source: mainline/kernel/generic/src/mm/as.c@ f1d1f5d3

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since f1d1f5d3 was f1d1f5d3, checked in by Jakub Jermar <jakub@…>, 19 years ago

Fix bug in mm/as.c:

  • as_area_destroy() should not work with AS but as

sparc64 work:

  • start implementing TSB support
  • Property mode set to 100644
File size: 41.5 KB
Line 
1/*
2 * Copyright (C) 2001-2006 Jakub Jermar
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/** @addtogroup genericmm
30 * @{
31 */
32
33/**
34 * @file
35 * @brief Address space related functions.
36 *
37 * This file contains address space manipulation functions.
38 * Roughly speaking, this is a higher-level client of
39 * Virtual Address Translation (VAT) subsystem.
40 *
41 * Functionality provided by this file allows one to
42 * create address spaces and create, resize and share
43 * address space areas.
44 *
45 * @see page.c
46 *
47 */
48
49#include <mm/as.h>
50#include <arch/mm/as.h>
51#include <mm/page.h>
52#include <mm/frame.h>
53#include <mm/slab.h>
54#include <mm/tlb.h>
55#include <arch/mm/page.h>
56#include <genarch/mm/page_pt.h>
57#include <genarch/mm/page_ht.h>
58#include <mm/asid.h>
59#include <arch/mm/asid.h>
60#include <synch/spinlock.h>
61#include <synch/mutex.h>
62#include <adt/list.h>
63#include <adt/btree.h>
64#include <proc/task.h>
65#include <proc/thread.h>
66#include <arch/asm.h>
67#include <panic.h>
68#include <debug.h>
69#include <print.h>
70#include <memstr.h>
71#include <macros.h>
72#include <arch.h>
73#include <errno.h>
74#include <config.h>
75#include <align.h>
76#include <arch/types.h>
77#include <typedefs.h>
78#include <syscall/copy.h>
79#include <arch/interrupt.h>
80
81/**
82 * Each architecture decides what functions will be used to carry out
83 * address space operations such as creating or locking page tables.
84 */
85as_operations_t *as_operations = NULL;
86
87/** This lock protects inactive_as_with_asid_head list. It must be acquired before as_t mutex. */
88SPINLOCK_INITIALIZE(inactive_as_with_asid_lock);
89
90/**
91 * This list contains address spaces that are not active on any
92 * processor and that have valid ASID.
93 */
94LIST_INITIALIZE(inactive_as_with_asid_head);
95
96/** Kernel address space. */
97as_t *AS_KERNEL = NULL;
98
99static int area_flags_to_page_flags(int aflags);
100static as_area_t *find_area_and_lock(as_t *as, uintptr_t va);
101static bool check_area_conflicts(as_t *as, uintptr_t va, size_t size, as_area_t *avoid_area);
102static void sh_info_remove_reference(share_info_t *sh_info);
103
104/** Initialize address space subsystem. */
105void as_init(void)
106{
107 as_arch_init();
108 AS_KERNEL = as_create(FLAG_AS_KERNEL);
109 if (!AS_KERNEL)
110 panic("can't create kernel address space\n");
111
112}
113
114/** Create address space.
115 *
116 * @param flags Flags that influence way in wich the address space is created.
117 */
118as_t *as_create(int flags)
119{
120 as_t *as;
121
122 as = (as_t *) malloc(sizeof(as_t), 0);
123 link_initialize(&as->inactive_as_with_asid_link);
124 mutex_initialize(&as->lock);
125 btree_create(&as->as_area_btree);
126
127 if (flags & FLAG_AS_KERNEL)
128 as->asid = ASID_KERNEL;
129 else
130 as->asid = ASID_INVALID;
131
132 as->refcount = 0;
133 as->cpu_refcount = 0;
134 as->page_table = page_table_create(flags);
135
136 return as;
137}
138
139/** Destroy adress space.
140 *
141 * When there are no tasks referencing this address space (i.e. its refcount is zero),
142 * the address space can be destroyed.
143 */
144void as_destroy(as_t *as)
145{
146 ipl_t ipl;
147 bool cond;
148
149 ASSERT(as->refcount == 0);
150
151 /*
152 * Since there is no reference to this area,
153 * it is safe not to lock its mutex.
154 */
155 ipl = interrupts_disable();
156 spinlock_lock(&inactive_as_with_asid_lock);
157 if (as->asid != ASID_INVALID && as != AS_KERNEL) {
158 if (as != AS && as->cpu_refcount == 0)
159 list_remove(&as->inactive_as_with_asid_link);
160 asid_put(as->asid);
161 }
162 spinlock_unlock(&inactive_as_with_asid_lock);
163
164 /*
165 * Destroy address space areas of the address space.
166 * The B+tee must be walked carefully because it is
167 * also being destroyed.
168 */
169 for (cond = true; cond; ) {
170 btree_node_t *node;
171
172 ASSERT(!list_empty(&as->as_area_btree.leaf_head));
173 node = list_get_instance(as->as_area_btree.leaf_head.next, btree_node_t, leaf_link);
174
175 if ((cond = node->keys)) {
176 as_area_destroy(as, node->key[0]);
177 }
178 }
179
180 btree_destroy(&as->as_area_btree);
181 page_table_destroy(as->page_table);
182
183 interrupts_restore(ipl);
184
185 free(as);
186}
187
188/** Create address space area of common attributes.
189 *
190 * The created address space area is added to the target address space.
191 *
192 * @param as Target address space.
193 * @param flags Flags of the area memory.
194 * @param size Size of area.
195 * @param base Base address of area.
196 * @param attrs Attributes of the area.
197 * @param backend Address space area backend. NULL if no backend is used.
198 * @param backend_data NULL or a pointer to an array holding two void *.
199 *
200 * @return Address space area on success or NULL on failure.
