waitq_sleep_timeout()).
|
---|
328 | */
|
---|
329 | THREAD->saved_context.ipl = ipl;
|
---|
330 | }
|
---|
331 |
|
---|
332 | /*
|
---|
333 | * Through the 'THE' structure, we keep track of THREAD, TASK, CPU, VM
|
---|
334 | * and preemption counter. At this point THE could be coming either
|
---|
335 | * from THREAD's or CPU's stack.
|
---|
336 | */
|
---|
337 | the_copy(THE, (the_t *) CPU->stack);
|
---|
338 |
|
---|
339 | /*
|
---|
340 | * We may not keep the old stack.
|
---|
341 | * Reason: If we kept the old stack and got blocked, for instance, in
|
---|
342 | * find_best_thread(), the old thread could get rescheduled by another
|
---|
343 | * CPU and overwrite the part of its own stack that was also used by
|
---|
344 | * the scheduler on this CPU.
|
---|
345 | *
|
---|
346 | * Moreover, we have to bypass the compiler-generated POP sequence
|
---|
347 | * which is fooled by SP being set to the very top of the stack.
|
---|
348 | * Therefore the scheduler() function continues in
|
---|
349 | * scheduler_separated_stack().
|
---|
350 | */
|
---|
351 | context_save(&CPU->saved_context);
|
---|
352 | context_set(&CPU->saved_context, FADDR(scheduler_separated_stack),
|
---|
353 | (uintptr_t) CPU->stack, CPU_STACK_SIZE);
|
---|
354 | context_restore(&CPU->saved_context);
|
---|
355 | /* not reached */
|
---|
356 | }
|
---|
357 |
|
---|
358 | /** Scheduler stack switch wrapper
|
---|
359 | *
|
---|
360 | * Second part of the scheduler() function
|
---|
361 | * using new stack. Handling the actual context
|
---|
362 | * switch to a new thread.
|
---|
363 | *
|
---|
364 | * Assume THREAD->lock is held.
|
---|
365 | */
|
---|
366 | void scheduler_separated_stack(void)
|
---|
367 | {
|
---|
368 | int priority;
|
---|
369 |
|
---|
370 | ASSERT(CPU != NULL);
|
---|
371 |
|
---|
372 | if (THREAD) {
|
---|
373 | /* must be run after the switch to scheduler stack */
|
---|
374 | after_thread_ran();
|
---|
375 |
|
---|
376 | switch (THREAD->state) {
|
---|
377 | case Running:
|
---|
378 | spinlock_unlock(&THREAD->lock);
|
---|
379 | thread_ready(THREAD);
|
---|
380 | break;
|
---|
381 |
|
---|
382 | case Exiting:
|
---|
383 | repeat:
|
---|
384 | if (THREAD->detached) {
|
---|
385 | thread_destroy(THREAD);
|
---|
386 | } else {
|
---|
387 | /*
|
---|
388 | * The thread structure is kept allocated until somebody
|
---|
389 | * calls thread_detach() on it.
|
---|
390 | */
|
---|
391 | if (!spinlock_trylock(&THREAD->join_wq.lock)) {
|
---|
392 | /*
|
---|
393 | * Avoid deadlock.
|
---|
394 | */
|
---|
395 | spinlock_unlock(&THREAD->lock);
|
---|
396 | delay(10);
|
---|
397 | spinlock_lock(&THREAD->lock);
|
---|
398 | goto repeat;
|
---|
399 | }
|
---|
400 | _waitq_wakeup_unsafe(&THREAD->join_wq, false);
|
---|
401 | spinlock_unlock(&THREAD->join_wq.lock);
|
---|
402 |
|
---|
403 | THREAD->state = Undead;
|
---|
404 | spinlock_unlock(&THREAD->lock);
|
---|
405 | }
|
---|
406 | break;
|
---|
407 |
|
---|
408 | case Sleeping:
|
---|
409 | /*
|
---|
410 | * Prefer the thread after it's woken up.
|
---|
411 | */
|
---|
412 | THREAD->priority = -1;
|
---|
413 |
|
---|
414 | /*
|
---|
415 | * We need to release wq->lock which we locked in waitq_sleep().
|
---|
416 | * Address of wq->lock is kept in THREAD->sleep_queue.
|
---|
417 | */
|
---|
418 | spinlock_unlock(&THREAD->sleep_queue->lock);
|
---|
419 |
|
---|
420 | /*
|
---|
421 | * Check for possible requests for out-of-context invocation.
