source: mainline/kernel/generic/src/proc/scheduler.c@ 06e1e95

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since 06e1e95 was 06e1e95, checked in by Jakub Jermar <jakub@…>, 19 years ago

C99 compliant header guards (hopefully) everywhere in the kernel.
Formatting and indentation changes.
Small improvements in sparc64.

  • Property mode set to 100644
File size: 15.9 KB
Line 
1/*
2 * Copyright (C) 2001-2004 Jakub Jermar
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/** @addtogroup genericproc
30 * @{
31 */
32
33/**
34 * @file
35 * @brief Scheduler and load balancing.
36 *
37 * This file contains the scheduler and kcpulb kernel thread which
38 * performs load-balancing of per-CPU run queues.
39 */
40
41#include <proc/scheduler.h>
42#include <proc/thread.h>
43#include <proc/task.h>
44#include <mm/frame.h>
45#include <mm/page.h>
46#include <mm/as.h>
47#include <time/delay.h>
48#include <arch/asm.h>
49#include <arch/faddr.h>
50#include <atomic.h>
51#include <synch/spinlock.h>
52#include <config.h>
53#include <context.h>
54#include <func.h>
55#include <arch.h>
56#include <adt/list.h>
57#include <panic.h>
58#include <typedefs.h>
59#include <cpu.h>
60#include <print.h>
61#include <debug.h>
62
63static void before_task_runs(void);
64static void before_thread_runs(void);
65static void after_thread_ran(void);
66static void scheduler_separated_stack(void);
67
68atomic_t nrdy; /**< Number of ready threads in the system. */
69
70/** Carry out actions before new task runs. */
71void before_task_runs(void)
72{
73 before_task_runs_arch();
74}
75
76/** Take actions before new thread runs.
77 *
78 * Perform actions that need to be
79 * taken before the newly selected
80 * tread is passed control.
81 *
82 * THREAD->lock is locked on entry
83 *
84 */
85void before_thread_runs(void)
86{
87 before_thread_runs_arch();
88#ifdef CONFIG_FPU_LAZY
89 if(THREAD == CPU->fpu_owner)
90 fpu_enable();
91 else
92 fpu_disable();
93#else
94 fpu_enable();
95 if (THREAD->fpu_context_exists)
96 fpu_context_restore(THREAD->saved_fpu_context);
97 else {
98 fpu_init();
99 THREAD->fpu_context_exists = 1;
100 }
101#endif
102}
103
104/** Take actions after THREAD had run.
105 *
106 * Perform actions that need to be
107 * taken after the running thread
108 * had been preempted by the scheduler.
109 *
110 * THREAD->lock is locked on entry
111 *
112 */
113void after_thread_ran(void)
114{
115 after_thread_ran_arch();
116}
117
118#ifdef CONFIG_FPU_LAZY
119void scheduler_fpu_lazy_request(void)
120{
121restart:
122 fpu_enable();
123 spinlock_lock(&CPU->lock);
124
125 /* Save old context */
126 if (CPU->fpu_owner != NULL) {
127 spinlock_lock(&CPU->fpu_owner->lock);
128 fpu_context_save(CPU->fpu_owner->saved_fpu_context);
129 /* don't prevent migration */
130 CPU->fpu_owner->fpu_context_engaged = 0;
131 spinlock_unlock(&CPU->fpu_owner->lock);
132 CPU->fpu_owner = NULL;
133 }
134
135 spinlock_lock(&THREAD->lock);
136 if (THREAD->fpu_context_exists) {
137 fpu_context_restore(THREAD->saved_fpu_context);
138 } else {
139 /* Allocate FPU context */
140 if (!THREAD->saved_fpu_context) {
141 /* Might sleep */
142 spinlock_unlock(&THREAD->lock);
143 spinlock_unlock(&CPU->lock);
144 THREAD->saved_fpu_context = slab_alloc(fpu_context_slab, 0);
145 /* We may have switched CPUs during slab_alloc */
146 goto restart;
147 }
148 fpu_init();
149 THREAD->fpu_context_exists = 1;
150 }
151 CPU->fpu_owner = THREAD;
152 THREAD->fpu_context_engaged = 1;
153 spinlock_unlock(&THREAD->lock);
154
155 spinlock_unlock(&CPU->lock);
156}
157#endif
158
159/** Initialize scheduler
160 *
161 * Initialize kernel scheduler.
