source: mainline/kernel/generic/src/mm/as.c@ 57da95c

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since 57da95c was 57da95c, checked in by Jakub Jermar <jakub@…>, 19 years ago
  • Create a dedicated slab cache for as_t objects and switch from malloc/free to slab_alloc/slab_free for

them.

  • Slightly fix and improve both the kernel and userspace atomic_add() on sparc64.
  • More TSB work on the sparc64 front.
  • Property mode set to 100644
File size: 41.8 KB
Line 
1/*
2 * Copyright (C) 2001-2006 Jakub Jermar
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/** @addtogroup genericmm
30 * @{
31 */
32
33/**
34 * @file
35 * @brief Address space related functions.
36 *
37 * This file contains address space manipulation functions.
38 * Roughly speaking, this is a higher-level client of
39 * Virtual Address Translation (VAT) subsystem.
40 *
41 * Functionality provided by this file allows one to
42 * create address spaces and create, resize and share
43 * address space areas.
44 *
45 * @see page.c
46 *
47 */
48
49#include <mm/as.h>
50#include <arch/mm/as.h>
51#include <mm/page.h>
52#include <mm/frame.h>
53#include <mm/slab.h>
54#include <mm/tlb.h>
55#include <arch/mm/page.h>
56#include <genarch/mm/page_pt.h>
57#include <genarch/mm/page_ht.h>
58#include <mm/asid.h>
59#include <arch/mm/asid.h>
60#include <synch/spinlock.h>
61#include <synch/mutex.h>
62#include <adt/list.h>
63#include <adt/btree.h>
64#include <proc/task.h>
65#include <proc/thread.h>
66#include <arch/asm.h>
67#include <panic.h>
68#include <debug.h>
69#include <print.h>
70#include <memstr.h>
71#include <macros.h>
72#include <arch.h>
73#include <errno.h>
74#include <config.h>
75#include <align.h>
76#include <arch/types.h>
77#include <typedefs.h>
78#include <syscall/copy.h>
79#include <arch/interrupt.h>
80
81/**
82 * Each architecture decides what functions will be used to carry out
83 * address space operations such as creating or locking page tables.
84 */
85as_operations_t *as_operations = NULL;
86
87/**
88 * Slab for as_t objects.
89 */
90static slab_cache_t *as_slab;
91
92/** This lock protects inactive_as_with_asid_head list. It must be acquired before as_t mutex. */
93SPINLOCK_INITIALIZE(inactive_as_with_asid_lock);
94
95/**
96 * This list contains address spaces that are not active on any
97 * processor and that have valid ASID.
98 */
99LIST_INITIALIZE(inactive_as_with_asid_head);
100
101/** Kernel address space. */
102as_t *AS_KERNEL = NULL;
103
104static int area_flags_to_page_flags(int aflags);
105static as_area_t *find_area_and_lock(as_t *as, uintptr_t va);
106static bool check_area_conflicts(as_t *as, uintptr_t va, size_t size, as_area_t *avoid_area);
107static void sh_info_remove_reference(share_info_t *sh_info);
108
109/** Initialize address space subsystem. */
110void as_init(void)
111{
112 as_arch_init();
113
114 as_slab = slab_cache_create("as_slab", sizeof(as_t), 0, NULL, NULL, SLAB_CACHE_MAGDEFERRED);
115
116 AS_KERNEL = as_create(FLAG_AS_KERNEL);
117 if (!AS_KERNEL)
118 panic("can't create kernel address space\n");
119
120}
121
122/** Create address space.
123 *
124 * @param flags Flags that influence way in wich the address space is created.
125 */
126as_t *as_create(int flags)
127{
128 as_t *as;
129
130 as = (as_t *) slab_alloc(as_slab, 0);
131 link_initialize(&as->inactive_as_with_asid_link);
132 mutex_initialize(&as->lock);
133 btree_create(&as->as_area_btree);
134
135 if (flags & FLAG_AS_KERNEL)
136 as->asid = ASID_KERNEL;
137 else
138 as->asid = ASID_INVALID;
139
140 as->refcount = 0;
141 as->cpu_refcount = 0;
142 as->page_table = page_table_create(flags);
143
144 return as;
145}
146
147/** Destroy adress space.
148 *
149 * When there are no tasks referencing this address space (i.e. its refcount is zero),
150 * the address space can be destroyed.