|
---|
422 | */
|
---|
423 | if (THREAD->call_me) {
|
---|
424 | THREAD->call_me(THREAD->call_me_with);
|
---|
425 | THREAD->call_me = NULL;
|
---|
426 | THREAD->call_me_with = NULL;
|
---|
427 | }
|
---|
428 |
|
---|
429 | spinlock_unlock(&THREAD->lock);
|
---|
430 |
|
---|
431 | break;
|
---|
432 |
|
---|
433 | default:
|
---|
434 | /*
|
---|
435 | * Entering state is unexpected.
|
---|
436 | */
|
---|
437 | panic("tid%d: unexpected state %s\n", THREAD->tid, thread_states[THREAD->state]);
|
---|
438 | break;
|
---|
439 | }
|
---|
440 |
|
---|
441 | THREAD = NULL;
|
---|
442 | }
|
---|
443 |
|
---|
444 | THREAD = find_best_thread();
|
---|
445 |
|
---|
446 | spinlock_lock(&THREAD->lock);
|
---|
447 | priority = THREAD->priority;
|
---|
448 | spinlock_unlock(&THREAD->lock);
|
---|
449 |
|
---|
450 | relink_rq(priority);
|
---|
451 |
|
---|
452 | /*
|
---|
453 | * If both the old and the new task are the same, lots of work is avoided.
|
---|
454 | */
|
---|
455 | if (TASK != THREAD->task) {
|
---|
456 | as_t *as1 = NULL;
|
---|
457 | as_t *as2;
|
---|
458 |
|
---|
459 | if (TASK) {
|
---|
460 | spinlock_lock(&TASK->lock);
|
---|
461 | as1 = TASK->as;
|
---|
462 | spinlock_unlock(&TASK->lock);
|
---|
463 | }
|
---|
464 |
|
---|
465 | spinlock_lock(&THREAD->task->lock);
|
---|
466 | as2 = THREAD->task->as;
|
---|
467 | spinlock_unlock(&THREAD->task->lock);
|
---|
468 |
|
---|
469 | /*
|
---|
470 | * Note that it is possible for two tasks to share one address space.
|
---|
471 | */
|
---|
472 | if (as1 != as2) {
|
---|
473 | /*
|
---|
474 | * Both tasks and address spaces are different.
|
---|
475 | * Replace the old one with the new one.
|
---|
476 | */
|
---|
477 | as_switch(as1, as2);
|
---|
478 | }
|
---|
479 | TASK = THREAD->task;
|
---|
480 | before_task_runs();
|
---|
481 | }
|
---|
482 |
|
---|
483 | spinlock_lock(&THREAD->lock);
|
---|
484 | THREAD->state = Running;
|
---|
485 |
|
---|
486 | #ifdef SCHEDULER_VERBOSE
|
---|
487 | printf("cpu%d: tid %d (priority=%d,ticks=%lld,nrdy=%ld)\n",
|
---|
488 | CPU->id, THREAD->tid, THREAD->priority, THREAD->ticks, atomic_get(&CPU->nrdy));
|
---|
489 | #endif
|
---|
490 |
|
---|
491 | /*
|
---|
492 | * Some architectures provide late kernel PA2KA(identity)
|
---|
493 | * mapping in a page fault handler. However, the page fault
|
---|
494 | * handler uses the kernel stack of the running thread and
|
---|
495 | * therefore cannot be used to map it. The kernel stack, if
|
---|
496 | * necessary, is to be mapped in before_thread_runs(). This
|
---|
497 | * function must be executed before the switch to the new stack.
|
---|
498 | */
|
---|
499 | before_thread_runs();
|
---|
500 |
|
---|
501 | /*
|
---|
502 | * Copy the knowledge of CPU, TASK, THREAD and preemption counter to thread's stack.
|
---|
503 | */
|
---|
504 | the_copy(THE, (the_t *) THREAD->kstack);
|
---|
505 |
|
---|
506 | context_restore(&THREAD->saved_context);
|
---|
507 | /* not reached */
|
---|
508 | }
|
---|
509 |
|
---|
510 | #ifdef CONFIG_SMP
|
---|
511 | /** Load balancing thread
|
---|
512 | *
|
---|
513 | * SMP load balancing thread, supervising thread supplies
|
---|
514 | * for the CPU it's wired to.