162 *
163 */
164void scheduler_init(void)
165{
166}
167
168/** Get thread to be scheduled
169 *
170 * Get the optimal thread to be scheduled
171 * according to thread accounting and scheduler
172 * policy.
173 *
174 * @return Thread to be scheduled.
175 *
176 */
177static thread_t *find_best_thread(void)
178{
179 thread_t *t;
180 runq_t *r;
181 int i;
182
183 ASSERT(CPU != NULL);
184
185loop:
186 interrupts_enable();
187
188 if (atomic_get(&CPU->nrdy) == 0) {
189 /*
190 * For there was nothing to run, the CPU goes to sleep
191 * until a hardware interrupt or an IPI comes.
192 * This improves energy saving and hyperthreading.
193 */
194
195 /*
196 * An interrupt might occur right now and wake up a thread.
197 * In such case, the CPU will continue to go to sleep
198 * even though there is a runnable thread.
199 */
200
201 cpu_sleep();
202 goto loop;
203 }
204
205 interrupts_disable();
206
207 for (i = 0; i<RQ_COUNT; i++) {
208 r = &CPU->rq[i];
209 spinlock_lock(&r->lock);
210 if (r->n == 0) {
211 /*
212 * If this queue is empty, try a lower-priority queue.
213 */
214 spinlock_unlock(&r->lock);
215 continue;
216 }
217
218 atomic_dec(&CPU->nrdy);
219 atomic_dec(&nrdy);
220 r->n--;
221
222 /*
223 * Take the first thread from the queue.
224 */
225 t = list_get_instance(r->rq_head.next, thread_t, rq_link);
226 list_remove(&t->rq_link);
227
228 spinlock_unlock(&r->lock);
229
230 spinlock_lock(&t->lock);
231 t->cpu = CPU;
232
233 t->ticks = us2ticks((i+1)*10000);
234 t->priority = i; /* correct rq index */
235
236 /*
237 * Clear the THREAD_FLAG_STOLEN flag so that t can be migrated
238 * when load balancing needs emerge.
239 */
240 t->flags &= ~THREAD_FLAG_STOLEN;
241 spinlock_unlock(&t->lock);
242
243 return t;
244 }
245 goto loop;
246
247}
248
249/** Prevent rq starvation
250 *
251 * Prevent low priority threads from starving in rq's.
252 *
253 * When the function decides to relink rq's, it reconnects
254 * respective pointers so that in result threads with 'pri'
255 * greater or equal start are moved to a higher-priority queue.
256 *
257 * @param start Threshold priority.
258 *
259 */
260static void relink_rq(int start)
261{
262 link_t head;
263 runq_t *r;
264 int i, n;
265
266 list_initialize(&head);
267 spinlock_lock(&CPU->lock);
268 if (CPU->needs_relink > NEEDS_RELINK_MAX) {
269 for (i = start; i<RQ_COUNT-1; i++) {
270 /* remember and empty rq[i + 1] */
271 r = &CPU->rq[i + 1];
272 spinlock_lock(&r->lock);
273 list_concat(&head, &r->rq_head);
274 n = r->n;
275 r->n = 0;
276 spinlock_unlock(&r->lock);
277
278 /* append rq[i + 1] to rq[i] */
279 r = &CPU->rq[i];
280 spinlock_lock(&r->lock);
281 list_concat(&r->rq_head, &head);
282 r->n += n;
283 spinlock_unlock(&r->lock);
284 }
285 CPU->needs_relink = 0;
286 }
287 spinlock_unlock(&CPU->lock);
288
289}
290
291/** The scheduler
292 *
293 * The thread scheduling procedure.
294 * Passes control directly to
295 * scheduler_separated_stack().