201 */
202as_area_t *as_area_create(as_t *as, int flags, size_t size, uintptr_t base, int attrs,
203 mem_backend_t *backend, mem_backend_data_t *backend_data)
204{
205 ipl_t ipl;
206 as_area_t *a;
207
208 if (base % PAGE_SIZE)
209 return NULL;
210
211 if (!size)
212 return NULL;
213
214 /* Writeable executable areas are not supported. */
215 if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
216 return NULL;
217
218 ipl = interrupts_disable();
219 mutex_lock(&as->lock);
220
221 if (!check_area_conflicts(as, base, size, NULL)) {
222 mutex_unlock(&as->lock);
223 interrupts_restore(ipl);
224 return NULL;
225 }
226
227 a = (as_area_t *) malloc(sizeof(as_area_t), 0);
228
229 mutex_initialize(&a->lock);
230
231 a->as = as;
232 a->flags = flags;
233 a->attributes = attrs;
234 a->pages = SIZE2FRAMES(size);
235 a->base = base;
236 a->sh_info = NULL;
237 a->backend = backend;
238 if (backend_data)
239 a->backend_data = *backend_data;
240 else
241 memsetb((uintptr_t) &a->backend_data, sizeof(a->backend_data), 0);
242
243 btree_create(&a->used_space);
244
245 btree_insert(&as->as_area_btree, base, (void *) a, NULL);
246
247 mutex_unlock(&as->lock);
248 interrupts_restore(ipl);
249
250 return a;
251}
252
253/** Find address space area and change it.
254 *
255 * @param as Address space.
256 * @param address Virtual address belonging to the area to be changed. Must be page-aligned.
257 * @param size New size of the virtual memory block starting at address.
258 * @param flags Flags influencing the remap operation. Currently unused.
259 *
260 * @return Zero on success or a value from @ref errno.h otherwise.
261 */
262int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags)
263{
264 as_area_t *area;
265 ipl_t ipl;
266 size_t pages;
267
268 ipl = interrupts_disable();
269 mutex_lock(&as->lock);
270
271 /*
272 * Locate the area.
273 */
274 area = find_area_and_lock(as, address);
275 if (!area) {
276 mutex_unlock(&as->lock);
277 interrupts_restore(ipl);
278 return ENOENT;
279 }
280
281 if (area->backend == &phys_backend) {
282 /*
283 * Remapping of address space areas associated
284 * with memory mapped devices is not supported.
285 */
286 mutex_unlock(&area->lock);
287 mutex_unlock(&as->lock);
288 interrupts_restore(ipl);
289 return ENOTSUP;
290 }
291 if (area->sh_info) {
292 /*
293 * Remapping of shared address space areas
294 * is not supported.
295 */
296 mutex_unlock(&area->lock);
297 mutex_unlock(&as->lock);
298 interrupts_restore(ipl);
299 return ENOTSUP;
300 }
301
302 pages = SIZE2FRAMES((address - area->base) + size);
303 if (!pages) {
304 /*
305 * Zero size address space areas are not allowed.
306 */
307 mutex_unlock(&area->lock);
308 mutex_unlock(&as->lock);
309 interrupts_restore(ipl);
310 return EPERM;
311 }
312
313 if (pages < area->pages) {
314 bool cond;
315 uintptr_t start_free = area->base + pages*PAGE_SIZE;
316
317 /*
318 * Shrinking the area.
319 * No need to check for overlaps.
320 */
321
322 /*
323 * Start TLB shootdown sequence.
324 */
325 tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
326
327 /*
328 * Remove frames belonging to used space starting from
329 * the highest addresses downwards until an overlap with
330 * the resized address space area is found. Note that this
331 * is also the right way to remove part of the used_space
332 * B+tree leaf list.
333 */
334 for (cond = true; cond;) {
335 btree_node_t *node;
336
337 ASSERT(!list_empty(&area->used_space.leaf_head));
338 node = list_get_instance(area->used_space.leaf_head.prev, btree_node_t, leaf_link);
339 if ((cond = (bool) node->keys)) {
340 uintptr_t b = node->key[node->keys - 1];
341 count_t c = (count_t) node->value[node->keys - 1];
342 int i = 0;
343
344 if (overlaps(b, c*PAGE_SIZE, area->base, pages*PAGE_SIZE)) {
345
346 if (b + c*PAGE_SIZE <= start_free) {
347 /*
348 * The whole interval fits completely
349 * in the resized address space area.
350 */
351 break;
352 }
353
354 /*
355 * Part of the interval corresponding to b and c
356 * overlaps with the resized address space area.
357 */
358
359 cond = false; /* we are almost done */
360 i = (start_free - b) >> PAGE_WIDTH;
361 if (!used_space_remove(area, start_free, c - i))
362 panic("Could not remove used space.\n");
363 } else {
364 /*
365 * The interval of used space can be completely removed.
366 */
367 if (!used_space_remove(area, b, c))
368 panic("Could not remove used space.\n");
369 }
370
371 for (; i < c; i++) {
372 pte_t *pte;
373
374 page_table_lock(as, false);
375 pte = page_mapping_find(as, b + i*PAGE_SIZE);
376 ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
377 if (area->backend && area->backend->frame_free) {
378 area->backend->frame_free(area,
379 b + i*PAGE_SIZE, PTE_GET_FRAME(pte));
380 }
381 page_mapping_remove(as, b + i*PAGE_SIZE);
382 page_table_unlock(as, false);
383 }
384 }
385 }
386
387 /*
388 * Finish TLB shootdown sequence.
389 */
390 tlb_invalidate_pages(AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
391 tlb_shootdown_finalize();
392
393 /*
394 * Invalidate software translation caches (e.g. TSB on sparc64).
395 */
396 as_invalidate_translation_cache(as, area->base + pages*PAGE_SIZE, area->pages - pages);
397 } else {
398 /*
399 * Growing the area.