|
---|
515 | *
|
---|
516 | * @param arg Generic thread argument (unused).
|
---|
517 | *
|
---|
518 | */
|
---|
519 | void kcpulb(void *arg)
|
---|
520 | {
|
---|
521 | thread_t *t;
|
---|
522 | int count, average, i, j, k = 0;
|
---|
523 | ipl_t ipl;
|
---|
524 |
|
---|
525 | /*
|
---|
526 | * Detach kcpulb as nobody will call thread_join_timeout() on it.
|
---|
527 | */
|
---|
528 | thread_detach(THREAD);
|
---|
529 |
|
---|
530 | loop:
|
---|
531 | /*
|
---|
532 | * Work in 1s intervals.
|
---|
533 | */
|
---|
534 | thread_sleep(1);
|
---|
535 |
|
---|
536 | not_satisfied:
|
---|
537 | /*
|
---|
538 | * Calculate the number of threads that will be migrated/stolen from
|
---|
539 | * other CPU's. Note that situation can have changed between two
|
---|
540 | * passes. Each time get the most up to date counts.
|
---|
541 | */
|
---|
542 | average = atomic_get(&nrdy) / config.cpu_active + 1;
|
---|
543 | count = average - atomic_get(&CPU->nrdy);
|
---|
544 |
|
---|
545 | if (count <= 0)
|
---|
546 | goto satisfied;
|
---|
547 |
|
---|
548 | /*
|
---|
549 | * Searching least priority queues on all CPU's first and most priority queues on all CPU's last.
|
---|
550 | */
|
---|
551 | for (j=RQ_COUNT-1; j >= 0; j--) {
|
---|
552 | for (i=0; i < config.cpu_active; i++) {
|
---|
553 | link_t *l;
|
---|
554 | runq_t *r;
|
---|
555 | cpu_t *cpu;
|
---|
556 |
|
---|
557 | cpu = &cpus[(i + k) % config.cpu_active];
|
---|
558 |
|
---|
559 | /*
|
---|
560 | * Not interested in ourselves.
|
---|
561 | * Doesn't require interrupt disabling for kcpulb has THREAD_FLAG_WIRED.
|
---|
562 | */
|
---|
563 | if (CPU == cpu)
|
---|
564 | continue;
|
---|
565 | if (atomic_get(&cpu->nrdy) <= average)
|
---|
566 | continue;
|
---|
567 |
|
---|
568 | ipl = interrupts_disable();
|
---|
569 | r = &cpu->rq[j];
|
---|
570 | spinlock_lock(&r->lock);
|
---|
571 | if (r->n == 0) {
|
---|
572 | spinlock_unlock(&r->lock);
|
---|
573 | interrupts_restore(ipl);
|
---|
574 | continue;
|
---|
575 | }
|
---|
576 |
|
---|
577 | t = NULL;
|
---|
578 | l = r->rq_head.prev; /* search rq from the back */
|
---|
579 | while (l != &r->rq_head) {
|
---|
580 | t = list_get_instance(l, thread_t, rq_link);
|
---|
581 | /*
|
---|
582 | * We don't want to steal CPU-wired threads neither threads already
|
---|
583 | * stolen. The latter prevents threads from migrating between CPU's
|
---|
584 | * without ever being run. We don't want to steal threads whose FPU
|
---|
585 | * context is still in CPU.
|
---|
586 | */
|
---|
587 | spinlock_lock(&t->lock);
|
---|
588 | if ((!(t->flags & (THREAD_FLAG_WIRED | THREAD_FLAG_STOLEN))) &&
|
---|
589 | (!(t->fpu_context_engaged)) ) {
|
---|
590 | /*
|
---|
591 | * Remove t from r.