296 *
297 */
298void scheduler(void)
299{
300 volatile ipl_t ipl;
301
302 ASSERT(CPU != NULL);
303
304 ipl = interrupts_disable();
305
306 if (atomic_get(&haltstate))
307 halt();
308
309 if (THREAD) {
310 spinlock_lock(&THREAD->lock);
311#ifndef CONFIG_FPU_LAZY
312 fpu_context_save(THREAD->saved_fpu_context);
313#endif
314 if (!context_save(&THREAD->saved_context)) {
315 /*
316 * This is the place where threads leave scheduler();
317 */
318 spinlock_unlock(&THREAD->lock);
319 interrupts_restore(THREAD->saved_context.ipl);
320
321 return;
322 }
323
324 /*
325 * Interrupt priority level of preempted thread is recorded here
326 * to facilitate scheduler() invocations from interrupts_disable()'d
327 * code (e.g. waitq_sleep_timeout()).
328 */
329 THREAD->saved_context.ipl = ipl;
330 }
331
332 /*
333 * Through the 'THE' structure, we keep track of THREAD, TASK, CPU, VM
334 * and preemption counter. At this point THE could be coming either
335 * from THREAD's or CPU's stack.
336 */
337 the_copy(THE, (the_t *) CPU->stack);
338
339 /*
340 * We may not keep the old stack.
341 * Reason: If we kept the old stack and got blocked, for instance, in
342 * find_best_thread(), the old thread could get rescheduled by another
343 * CPU and overwrite the part of its own stack that was also used by
344 * the scheduler on this CPU.
345 *
346 * Moreover, we have to bypass the compiler-generated POP sequence
347 * which is fooled by SP being set to the very top of the stack.
348 * Therefore the scheduler() function continues in
349 * scheduler_separated_stack().
350 */
351 context_save(&CPU->saved_context);
352 context_set(&CPU->saved_context, FADDR(scheduler_separated_stack),
353 (uintptr_t) CPU->stack, CPU_STACK_SIZE);
354 context_restore(&CPU->saved_context);
355 /* not reached */
356}
357
358/** Scheduler stack switch wrapper
359 *
360 * Second part of the scheduler() function
361 * using new stack. Handling the actual context
362 * switch to a new thread.
363 *
364 * Assume THREAD->lock is held.
365 */
366void scheduler_separated_stack(void)
367{
368 int priority;
369
370 ASSERT(CPU != NULL);
371
372 if (THREAD) {
373 /* must be run after the switch to scheduler stack */
374 after_thread_ran();
375
376 switch (THREAD->state) {
377 case Running:
378 spinlock_unlock(&THREAD->lock);
379 thread_ready(THREAD);
380 break;
381
382 case Exiting:
383repeat:
384 if (THREAD->detached) {
385 thread_destroy(THREAD);
386 } else {
387 /*
388 * The thread structure is kept allocated until somebody
389 * calls thread_detach() on it.
390 */
391 if (!spinlock_trylock(&THREAD->join_wq.lock)) {
392 /*
393 * Avoid deadlock.
394 */
395 spinlock_unlock(&THREAD->lock);
396 delay(10);
397 spinlock_lock(&THREAD->lock);
398 goto repeat;
399 }
400 _waitq_wakeup_unsafe(&THREAD->join_wq, false);
401 spinlock_unlock(&THREAD->join_wq.lock);
402
403 THREAD->state = Undead;
404 spinlock_unlock(&THREAD->lock);
405 }
406 break;
407
408 case Sleeping:
409 /*
410 * Prefer the thread after it's woken up.
411 */
412 THREAD->priority = -1;
413
414 /*
415 * We need to release wq->lock which we locked in waitq_sleep().
416 * Address of wq->lock is kept in THREAD->sleep_queue.
417 */
418 spinlock_unlock(&THREAD->sleep_queue->lock);
419
420 /*
421 * Check for possible requests for out-of-context invocation.
422 */
423 if (THREAD->call_me) {
424 THREAD->call_me(THREAD->call_me_with);
425 THREAD->call_me = NULL;
426 THREAD->call_me_with = NULL;
427 }
428
429 spinlock_unlock(&THREAD->lock);
430
431 break;
432
433 default:
434 /*
435 * Entering state is unexpected.