400 * Check for overlaps with other address space areas.
401 */
402 if (!check_area_conflicts(as, address, pages * PAGE_SIZE, area)) {
403 mutex_unlock(&area->lock);
404 mutex_unlock(&as->lock);
405 interrupts_restore(ipl);
406 return EADDRNOTAVAIL;
407 }
408 }
409
410 area->pages = pages;
411
412 mutex_unlock(&area->lock);
413 mutex_unlock(&as->lock);
414 interrupts_restore(ipl);
415
416 return 0;
417}
418
419/** Destroy address space area.
420 *
421 * @param as Address space.
422 * @param address Address withing the area to be deleted.
423 *
424 * @return Zero on success or a value from @ref errno.h on failure.
425 */
426int as_area_destroy(as_t *as, uintptr_t address)
427{
428 as_area_t *area;
429 uintptr_t base;
430 link_t *cur;
431 ipl_t ipl;
432
433 ipl = interrupts_disable();
434 mutex_lock(&as->lock);
435
436 area = find_area_and_lock(as, address);
437 if (!area) {
438 mutex_unlock(&as->lock);
439 interrupts_restore(ipl);
440 return ENOENT;
441 }
442
443 base = area->base;
444
445 /*
446 * Start TLB shootdown sequence.
447 */
448 tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
449
450 /*
451 * Visit only the pages mapped by used_space B+tree.
452 */
453 for (cur = area->used_space.leaf_head.next; cur != &area->used_space.leaf_head; cur = cur->next) {
454 btree_node_t *node;
455 int i;
456
457 node = list_get_instance(cur, btree_node_t, leaf_link);
458 for (i = 0; i < node->keys; i++) {
459 uintptr_t b = node->key[i];
460 count_t j;
461 pte_t *pte;
462
463 for (j = 0; j < (count_t) node->value[i]; j++) {
464 page_table_lock(as, false);
465 pte = page_mapping_find(as, b + j*PAGE_SIZE);
466 ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
467 if (area->backend && area->backend->frame_free) {
468 area->backend->frame_free(area,
469 b + j*PAGE_SIZE, PTE_GET_FRAME(pte));
470 }
471 page_mapping_remove(as, b + j*PAGE_SIZE);
472 page_table_unlock(as, false);
473 }
474 }
475 }
476
477 /*
478 * Finish TLB shootdown sequence.
479 */
480 tlb_invalidate_pages(as->asid, area->base, area->pages);
481 tlb_shootdown_finalize();
482
483 /*
484 * Invalidate potential software translation caches (e.g. TSB on sparc64).
485 */
486 as_invalidate_translation_cache(as, area->base, area->pages);
487
488 btree_destroy(&area->used_space);
489
490 area->attributes |= AS_AREA_ATTR_PARTIAL;
491
492 if (area->sh_info)
493 sh_info_remove_reference(area->sh_info);
494
495 mutex_unlock(&area->lock);
496
497 /*
498 * Remove the empty area from address space.
499 */
500 btree_remove(&as->as_area_btree, base, NULL);
501
502 free(area);
503
504 mutex_unlock(&as->lock);
505 interrupts_restore(ipl);
506 return 0;
507}
508
509/** Share address space area with another or the same address space.
510 *
511 * Address space area mapping is shared with a new address space area.
512 * If the source address space area has not been shared so far,
513 * a new sh_info is created. The new address space area simply gets the
514 * sh_info of the source area. The process of duplicating the
515 * mapping is done through the backend share function.
516 *
517 * @param src_as Pointer to source address space.
518 * @param src_base Base address of the source address space area.
519 * @param acc_size Expected size of the source area.
520 * @param dst_as Pointer to destination address space.
521 * @param dst_base Target base address.
522 * @param dst_flags_mask Destination address space area flags mask.
523 *
524 * @return Zero on success or ENOENT if there is no such task or
525 * if there is no such address space area,
526 * EPERM if there was a problem in accepting the area or
527 * ENOMEM if there was a problem in allocating destination
528 * address space area. ENOTSUP is returned if an attempt
529 * to share non-anonymous address space area is detected.
530 */
531int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
532 as_t *dst_as, uintptr_t dst_base, int dst_flags_mask)
533{
534 ipl_t ipl;
535 int src_flags;
536 size_t src_size;
537 as_area_t *src_area, *dst_area;
538 share_info_t *sh_info;
539 mem_backend_t *src_backend;
540 mem_backend_data_t src_backend_data;
541
542 ipl = interrupts_disable();
543 mutex_lock(&src_as->lock);
544 src_area = find_area_and_lock(src_as, src_base);
545 if (!src_area) {
546 /*
547 * Could not find the source address space area.
548 */
549 mutex_unlock(&src_as->lock);
550 interrupts_restore(ipl);
551 return ENOENT;
552 }
553
554 if (!src_area->backend || !src_area->backend->share) {
555 /*
556 * There is no backend or the backend does not
557 * know how to share the area.
558 */
559 mutex_unlock(&src_area->lock);
560 mutex_unlock(&src_as->lock);
561 interrupts_restore(ipl);
562 return ENOTSUP;
563 }
564
565 src_size = src_area->pages * PAGE_SIZE;
566 src_flags = src_area->flags;
567 src_backend = src_area->backend;
568 src_backend_data = src_area->backend_data;
569
570 /* Share the cacheable flag from the original mapping */
571 if (src_flags & AS_AREA_CACHEABLE)
572 dst_flags_mask |= AS_AREA_CACHEABLE;
573
574 if (src_size != acc_size || (src_flags & dst_flags_mask) != dst_flags_mask) {
575 mutex_unlock(&src_area->lock);
576 mutex_unlock(&src_as->lock);
577 interrupts_restore(ipl);
578 return EPERM;
579 }
580
581 /*
582 * Now we are committed to sharing the area.
583 * First prepare the area for sharing.