|
---|
592 | */
|
---|
593 | spinlock_unlock(&t->lock);
|
---|
594 |
|
---|
595 | atomic_dec(&cpu->nrdy);
|
---|
596 | atomic_dec(&nrdy);
|
---|
597 |
|
---|
598 | r->n--;
|
---|
599 | list_remove(&t->rq_link);
|
---|
600 |
|
---|
601 | break;
|
---|
602 | }
|
---|
603 | spinlock_unlock(&t->lock);
|
---|
604 | l = l->prev;
|
---|
605 | t = NULL;
|
---|
606 | }
|
---|
607 | spinlock_unlock(&r->lock);
|
---|
608 |
|
---|
609 | if (t) {
|
---|
610 | /*
|
---|
611 | * Ready t on local CPU
|
---|
612 | */
|
---|
613 | spinlock_lock(&t->lock);
|
---|
614 | #ifdef KCPULB_VERBOSE
|
---|
615 | printf("kcpulb%d: TID %d -> cpu%d, nrdy=%ld, avg=%nd\n",
|
---|
616 | CPU->id, t->tid, CPU->id, atomic_get(&CPU->nrdy),
|
---|
617 | atomic_get(&nrdy) / config.cpu_active);
|
---|
618 | #endif
|
---|
619 | t->flags |= THREAD_FLAG_STOLEN;
|
---|
620 | t->state = Entering;
|
---|
621 | spinlock_unlock(&t->lock);
|
---|
622 |
|
---|
623 | thread_ready(t);
|
---|
624 |
|
---|
625 | interrupts_restore(ipl);
|
---|
626 |
|
---|
627 | if (--count == 0)
|
---|
628 | goto satisfied;
|
---|
629 |
|
---|
630 | /*
|
---|
631 | * We are not satisfied yet, focus on another CPU next time.
|
---|
632 | */
|
---|
633 | k++;
|
---|
634 |
|
---|
635 | continue;
|
---|
636 | }
|
---|
637 | interrupts_restore(ipl);
|
---|
638 | }
|
---|
639 | }
|
---|
640 |
|
---|
641 | if (atomic_get(&CPU->nrdy)) {
|
---|
642 | /*
|
---|
643 | * Be a little bit light-weight and let migrated threads run.
|
---|
644 | */
|
---|
645 | scheduler();
|
---|
646 | } else {
|
---|
647 | /*
|
---|
648 | * We failed to migrate a single thread.
|
---|
649 | * Give up this turn.
|
---|
650 | */
|
---|
651 | goto loop;
|
---|
652 | }
|
---|
653 |
|
---|
654 | goto not_satisfied;
|
---|
655 |
|
---|
656 | satisfied:
|
---|
657 | goto loop;
|
---|
658 | }
|
---|
659 |
|
---|
660 | #endif /* CONFIG_SMP */
|
---|
661 |
|
---|
662 |
|
---|
663 | /** Print information about threads & scheduler queues */
|
---|
664 | void sched_print_list(void)
|
---|
665 | {
|
---|
666 | ipl_t ipl;
|
---|
667 | int cpu,i;
|
---|
668 | runq_t *r;
|
---|
669 | thread_t *t;
|
---|
670 | link_t *cur;
|
---|
671 |
|
---|
672 | /* We are going to mess with scheduler structures,
|
---|
673 | * let's not be interrupted */
|
---|
674 | ipl = interrupts_disable();
|
---|
675 | for (cpu=0;cpu < config.cpu_count; cpu++) {
|
---|
676 |
|
---|
677 | if (!cpus[cpu].active)
|
---|
678 | continue;
|
---|
679 |
|
---|
680 | spinlock_lock(&cpus[cpu].lock);
|
---|
681 | printf("cpu%d: address=%p, nrdy=%ld, needs_relink=%ld\n",
|
---|
682 | cpus[cpu].id, &cpus[cpu], atomic_get(&cpus[cpu].nrdy), cpus[cpu].needs_relink);
|
---|
683 |
|
---|
684 | for (i=0; i<RQ_COUNT; i++) {
|
---|
685 | r = &cpus[cpu].rq[i];
|
---|
686 | spinlock_lock(&r->lock);
|
---|
687 | if (!r->n) {
|
---|
688 | spinlock_unlock(&r->lock);
|
---|
689 | continue;
|
---|
690 | }
|
---|
691 | printf("\trq[%d]: ", i);
|
---|
692 | for (cur=r->rq_head.next; cur!=&r->rq_head; cur=cur->next) {
|
---|
693 | t = list_get_instance(cur, thread_t, rq_link);
|
---|
694 | printf("%d(%s) ", t->tid,
|
---|
695 | thread_states[t->state]);
|
---|
696 | }
|
---|
697 | printf("\n");
|
---|
698 | spinlock_unlock(&r->lock);
|
---|
699 | }
|
---|
700 | spinlock_unlock(&cpus[cpu].lock);
|
---|
701 | }
|
---|
702 |
|
---|
703 | interrupts_restore(ipl);
|
---|
704 | }
|
---|
705 |
|
---|
706 | /** @}
|
---|
707 | */
|
---|