436 */
437 panic("tid%d: unexpected state %s\n", THREAD->tid, thread_states[THREAD->state]);
438 break;
439 }
440
441 THREAD = NULL;
442 }
443
444 THREAD = find_best_thread();
445
446 spinlock_lock(&THREAD->lock);
447 priority = THREAD->priority;
448 spinlock_unlock(&THREAD->lock);
449
450 relink_rq(priority);
451
452 /*
453 * If both the old and the new task are the same, lots of work is avoided.
454 */
455 if (TASK != THREAD->task) {
456 as_t *as1 = NULL;
457 as_t *as2;
458
459 if (TASK) {
460 spinlock_lock(&TASK->lock);
461 as1 = TASK->as;
462 spinlock_unlock(&TASK->lock);
463 }
464
465 spinlock_lock(&THREAD->task->lock);
466 as2 = THREAD->task->as;
467 spinlock_unlock(&THREAD->task->lock);
468
469 /*
470 * Note that it is possible for two tasks to share one address space.
471 */
472 if (as1 != as2) {
473 /*
474 * Both tasks and address spaces are different.
475 * Replace the old one with the new one.
476 */
477 as_switch(as1, as2);
478 }
479 TASK = THREAD->task;
480 before_task_runs();
481 }
482
483 spinlock_lock(&THREAD->lock);
484 THREAD->state = Running;
485
486#ifdef SCHEDULER_VERBOSE
487 printf("cpu%d: tid %d (priority=%d,ticks=%lld,nrdy=%ld)\n",
488 CPU->id, THREAD->tid, THREAD->priority, THREAD->ticks, atomic_get(&CPU->nrdy));
489#endif
490
491 /*
492 * Some architectures provide late kernel PA2KA(identity)
493 * mapping in a page fault handler. However, the page fault
494 * handler uses the kernel stack of the running thread and
495 * therefore cannot be used to map it. The kernel stack, if
496 * necessary, is to be mapped in before_thread_runs(). This
497 * function must be executed before the switch to the new stack.
498 */
499 before_thread_runs();
500
501 /*
502 * Copy the knowledge of CPU, TASK, THREAD and preemption counter to thread's stack.
503 */
504 the_copy(THE, (the_t *) THREAD->kstack);
505
506 context_restore(&THREAD->saved_context);
507 /* not reached */
508}
509
510#ifdef CONFIG_SMP
511/** Load balancing thread
512 *
513 * SMP load balancing thread, supervising thread supplies
514 * for the CPU it's wired to.
515 *
516 * @param arg Generic thread argument (unused).
517 *
518 */
519void kcpulb(void *arg)
520{
521 thread_t *t;
522 int count, average, i, j, k = 0;
523 ipl_t ipl;
524
525 /*
526 * Detach kcpulb as nobody will call thread_join_timeout() on it.
527 */
528 thread_detach(THREAD);
529
530loop:
531 /*
532 * Work in 1s intervals.
533 */
534 thread_sleep(1);
535
536not_satisfied:
537 /*
538 * Calculate the number of threads that will be migrated/stolen from
539 * other CPU's. Note that situation can have changed between two
540 * passes. Each time get the most up to date counts.
541 */
542 average = atomic_get(&nrdy) / config.cpu_active + 1;
543 count = average - atomic_get(&CPU->nrdy);
544
545 if (count <= 0)
546 goto satisfied;
547
548 /*
549 * Searching least priority queues on all CPU's first and most priority queues on all CPU's last.
550 */
551 for (j=RQ_COUNT-1; j >= 0; j--) {
552 for (i=0; i < config.cpu_active; i++) {
553 link_t *l;
554 runq_t *r;
555 cpu_t *cpu;
556
557 cpu = &cpus[(i + k) % config.cpu_active];
558
559 /*
560 * Not interested in ourselves.
561 * Doesn't require interrupt disabling for kcpulb has THREAD_FLAG_WIRED.