584 * Then it will be safe to unlock it.
585 */
586 sh_info = src_area->sh_info;
587 if (!sh_info) {
588 sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
589 mutex_initialize(&sh_info->lock);
590 sh_info->refcount = 2;
591 btree_create(&sh_info->pagemap);
592 src_area->sh_info = sh_info;
593 } else {
594 mutex_lock(&sh_info->lock);
595 sh_info->refcount++;
596 mutex_unlock(&sh_info->lock);
597 }
598
599 src_area->backend->share(src_area);
600
601 mutex_unlock(&src_area->lock);
602 mutex_unlock(&src_as->lock);
603
604 /*
605 * Create copy of the source address space area.
606 * The destination area is created with AS_AREA_ATTR_PARTIAL
607 * attribute set which prevents race condition with
608 * preliminary as_page_fault() calls.
609 * The flags of the source area are masked against dst_flags_mask
610 * to support sharing in less privileged mode.
611 */
612 dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
613 AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
614 if (!dst_area) {
615 /*
616 * Destination address space area could not be created.
617 */
618 sh_info_remove_reference(sh_info);
619
620 interrupts_restore(ipl);
621 return ENOMEM;
622 }
623
624 /*
625 * Now the destination address space area has been
626 * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
627 * attribute and set the sh_info.
628 */
629 mutex_lock(&dst_area->lock);
630 dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
631 dst_area->sh_info = sh_info;
632 mutex_unlock(&dst_area->lock);
633
634 interrupts_restore(ipl);
635
636 return 0;
637}
638
639/** Check access mode for address space area.
640 *
641 * The address space area must be locked prior to this call.
642 *
643 * @param area Address space area.
644 * @param access Access mode.
645 *
646 * @return False if access violates area's permissions, true otherwise.
647 */
648bool as_area_check_access(as_area_t *area, pf_access_t access)
649{
650 int flagmap[] = {
651 [PF_ACCESS_READ] = AS_AREA_READ,
652 [PF_ACCESS_WRITE] = AS_AREA_WRITE,
653 [PF_ACCESS_EXEC] = AS_AREA_EXEC
654 };
655
656 if (!(area->flags & flagmap[access]))
657 return false;
658
659 return true;
660}
661
662/** Handle page fault within the current address space.
663 *
664 * This is the high-level page fault handler. It decides
665 * whether the page fault can be resolved by any backend
666 * and if so, it invokes the backend to resolve the page
667 * fault.
668 *
669 * Interrupts are assumed disabled.
670 *
671 * @param page Faulting page.
672 * @param access Access mode that caused the fault (i.e. read/write/exec).
673 * @param istate Pointer to interrupted state.
674 *
675 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
676 * fault was caused by copy_to_uspace() or copy_from_uspace().
677 */
678int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
679{
680 pte_t *pte;
681 as_area_t *area;
682
683 if (!THREAD)
684 return AS_PF_FAULT;
685
686 ASSERT(AS);
687
688 mutex_lock(&AS->lock);
689 area = find_area_and_lock(AS, page);
690 if (!area) {
691 /*
692 * No area contained mapping for 'page'.
693 * Signal page fault to low-level handler.
694 */
695 mutex_unlock(&AS->lock);
696 goto page_fault;
697 }
698
699 if (area->attributes & AS_AREA_ATTR_PARTIAL) {
700 /*
701 * The address space area is not fully initialized.
702 * Avoid possible race by returning error.
703 */
704 mutex_unlock(&area->lock);
705 mutex_unlock(&AS->lock);
706 goto page_fault;
707 }
708
709 if (!area->backend || !area->backend->page_fault) {
710 /*
711 * The address space area is not backed by any backend
712 * or the backend cannot handle page faults.
713 */
714 mutex_unlock(&area->lock);
715 mutex_unlock(&AS->lock);
716 goto page_fault;
717 }
718
719 page_table_lock(AS, false);
720
721 /*
722 * To avoid race condition between two page faults
723 * on the same address, we need to make sure
724 * the mapping has not been already inserted.
725 */
726 if ((pte = page_mapping_find(AS, page))) {
727 if (PTE_PRESENT(pte)) {
728 if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
729 (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
730 (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
731 page_table_unlock(AS, false);
732 mutex_unlock(&area->lock);
733 mutex_unlock(&AS->lock);
734 return AS_PF_OK;
735 }
736 }
737 }
738
739 /*
740 * Resort to the backend page fault handler.
741 */
742 if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
743 page_table_unlock(AS, false);
744 mutex_unlock(&area->lock);
745 mutex_unlock(&AS->lock);
746 goto page_fault;
747 }
748
749 page_table_unlock(AS, false);
750 mutex_unlock(&area->lock);
751 mutex_unlock(&AS->lock);
752 return AS_PF_OK;
753
754page_fault:
755 if (THREAD->in_copy_from_uspace) {
756 THREAD->in_copy_from_uspace = false;
757 istate_set_retaddr(istate, (uintptr_t) &memcpy_from_uspace_failover_address);
758 } else if (THREAD->in_copy_to_uspace) {
759 THREAD->in_copy_to_uspace = false;
760 istate_set_retaddr(istate, (uintptr_t) &memcpy_to_uspace_failover_address);
761 } else {
762 return AS_PF_FAULT;
763 }
764
765 return AS_PF_DEFER;
766}
767
768/** Switch address spaces.
769 *
770 * Note that this function cannot sleep as it is essentially a part of
771 * scheduling. Sleeping here would lead to deadlock on wakeup.
772 *
773 * @param old Old address space or NULL.
774 * @param new New address space.
775 */
776void as_switch(as_t *old, as_t *new)
777{
778 ipl_t ipl;
779 bool needs_asid = false;
780
781 ipl = interrupts_disable();
782 spinlock_lock(&inactive_as_with_asid_lock);
783
784 /*
785 * First, take care of the old address space.