151 */
152void as_destroy(as_t *as)
153{
154 ipl_t ipl;
155 bool cond;
156
157 ASSERT(as->refcount == 0);
158
159 /*
160 * Since there is no reference to this area,
161 * it is safe not to lock its mutex.
162 */
163 ipl = interrupts_disable();
164 spinlock_lock(&inactive_as_with_asid_lock);
165 if (as->asid != ASID_INVALID && as != AS_KERNEL) {
166 if (as != AS && as->cpu_refcount == 0)
167 list_remove(&as->inactive_as_with_asid_link);
168 asid_put(as->asid);
169 }
170 spinlock_unlock(&inactive_as_with_asid_lock);
171
172 /*
173 * Destroy address space areas of the address space.
174 * The B+tee must be walked carefully because it is
175 * also being destroyed.
176 */
177 for (cond = true; cond; ) {
178 btree_node_t *node;
179
180 ASSERT(!list_empty(&as->as_area_btree.leaf_head));
181 node = list_get_instance(as->as_area_btree.leaf_head.next, btree_node_t, leaf_link);
182
183 if ((cond = node->keys)) {
184 as_area_destroy(as, node->key[0]);
185 }
186 }
187
188 btree_destroy(&as->as_area_btree);
189 page_table_destroy(as->page_table);
190
191 interrupts_restore(ipl);
192
193 slab_free(as_slab, as);
194}
195
196/** Create address space area of common attributes.
197 *
198 * The created address space area is added to the target address space.
199 *
200 * @param as Target address space.
201 * @param flags Flags of the area memory.
202 * @param size Size of area.
203 * @param base Base address of area.
204 * @param attrs Attributes of the area.
205 * @param backend Address space area backend. NULL if no backend is used.
206 * @param backend_data NULL or a pointer to an array holding two void *.
207 *
208 * @return Address space area on success or NULL on failure.
209 */
210as_area_t *as_area_create(as_t *as, int flags, size_t size, uintptr_t base, int attrs,
211 mem_backend_t *backend, mem_backend_data_t *backend_data)
212{
213 ipl_t ipl;
214 as_area_t *a;
215
216 if (base % PAGE_SIZE)
217 return NULL;
218
219 if (!size)
220 return NULL;
221
222 /* Writeable executable areas are not supported. */
223 if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
224 return NULL;
225
226 ipl = interrupts_disable();
227 mutex_lock(&as->lock);
228
229 if (!check_area_conflicts(as, base, size, NULL)) {
230 mutex_unlock(&as->lock);
231 interrupts_restore(ipl);
232 return NULL;
233 }
234
235 a = (as_area_t *) malloc(sizeof(as_area_t), 0);
236
237 mutex_initialize(&a->lock);
238
239 a->as = as;
240 a->flags = flags;
241 a->attributes = attrs;
242 a->pages = SIZE2FRAMES(size);
243 a->base = base;
244 a->sh_info = NULL;
245 a->backend = backend;
246 if (backend_data)
247 a->backend_data = *backend_data;
248 else
249 memsetb((uintptr_t) &a->backend_data, sizeof(a->backend_data), 0);
250
251 btree_create(&a->used_space);
252
253 btree_insert(&as->as_area_btree, base, (void *) a, NULL);
254
255 mutex_unlock(&as->lock);
256 interrupts_restore(ipl);
257
258 return a;
259}
260
261/** Find address space area and change it.
262 *
263 * @param as Address space.
264 * @param address Virtual address belonging to the area to be changed. Must be page-aligned.
265 * @param size New size of the virtual memory block starting at address.
266 * @param flags Flags influencing the remap operation. Currently unused.
267 *
268 * @return Zero on success or a value from @ref errno.h otherwise.
269 */
270int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags)
271{
272 as_area_t *area;
273 ipl_t ipl;
274 size_t pages;
275
276 ipl = interrupts_disable();
277 mutex_lock(&as->lock);
278
279 /*
280 * Locate the area.
281 */
282 area = find_area_and_lock(as, address);
283 if (!area) {
284 mutex_unlock(&as->lock);
285 interrupts_restore(ipl);
286 return ENOENT;
287 }
288
289 if (area->backend == &phys_backend) {
290 /*
291 * Remapping of address space areas associated
292 * with memory mapped devices is not supported.