562 */
563 if (CPU == cpu)
564 continue;
565 if (atomic_get(&cpu->nrdy) <= average)
566 continue;
567
568 ipl = interrupts_disable();
569 r = &cpu->rq[j];
570 spinlock_lock(&r->lock);
571 if (r->n == 0) {
572 spinlock_unlock(&r->lock);
573 interrupts_restore(ipl);
574 continue;
575 }
576
577 t = NULL;
578 l = r->rq_head.prev; /* search rq from the back */
579 while (l != &r->rq_head) {
580 t = list_get_instance(l, thread_t, rq_link);
581 /*
582 * We don't want to steal CPU-wired threads neither threads already
583 * stolen. The latter prevents threads from migrating between CPU's
584 * without ever being run. We don't want to steal threads whose FPU
585 * context is still in CPU.
586 */
587 spinlock_lock(&t->lock);
588 if ((!(t->flags & (THREAD_FLAG_WIRED | THREAD_FLAG_STOLEN))) &&
589 (!(t->fpu_context_engaged)) ) {
590 /*
591 * Remove t from r.
592 */
593 spinlock_unlock(&t->lock);
594
595 atomic_dec(&cpu->nrdy);
596 atomic_dec(&nrdy);
597
598 r->n--;
599 list_remove(&t->rq_link);
600
601 break;
602 }
603 spinlock_unlock(&t->lock);
604 l = l->prev;
605 t = NULL;
606 }
607 spinlock_unlock(&r->lock);
608
609 if (t) {
610 /*
611 * Ready t on local CPU
612 */
613 spinlock_lock(&t->lock);
614#ifdef KCPULB_VERBOSE
615 printf("kcpulb%d: TID %d -> cpu%d, nrdy=%ld, avg=%nd\n",
616 CPU->id, t->tid, CPU->id, atomic_get(&CPU->nrdy),
617 atomic_get(&nrdy) / config.cpu_active);
618#endif
619 t->flags |= THREAD_FLAG_STOLEN;
620 t->state = Entering;
621 spinlock_unlock(&t->lock);
622
623 thread_ready(t);
624
625 interrupts_restore(ipl);
626
627 if (--count == 0)
628 goto satisfied;
629
630 /*
631 * We are not satisfied yet, focus on another CPU next time.
632 */
633 k++;
634
635 continue;
636 }
637 interrupts_restore(ipl);
638 }
639 }
640
641 if (atomic_get(&CPU->nrdy)) {
642 /*
643 * Be a little bit light-weight and let migrated threads run.
644 */
645 scheduler();
646 } else {
647 /*
648 * We failed to migrate a single thread.
649 * Give up this turn.
650 */
651 goto loop;
652 }
653
654 goto not_satisfied;
655
656satisfied:
657 goto loop;
658}
659
660#endif /* CONFIG_SMP */
661
662
663/** Print information about threads & scheduler queues */
664void sched_print_list(void)
665{
666 ipl_t ipl;
667 int cpu,i;
668 runq_t *r;
669 thread_t *t;
670 link_t *cur;
671
672 /* We are going to mess with scheduler structures,
673 * let's not be interrupted */
674 ipl = interrupts_disable();
675 for (cpu=0;cpu < config.cpu_count; cpu++) {
676
677 if (!cpus[cpu].active)
678 continue;
679
680 spinlock_lock(&cpus[cpu].lock);
681 printf("cpu%d: address=%p, nrdy=%ld, needs_relink=%ld\n",
682 cpus[cpu].id, &cpus[cpu], atomic_get(&cpus[cpu].nrdy), cpus[cpu].needs_relink);
683
684 for (i=0; i<RQ_COUNT; i++) {
685 r = &cpus[cpu].rq[i];
686 spinlock_lock(&r->lock);
687 if (!r->n) {
688 spinlock_unlock(&r->lock);
689 continue;
690 }
691 printf("\trq[%d]: ", i);
692 for (cur=r->rq_head.next; cur!=&r->rq_head; cur=cur->next) {
693 t = list_get_instance(cur, thread_t, rq_link);
694 printf("%d(%s) ", t->tid,
695 thread_states[t->state]);
696 }
697 printf("\n");
698 spinlock_unlock(&r->lock);
699 }
700 spinlock_unlock(&cpus[cpu].lock);
701 }
702
703 interrupts_restore(ipl);
704}
705
706/** @}
707 */
Note: See TracBrowser for help on using the repository browser.