786 */
787 if (old) {
788 mutex_lock_active(&old->lock);
789 ASSERT(old->cpu_refcount);
790 if((--old->cpu_refcount == 0) && (old != AS_KERNEL)) {
791 /*
792 * The old address space is no longer active on
793 * any processor. It can be appended to the
794 * list of inactive address spaces with assigned
795 * ASID.
796 */
797 ASSERT(old->asid != ASID_INVALID);
798 list_append(&old->inactive_as_with_asid_link, &inactive_as_with_asid_head);
799 }
800 mutex_unlock(&old->lock);
801 }
802
803 /*
804 * Second, prepare the new address space.
805 */
806 mutex_lock_active(&new->lock);
807 if ((new->cpu_refcount++ == 0) && (new != AS_KERNEL)) {
808 if (new->asid != ASID_INVALID)
809 list_remove(&new->inactive_as_with_asid_link);
810 else
811 needs_asid = true; /* defer call to asid_get() until new->lock is released */
812 }
813 SET_PTL0_ADDRESS(new->page_table);
814 mutex_unlock(&new->lock);
815
816 if (needs_asid) {
817 /*
818 * Allocation of new ASID was deferred
819 * until now in order to avoid deadlock.
820 */
821 asid_t asid;
822
823 asid = asid_get();
824 mutex_lock_active(&new->lock);
825 new->asid = asid;
826 mutex_unlock(&new->lock);
827 }
828 spinlock_unlock(&inactive_as_with_asid_lock);
829 interrupts_restore(ipl);
830
831 /*
832 * Perform architecture-specific steps.
833 * (e.g. write ASID to hardware register etc.)
834 */
835 as_install_arch(new);
836
837 AS = new;
838}
839
840/** Convert address space area flags to page flags.
841 *
842 * @param aflags Flags of some address space area.
843 *
844 * @return Flags to be passed to page_mapping_insert().
845 */
846int area_flags_to_page_flags(int aflags)
847{
848 int flags;
849
850 flags = PAGE_USER | PAGE_PRESENT;
851
852 if (aflags & AS_AREA_READ)
853 flags |= PAGE_READ;
854
855 if (aflags & AS_AREA_WRITE)
856 flags |= PAGE_WRITE;
857
858 if (aflags & AS_AREA_EXEC)
859 flags |= PAGE_EXEC;
860
861 if (aflags & AS_AREA_CACHEABLE)
862 flags |= PAGE_CACHEABLE;
863
864 return flags;
865}
866
867/** Compute flags for virtual address translation subsytem.
868 *
869 * The address space area must be locked.
870 * Interrupts must be disabled.
871 *
872 * @param a Address space area.
873 *
874 * @return Flags to be used in page_mapping_insert().
875 */
876int as_area_get_flags(as_area_t *a)
877{
878 return area_flags_to_page_flags(a->flags);
879}
880
881/** Create page table.
882 *
883 * Depending on architecture, create either address space
884 * private or global page table.
885 *
886 * @param flags Flags saying whether the page table is for kernel address space.
887 *
888 * @return First entry of the page table.
889 */
890pte_t *page_table_create(int flags)
891{
892 ASSERT(as_operations);
893 ASSERT(as_operations->page_table_create);
894
895 return as_operations->page_table_create(flags);
896}
897
898/** Destroy page table.
899 *
900 * Destroy page table in architecture specific way.
901 *
902 * @param page_table Physical address of PTL0.
903 */
904void page_table_destroy(pte_t *page_table)
905{
906 ASSERT(as_operations);
907 ASSERT(as_operations->page_table_destroy);
908
909 as_operations->page_table_destroy(page_table);
910}
911
912/** Lock page table.
913 *
914 * This function should be called before any page_mapping_insert(),
915 * page_mapping_remove() and page_mapping_find().
916 *
917 * Locking order is such that address space areas must be locked
918 * prior to this call. Address space can be locked prior to this
919 * call in which case the lock argument is false.
920 *
921 * @param as Address space.
922 * @param lock If false, do not attempt to lock as->lock.
923 */
924void page_table_lock(as_t *as, bool lock)
925{
926 ASSERT(as_operations);
927 ASSERT(as_operations->page_table_lock);
928
929 as_operations->page_table_lock(as, lock);
930}
931
932/** Unlock page table.
933 *
934 * @param as Address space.
935 * @param unlock If false, do not attempt to unlock as->lock.
936 */
937void page_table_unlock(as_t *as, bool unlock)
938{
939 ASSERT(as_operations);
940 ASSERT(as_operations->page_table_unlock);
941
942 as_operations->page_table_unlock(as, unlock);
943}
944
945
946/** Find address space area and lock it.
947 *
948 * The address space must be locked and interrupts must be disabled.
949 *
950 * @param as Address space.
951 * @param va Virtual address.
952 *
953 * @return Locked address space area containing va on success or NULL on failure.
954 */
955as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
956{
957 as_area_t *a;
958 btree_node_t *leaf, *lnode;
959 int i;
960
961 a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
962 if (a) {
963 /* va is the base address of an address space area */
964 mutex_lock(&a->lock);
965 return a;
966 }
967
968 /*
969 * Search the leaf node and the righmost record of its left neighbour
970 * to find out whether this is a miss or va belongs to an address
971 * space area found there.
972 */
973
974 /* First, search the leaf node itself. */
975 for (i = 0; i < leaf->keys; i++) {
976 a = (as_area_t *) leaf->value[i];
977 mutex_lock(&a->lock);
978 if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
979 return a;
980 }
981 mutex_unlock(&a->lock);
982 }
983
984 /*
985 * Second, locate the left neighbour and test its last record.
986 * Because of its position in the B+tree, it must have base < va.