293 */
294 mutex_unlock(&area->lock);
295 mutex_unlock(&as->lock);
296 interrupts_restore(ipl);
297 return ENOTSUP;
298 }
299 if (area->sh_info) {
300 /*
301 * Remapping of shared address space areas
302 * is not supported.
303 */
304 mutex_unlock(&area->lock);
305 mutex_unlock(&as->lock);
306 interrupts_restore(ipl);
307 return ENOTSUP;
308 }
309
310 pages = SIZE2FRAMES((address - area->base) + size);
311 if (!pages) {
312 /*
313 * Zero size address space areas are not allowed.
314 */
315 mutex_unlock(&area->lock);
316 mutex_unlock(&as->lock);
317 interrupts_restore(ipl);
318 return EPERM;
319 }
320
321 if (pages < area->pages) {
322 bool cond;
323 uintptr_t start_free = area->base + pages*PAGE_SIZE;
324
325 /*
326 * Shrinking the area.
327 * No need to check for overlaps.
328 */
329
330 /*
331 * Start TLB shootdown sequence.
332 */
333 tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
334
335 /*
336 * Remove frames belonging to used space starting from
337 * the highest addresses downwards until an overlap with
338 * the resized address space area is found. Note that this
339 * is also the right way to remove part of the used_space
340 * B+tree leaf list.
341 */
342 for (cond = true; cond;) {
343 btree_node_t *node;
344
345 ASSERT(!list_empty(&area->used_space.leaf_head));
346 node = list_get_instance(area->used_space.leaf_head.prev, btree_node_t, leaf_link);
347 if ((cond = (bool) node->keys)) {
348 uintptr_t b = node->key[node->keys - 1];
349 count_t c = (count_t) node->value[node->keys - 1];
350 int i = 0;
351
352 if (overlaps(b, c*PAGE_SIZE, area->base, pages*PAGE_SIZE)) {
353
354 if (b + c*PAGE_SIZE <= start_free) {
355 /*
356 * The whole interval fits completely
357 * in the resized address space area.
358 */
359 break;
360 }
361
362 /*
363 * Part of the interval corresponding to b and c
364 * overlaps with the resized address space area.
365 */
366
367 cond = false; /* we are almost done */
368 i = (start_free - b) >> PAGE_WIDTH;
369 if (!used_space_remove(area, start_free, c - i))
370 panic("Could not remove used space.\n");
371 } else {
372 /*
373 * The interval of used space can be completely removed.
374 */
375 if (!used_space_remove(area, b, c))
376 panic("Could not remove used space.\n");
377 }
378
379 for (; i < c; i++) {
380 pte_t *pte;
381
382 page_table_lock(as, false);
383 pte = page_mapping_find(as, b + i*PAGE_SIZE);
384 ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
385 if (area->backend && area->backend->frame_free) {
386 area->backend->frame_free(area,
387 b + i*PAGE_SIZE, PTE_GET_FRAME(pte));
388 }
389 page_mapping_remove(as, b + i*PAGE_SIZE);
390 page_table_unlock(as, false);
391 }
392 }
393 }
394
395 /*
396 * Finish TLB shootdown sequence.
397 */
398 tlb_invalidate_pages(AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
399 tlb_shootdown_finalize();
400
401 /*
402 * Invalidate software translation caches (e.g. TSB on sparc64).
403 */
404 as_invalidate_translation_cache(as, area->base + pages*PAGE_SIZE, area->pages - pages);
405 } else {
406 /*
407 * Growing the area.
408 * Check for overlaps with other address space areas.
409 */
410 if (!check_area_conflicts(as, address, pages * PAGE_SIZE, area)) {
411 mutex_unlock(&area->lock);
412 mutex_unlock(&as->lock);
413 interrupts_restore(ipl);
414 return EADDRNOTAVAIL;
415 }
416 }
417
418 area->pages = pages;
419
420 mutex_unlock(&area->lock);
421 mutex_unlock(&as->lock);
422 interrupts_restore(ipl);
423
424 return 0;
425}
426
427/** Destroy address space area.
428 *
429 * @param as Address space.
430 * @param address Address withing the area to be deleted.
431 *
432 * @return Zero on success or a value from @ref errno.h on failure.