987 */
988 if ((lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
989 a = (as_area_t *) lnode->value[lnode->keys - 1];
990 mutex_lock(&a->lock);
991 if (va < a->base + a->pages * PAGE_SIZE) {
992 return a;
993 }
994 mutex_unlock(&a->lock);
995 }
996
997 return NULL;
998}
999
1000/** Check area conflicts with other areas.
1001 *
1002 * The address space must be locked and interrupts must be disabled.
1003 *
1004 * @param as Address space.
1005 * @param va Starting virtual address of the area being tested.
1006 * @param size Size of the area being tested.
1007 * @param avoid_area Do not touch this area.
1008 *
1009 * @return True if there is no conflict, false otherwise.
1010 */
1011bool check_area_conflicts(as_t *as, uintptr_t va, size_t size, as_area_t *avoid_area)
1012{
1013 as_area_t *a;
1014 btree_node_t *leaf, *node;
1015 int i;
1016
1017 /*
1018 * We don't want any area to have conflicts with NULL page.
1019 */
1020 if (overlaps(va, size, NULL, PAGE_SIZE))
1021 return false;
1022
1023 /*
1024 * The leaf node is found in O(log n), where n is proportional to
1025 * the number of address space areas belonging to as.
1026 * The check for conflicts is then attempted on the rightmost
1027 * record in the left neighbour, the leftmost record in the right
1028 * neighbour and all records in the leaf node itself.
1029 */
1030
1031 if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1032 if (a != avoid_area)
1033 return false;
1034 }
1035
1036 /* First, check the two border cases. */
1037 if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1038 a = (as_area_t *) node->value[node->keys - 1];
1039 mutex_lock(&a->lock);
1040 if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1041 mutex_unlock(&a->lock);
1042 return false;
1043 }
1044 mutex_unlock(&a->lock);
1045 }
1046 if ((node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf))) {
1047 a = (as_area_t *) node->value[0];
1048 mutex_lock(&a->lock);
1049 if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1050 mutex_unlock(&a->lock);
1051 return false;
1052 }
1053 mutex_unlock(&a->lock);
1054 }
1055
1056 /* Second, check the leaf node. */
1057 for (i = 0; i < leaf->keys; i++) {
1058 a = (as_area_t *) leaf->value[i];
1059
1060 if (a == avoid_area)
1061 continue;
1062
1063 mutex_lock(&a->lock);
1064 if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1065 mutex_unlock(&a->lock);
1066 return false;
1067 }
1068 mutex_unlock(&a->lock);
1069 }
1070
1071 /*
1072 * So far, the area does not conflict with other areas.
1073 * Check if it doesn't conflict with kernel address space.
1074 */
1075 if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1076 return !overlaps(va, size,
1077 KERNEL_ADDRESS_SPACE_START, KERNEL_ADDRESS_SPACE_END-KERNEL_ADDRESS_SPACE_START);
1078 }
1079
1080 return true;
1081}
1082
1083/** Return size of the address space area with given base. */
1084size_t as_get_size(uintptr_t base)
1085{
1086 ipl_t ipl;
1087 as_area_t *src_area;
1088 size_t size;
1089
1090 ipl = interrupts_disable();
1091 src_area = find_area_and_lock(AS, base);
1092 if (src_area){
1093 size = src_area->pages * PAGE_SIZE;
1094 mutex_unlock(&src_area->lock);
1095 } else {
1096 size = 0;
1097 }
1098 interrupts_restore(ipl);
1099 return size;
1100}
1101
1102/** Mark portion of address space area as used.
1103 *
1104 * The address space area must be already locked.
1105 *
1106 * @param a Address space area.
1107 * @param page First page to be marked.
1108 * @param count Number of page to be marked.
1109 *
1110 * @return 0 on failure and 1 on success.
1111 */
1112int used_space_insert(as_area_t *a, uintptr_t page, count_t count)
1113{
1114 btree_node_t *leaf, *node;
1115 count_t pages;
1116 int i;
1117
1118 ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1119 ASSERT(count);
1120
1121 pages = (count_t) btree_search(&a->used_space, page, &leaf);
1122 if (pages) {
1123 /*
1124 * We hit the beginning of some used space.
1125 */
1126 return 0;
1127 }
1128
1129 if (!leaf->keys) {
1130 btree_insert(&a->used_space, page, (void *) count, leaf);
1131 return 1;
1132 }
1133
1134 node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1135 if (node) {
1136 uintptr_t left_pg = node->key[node->keys - 1], right_pg = leaf->key[0];
1137 count_t left_cnt = (count_t) node->value[node->keys - 1], right_cnt = (count_t) leaf->value[0];
1138
1139 /*
1140 * Examine the possibility that the interval fits
1141 * somewhere between the rightmost interval of
1142 * the left neigbour and the first interval of the leaf.
1143 */
1144
1145 if (page >= right_pg) {
1146 /* Do nothing. */
1147 } else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1148 /* The interval intersects with the left interval. */
1149 return 0;
1150 } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1151 /* The interval intersects with the right interval. */
1152 return 0;
1153 } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1154 /* The interval can be added by merging the two already present intervals. */
1155 node->value[node->keys - 1] += count + right_cnt;
1156 btree_remove(&a->used_space, right_pg, leaf);
1157 return 1;
1158 } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1159 /* The interval can be added by simply growing the left interval. */
1160 node->value[node->keys - 1] += count;
1161 return 1;
1162 } else if (page + count*PAGE_SIZE == right_pg) {
1163 /*
1164 * The interval can be addded by simply moving base of the right
1165 * interval down and increasing its size accordingly.
1166 */
1167 leaf->value[0] += count;
1168 leaf->key[0] = page;
1169 return 1;
1170 } else {
1171 /*
1172 * The interval is between both neigbouring intervals,
1173 * but cannot be merged with any of them.
1174 */
1175 btree_insert(&a->used_space, page, (void *) count, leaf);
1176 return 1;
1177 }
1178 } else if (page < leaf->key[0]) {
1179 uintptr_t right_pg = leaf->key[0];
1180 count_t right_cnt = (count_t) leaf->value[0];
1181
1182 /*
1183 * Investigate the border case in which the left neighbour does not
1184 * exist but the interval fits from the left.
1185 */
1186
1187 if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1188 /* The interval intersects with the right interval. */
1189 return 0;
1190 } else if (page + count*PAGE_SIZE == right_pg) {
1191 /*
1192 * The interval can be added by moving the base of the right interval down
1193 * and increasing its size accordingly.
1194 */
1195 leaf->key[0] = page;
1196 leaf->value[0] += count;
1197 return 1;
1198 } else {
1199 /*
1200 * The interval doesn't adjoin with the right interval.
1201 * It must be added individually.
1202 */
1203 btree_insert(&a->used_space, page, (void *) count, leaf);
1204 return 1;
1205 }
1206 }
1207
1208 node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1209 if (node) {
1210 uintptr_t left_pg = leaf->key[leaf->keys - 1], right_pg = node->key[0];
1211 count_t left_cnt = (count_t) leaf->value[leaf->keys - 1], right_cnt = (count_t) node->value[0];
1212
1213 /*
1214 * Examine the possibility that the interval fits
1215 * somewhere between the leftmost interval of
1216 * the right neigbour and the last interval of the leaf.
1217 */
1218
1219 if (page < left_pg) {
1220 /* Do nothing. */
1221 } else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1222 /* The interval intersects with the left interval. */
1223 return 0;
1224 } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1225 /* The interval intersects with the right interval. */
1226 return 0;
1227 } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1228 /* The interval can be added by merging the two already present intervals. */
1229 leaf->value[leaf->keys - 1] += count + right_cnt;
1230 btree_remove(&a->used_space, right_pg, node);
1231 return 1;
1232 } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1233 /* The interval can be added by simply growing the left interval. */
1234 leaf->value[leaf->keys - 1] += count;
1235 return 1;
1236 } else if (page + count*PAGE_SIZE == right_pg) {
1237 /*
1238 * The interval can be addded by simply moving base of the right
1239 * interval down and increasing its size accordingly.
1240 */
1241 node->value[0] += count;
1242 node->key[0] = page;
1243 return 1;
1244 } else {
1245 /*
1246 * The interval is between both neigbouring intervals,
1247 * but cannot be merged with any of them.
1248 */
1249 btree_insert(&a->used_space, page, (void *) count, leaf);
1250 return 1;
1251 }
1252 } else if (page >= leaf->key[leaf->keys - 1]) {
1253 uintptr_t left_pg = leaf->key[leaf->keys - 1];
1254 count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1255
1256 /*
1257 * Investigate the border case in which the right neighbour does not
1258 * exist but the interval fits from the right.
1259 */
1260
1261 if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1262 /* The interval intersects with the left interval. */
1263 return 0;
1264 } else if (left_pg + left_cnt*PAGE_SIZE == page) {
1265 /* The interval can be added by growing the left interval. */
1266 leaf->value[leaf->keys - 1] += count;
1267 return 1;
1268 } else {
1269 /*
1270 * The interval doesn't adjoin with the left interval.
1271 * It must be added individually.
1272 */
1273 btree_insert(&a->used_space, page, (void *) count, leaf);
1274 return 1;
1275 }
1276 }
1277
1278 /*
1279 * Note that if the algorithm made it thus far, the interval can fit only
1280 * between two other intervals of the leaf. The two border cases were already
1281 * resolved.
1282 */
1283 for (i = 1; i < leaf->keys; i++) {
1284 if (page < leaf->key[i]) {
1285 uintptr_t left_pg = leaf->key[i - 1], right_pg = leaf->key[i];
1286 count_t left_cnt = (count_t) leaf->value[i - 1], right_cnt = (count_t) leaf->value[i];
1287
1288 /*
1289 * The interval fits between left_pg and right_pg.
1290 */
1291
1292 if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1293 /* The interval intersects with the left interval. */
1294 return 0;
1295 } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1296 /* The interval intersects with the right interval. */
1297 return 0;
1298 } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1299 /* The interval can be added by merging the two already present intervals. */
1300 leaf->value[i - 1] += count + right_cnt;
1301 btree_remove(&a->used_space, right_pg, leaf);
1302 return 1;
1303 } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1304 /* The interval can be added by simply growing the left interval. */
1305 leaf->value[i - 1] += count;
1306 return 1;
1307 } else if (page + count*PAGE_SIZE == right_pg) {
1308 /*
1309 * The interval can be addded by simply moving base of the right
1310 * interval down and increasing its size accordingly.
1311 */
1312 leaf->value[i] += count;
1313 leaf->key[i] = page;
1314 return 1;
1315 } else {
1316 /*
1317 * The interval is between both neigbouring intervals,
1318 * but cannot be merged with any of them.
1319 */
1320 btree_insert(&a->used_space, page, (void *) count, leaf);
1321 return 1;
1322 }
1323 }
1324 }
1325
1326 panic("Inconsistency detected while adding %d pages of used space at %p.\n", count, page);
1327}
1328
1329/** Mark portion of address space area as unused.
1330 *
1331 * The address space area must be already locked.
1332 *
1333 * @param a Address space area.
1334 * @param page First page to be marked.
1335 * @param count Number of page to be marked.
1336 *
1337 * @return 0 on failure and 1 on success.
1338 */
1339int used_space_remove(as_area_t *a, uintptr_t page, count_t count)
1340{
1341 btree_node_t *leaf, *node;
1342 count_t pages;
1343 int i;
1344
1345 ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1346 ASSERT(count);
1347
1348 pages = (count_t) btree_search(&a->used_space, page, &leaf);
1349 if (pages) {
1350 /*
1351 * We are lucky, page is the beginning of some interval.