433 */
434int as_area_destroy(as_t *as, uintptr_t address)
435{
436 as_area_t *area;
437 uintptr_t base;
438 link_t *cur;
439 ipl_t ipl;
440
441 ipl = interrupts_disable();
442 mutex_lock(&as->lock);
443
444 area = find_area_and_lock(as, address);
445 if (!area) {
446 mutex_unlock(&as->lock);
447 interrupts_restore(ipl);
448 return ENOENT;
449 }
450
451 base = area->base;
452
453 /*
454 * Start TLB shootdown sequence.
455 */
456 tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
457
458 /*
459 * Visit only the pages mapped by used_space B+tree.
460 */
461 for (cur = area->used_space.leaf_head.next; cur != &area->used_space.leaf_head; cur = cur->next) {
462 btree_node_t *node;
463 int i;
464
465 node = list_get_instance(cur, btree_node_t, leaf_link);
466 for (i = 0; i < node->keys; i++) {
467 uintptr_t b = node->key[i];
468 count_t j;
469 pte_t *pte;
470
471 for (j = 0; j < (count_t) node->value[i]; j++) {
472 page_table_lock(as, false);
473 pte = page_mapping_find(as, b + j*PAGE_SIZE);
474 ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
475 if (area->backend && area->backend->frame_free) {
476 area->backend->frame_free(area,
477 b + j*PAGE_SIZE, PTE_GET_FRAME(pte));
478 }
479 page_mapping_remove(as, b + j*PAGE_SIZE);
480 page_table_unlock(as, false);
481 }
482 }
483 }
484
485 /*
486 * Finish TLB shootdown sequence.
487 */
488 tlb_invalidate_pages(as->asid, area->base, area->pages);
489 tlb_shootdown_finalize();
490
491 /*
492 * Invalidate potential software translation caches (e.g. TSB on sparc64).
493 */
494 as_invalidate_translation_cache(as, area->base, area->pages);
495
496 btree_destroy(&area->used_space);
497
498 area->attributes |= AS_AREA_ATTR_PARTIAL;
499
500 if (area->sh_info)
501 sh_info_remove_reference(area->sh_info);
502
503 mutex_unlock(&area->lock);
504
505 /*
506 * Remove the empty area from address space.
507 */
508 btree_remove(&as->as_area_btree, base, NULL);
509
510 free(area);
511
512 mutex_unlock(&as->lock);
513 interrupts_restore(ipl);
514 return 0;
515}
516
517/** Share address space area with another or the same address space.
518 *
519 * Address space area mapping is shared with a new address space area.
520 * If the source address space area has not been shared so far,
521 * a new sh_info is created. The new address space area simply gets the
522 * sh_info of the source area. The process of duplicating the
523 * mapping is done through the backend share function.
524 *
525 * @param src_as Pointer to source address space.
526 * @param src_base Base address of the source address space area.
527 * @param acc_size Expected size of the source area.
528 * @param dst_as Pointer to destination address space.
529 * @param dst_base Target base address.
530 * @param dst_flags_mask Destination address space area flags mask.
531 *
532 * @return Zero on success or ENOENT if there is no such task or
533 * if there is no such address space area,
534 * EPERM if there was a problem in accepting the area or
535 * ENOMEM if there was a problem in allocating destination
536 * address space area. ENOTSUP is returned if an attempt
537 * to share non-anonymous address space area is detected.
538 */
539int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
540 as_t *dst_as, uintptr_t dst_base, int dst_flags_mask)
541{
542 ipl_t ipl;
543 int src_flags;
544 size_t src_size;
545 as_area_t *src_area, *dst_area;
546 share_info_t *sh_info;
547 mem_backend_t *src_backend;
548 mem_backend_data_t src_backend_data;
549
550 ipl = interrupts_disable();
551 mutex_lock(&src_as->lock);
552 src_area = find_area_and_lock(src_as, src_base);
553 if (!src_area) {
554 /*
555 * Could not find the source address space area.
556 */
557 mutex_unlock(&src_as->lock);
558 interrupts_restore(ipl);
559 return ENOENT;
560 }
561
562 if (!src_area->backend || !src_area->backend->share) {
563 /*
564 * There is no backend or the backend does not
565 * know how to share the area.