1352 */
1353 if (count > pages) {
1354 return 0;
1355 } else if (count == pages) {
1356 btree_remove(&a->used_space, page, leaf);
1357 return 1;
1358 } else {
1359 /*
1360 * Find the respective interval.
1361 * Decrease its size and relocate its start address.
1362 */
1363 for (i = 0; i < leaf->keys; i++) {
1364 if (leaf->key[i] == page) {
1365 leaf->key[i] += count*PAGE_SIZE;
1366 leaf->value[i] -= count;
1367 return 1;
1368 }
1369 }
1370 goto error;
1371 }
1372 }
1373
1374 node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1375 if (node && page < leaf->key[0]) {
1376 uintptr_t left_pg = node->key[node->keys - 1];
1377 count_t left_cnt = (count_t) node->value[node->keys - 1];
1378
1379 if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1380 if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1381 /*
1382 * The interval is contained in the rightmost interval
1383 * of the left neighbour and can be removed by
1384 * updating the size of the bigger interval.
1385 */
1386 node->value[node->keys - 1] -= count;
1387 return 1;
1388 } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1389 count_t new_cnt;
1390
1391 /*
1392 * The interval is contained in the rightmost interval
1393 * of the left neighbour but its removal requires
1394 * both updating the size of the original interval and
1395 * also inserting a new interval.
1396 */
1397 new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1398 node->value[node->keys - 1] -= count + new_cnt;
1399 btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1400 return 1;
1401 }
1402 }
1403 return 0;
1404 } else if (page < leaf->key[0]) {
1405 return 0;
1406 }
1407
1408 if (page > leaf->key[leaf->keys - 1]) {
1409 uintptr_t left_pg = leaf->key[leaf->keys - 1];
1410 count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1411
1412 if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1413 if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1414 /*
1415 * The interval is contained in the rightmost interval
1416 * of the leaf and can be removed by updating the size
1417 * of the bigger interval.
1418 */
1419 leaf->value[leaf->keys - 1] -= count;
1420 return 1;
1421 } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1422 count_t new_cnt;
1423
1424 /*
1425 * The interval is contained in the rightmost interval
1426 * of the leaf but its removal requires both updating
1427 * the size of the original interval and
1428 * also inserting a new interval.
1429 */
1430 new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1431 leaf->value[leaf->keys - 1] -= count + new_cnt;
1432 btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1433 return 1;
1434 }
1435 }
1436 return 0;
1437 }
1438
1439 /*
1440 * The border cases have been already resolved.
1441 * Now the interval can be only between intervals of the leaf.
1442 */
1443 for (i = 1; i < leaf->keys - 1; i++) {
1444 if (page < leaf->key[i]) {
1445 uintptr_t left_pg = leaf->key[i - 1];
1446 count_t left_cnt = (count_t) leaf->value[i - 1];
1447
1448 /*
1449 * Now the interval is between intervals corresponding to (i - 1) and i.
1450 */
1451 if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1452 if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1453 /*
1454 * The interval is contained in the interval (i - 1)
1455 * of the leaf and can be removed by updating the size
1456 * of the bigger interval.
1457 */
1458 leaf->value[i - 1] -= count;
1459 return 1;
1460 } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1461 count_t new_cnt;
1462
1463 /*
1464 * The interval is contained in the interval (i - 1)
1465 * of the leaf but its removal requires both updating
1466 * the size of the original interval and
1467 * also inserting a new interval.
1468 */
1469 new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1470 leaf->value[i - 1] -= count + new_cnt;
1471 btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1472 return 1;
1473 }
1474 }
1475 return 0;
1476 }
1477 }
1478
1479error:
1480 panic("Inconsistency detected while removing %d pages of used space from %p.\n", count, page);
1481}
1482
1483/** Remove reference to address space area share info.
1484 *
1485 * If the reference count drops to 0, the sh_info is deallocated.
1486 *
1487 * @param sh_info Pointer to address space area share info.
1488 */
1489void sh_info_remove_reference(share_info_t *sh_info)
1490{
1491 bool dealloc = false;
1492
1493 mutex_lock(&sh_info->lock);
1494 ASSERT(sh_info->refcount);
1495 if (--sh_info->refcount == 0) {
1496 dealloc = true;
1497 link_t *cur;
1498
1499 /*
1500 * Now walk carefully the pagemap B+tree and free/remove
1501 * reference from all frames found there.
1502 */
1503 for (cur = sh_info->pagemap.leaf_head.next; cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1504 btree_node_t *node;
1505 int i;
1506
1507 node = list_get_instance(cur, btree_node_t, leaf_link);
1508 for (i = 0; i < node->keys; i++)
1509 frame_free((uintptr_t) node->value[i]);
1510 }
1511
1512 }
1513 mutex_unlock(&sh_info->lock);
1514
1515 if (dealloc) {
1516 btree_destroy(&sh_info->pagemap);
1517 free(sh_info);
1518 }
1519}
1520
1521/*
1522 * Address space related syscalls.
1523 */
1524
1525/** Wrapper for as_area_create(). */
1526unative_t sys_as_area_create(uintptr_t address, size_t size, int flags)
1527{
1528 if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address, AS_AREA_ATTR_NONE, &anon_backend, NULL))
1529 return (unative_t) address;
1530 else
1531 return (unative_t) -1;
1532}
1533
1534/** Wrapper for as_area_resize(). */
1535unative_t sys_as_area_resize(uintptr_t address, size_t size, int flags)
1536{
1537 return (unative_t) as_area_resize(AS, address, size, 0);
1538}
1539
1540/** Wrapper for as_area_destroy(). */
1541unative_t sys_as_area_destroy(uintptr_t address)
1542{
1543 return (unative_t) as_area_destroy(AS, address);
1544}
1545
1546/** @}
1547 */
Note: See TracBrowser for help on using the repository browser.