566 */
567 mutex_unlock(&src_area->lock);
568 mutex_unlock(&src_as->lock);
569 interrupts_restore(ipl);
570 return ENOTSUP;
571 }
572
573 src_size = src_area->pages * PAGE_SIZE;
574 src_flags = src_area->flags;
575 src_backend = src_area->backend;
576 src_backend_data = src_area->backend_data;
577
578 /* Share the cacheable flag from the original mapping */
579 if (src_flags & AS_AREA_CACHEABLE)
580 dst_flags_mask |= AS_AREA_CACHEABLE;
581
582 if (src_size != acc_size || (src_flags & dst_flags_mask) != dst_flags_mask) {
583 mutex_unlock(&src_area->lock);
584 mutex_unlock(&src_as->lock);
585 interrupts_restore(ipl);
586 return EPERM;
587 }
588
589 /*
590 * Now we are committed to sharing the area.
591 * First prepare the area for sharing.
592 * Then it will be safe to unlock it.
593 */
594 sh_info = src_area->sh_info;
595 if (!sh_info) {
596 sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
597 mutex_initialize(&sh_info->lock);
598 sh_info->refcount = 2;
599 btree_create(&sh_info->pagemap);
600 src_area->sh_info = sh_info;
601 } else {
602 mutex_lock(&sh_info->lock);
603 sh_info->refcount++;
604 mutex_unlock(&sh_info->lock);
605 }
606
607 src_area->backend->share(src_area);
608
609 mutex_unlock(&src_area->lock);
610 mutex_unlock(&src_as->lock);
611
612 /*
613 * Create copy of the source address space area.
614 * The destination area is created with AS_AREA_ATTR_PARTIAL
615 * attribute set which prevents race condition with
616 * preliminary as_page_fault() calls.
617 * The flags of the source area are masked against dst_flags_mask
618 * to support sharing in less privileged mode.
619 */
620 dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
621 AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
622 if (!dst_area) {
623 /*
624 * Destination address space area could not be created.
625 */
626 sh_info_remove_reference(sh_info);
627
628 interrupts_restore(ipl);
629 return ENOMEM;
630 }
631
632 /*
633 * Now the destination address space area has been
634 * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
635 * attribute and set the sh_info.
636 */
637 mutex_lock(&dst_area->lock);
638 dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
639 dst_area->sh_info = sh_info;
640 mutex_unlock(&dst_area->lock);
641
642 interrupts_restore(ipl);
643
644 return 0;
645}
646
647/** Check access mode for address space area.
648 *
649 * The address space area must be locked prior to this call.
650 *
651 * @param area Address space area.
652 * @param access Access mode.
653 *
654 * @return False if access violates area's permissions, true otherwise.
655 */
656bool as_area_check_access(as_area_t *area, pf_access_t access)
657{
658 int flagmap[] = {
659 [PF_ACCESS_READ] = AS_AREA_READ,
660 [PF_ACCESS_WRITE] = AS_AREA_WRITE,
661 [PF_ACCESS_EXEC] = AS_AREA_EXEC
662 };
663
664 if (!(area->flags & flagmap[access]))
665 return false;
666
667 return true;
668}
669
670/** Handle page fault within the current address space.
671 *
672 * This is the high-level page fault handler. It decides
673 * whether the page fault can be resolved by any backend
674 * and if so, it invokes the backend to resolve the page
675 * fault.
676 *
677 * Interrupts are assumed disabled.
678 *
679 * @param page Faulting page.
680 * @param access Access mode that caused the fault (i.e. read/write/exec).
681 * @param istate Pointer to interrupted state.
682 *
683 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
684 * fault was caused by copy_to_uspace() or copy_from_uspace().
685 */
686int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
687{
688 pte_t *pte;
689 as_area_t *area;
690
691 if (!THREAD)
692 return AS_PF_FAULT;
693
694 ASSERT(AS);
695
696 mutex_lock(&AS->lock);
697 area = find_area_and_lock(AS, page);
698 if (!area) {
699 /*
700 * No area contained mapping for 'page'.
701 * Signal page fault to low-level handler.
702 */
703 mutex_unlock(&AS->lock);
704 goto page_fault;
705 }
706
707 if (area->attributes & AS_AREA_ATTR_PARTIAL) {
708 /*
709 * The address space area is not fully initialized.
710 * Avoid possible race by returning error.
711 */
712 mutex_unlock(&area->lock);
713 mutex_unlock(&AS->lock);
714 goto page_fault;
715 }
716
717 if (!area->backend || !area->backend->page_fault) {
718 /*
719 * The address space area is not backed by any backend
720 * or the backend cannot handle page faults.
721 */
722 mutex_unlock(&area->lock);
723 mutex_unlock(&AS->lock);
724 goto page_fault;
725 }
726
727 page_table_lock(AS, false);
728
729 /*
730 * To avoid race condition between two page faults
731 * on the same address, we need to make sure
732 * the mapping has not been already inserted.
733 */
734 if ((pte = page_mapping_find(AS, page))) {
735 if (PTE_PRESENT(pte)) {
736 if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
737 (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
738 (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
739 page_table_unlock(AS, false);
740 mutex_unlock(&area->lock);
741 mutex_unlock(&AS->lock);
742 return AS_PF_OK;
743 }
744 }
745 }
746
747 /*
748 * Resort to the backend page fault handler.
749 */
750 if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
751 page_table_unlock(AS, false);
752 mutex_unlock(&area->lock);
753 mutex_unlock(&AS->lock);
754 goto page_fault;
755 }
756
757 page_table_unlock(AS, false);
758 mutex_unlock(&area->lock);
759 mutex_unlock(&AS->lock);
760 return AS_PF_OK;
761
762page_fault:
763 if (THREAD->in_copy_from_uspace) {
764 THREAD->in_copy_from_uspace = false;
765 istate_set_retaddr(istate, (uintptr_t) &memcpy_from_uspace_failover_address);
766 } else if (THREAD->in_copy_to_uspace) {
767 THREAD->in_copy_to_uspace = false;
768 istate_set_retaddr(istate, (uintptr_t) &memcpy_to_uspace_failover_address);
769 } else {
770 return AS_PF_FAULT;
771 }
772
773 return AS_PF_DEFER;
774}
775
776/** Switch address spaces.
777 *
778 * Note that this function cannot sleep as it is essentially a part of
779 * scheduling. Sleeping here would lead to deadlock on wakeup.
780 *
781 * @param old Old address space or NULL.
782 * @param new New address space.
783 */
784void as_switch(as_t *old, as_t *new)
785{
786 ipl_t ipl;
787 bool needs_asid = false;
788
789 ipl = interrupts_disable();
790 spinlock_lock(&inactive_as_with_asid_lock);
791
792 /*
793 * First, take care of the old address space.
794 */
795 if (old) {
796 mutex_lock_active(&old->lock);
797 ASSERT(old->cpu_refcount);
798 if((--old->cpu_refcount == 0) && (old != AS_KERNEL)) {
799 /*
800 * The old address space is no longer active on
801 * any processor. It can be appended to the
802 * list of inactive address spaces with assigned
803 * ASID.
804 */
805 ASSERT(old->asid != ASID_INVALID);
806 list_append(&old->inactive_as_with_asid_link, &inactive_as_with_asid_head);
807 }
808 mutex_unlock(&old->lock);
809
810 /*
811 * Perform architecture-specific tasks when the address space
812 * is being removed from the CPU.
813 */
814 as_deinstall_arch(old);
815 }
816
817 /*
818 * Second, prepare the new address space.
819 */
820 mutex_lock_active(&new->lock);
821 if ((new->cpu_refcount++ == 0) && (new != AS_KERNEL)) {
822 if (new->asid != ASID_INVALID)
823 list_remove(&new->inactive_as_with_asid_link);
824 else
825 needs_asid = true; /* defer call to asid_get() until new->lock is released */
826 }
827 SET_PTL0_ADDRESS(new->page_table);
828 mutex_unlock(&new->lock);
829
830 if (needs_asid) {
831 /*
832 * Allocation of new ASID was deferred
833 * until now in order to avoid deadlock.
834 */
835 asid_t asid;
836
837 asid = asid_get();
838 mutex_lock_active(&new->lock);
839 new->asid = asid;
840 mutex_unlock(&new->lock);
841 }
842 spinlock_unlock(&inactive_as_with_asid_lock);
843 interrupts_restore(ipl);
844
845 /*
846 * Perform architecture-specific steps.
847 * (e.g. write ASID to hardware register etc.)
848 */
849 as_install_arch(new);
850
851 AS = new;
852}
853
854/** Convert address space area flags to page flags.
855 *
856 * @param aflags Flags of some address space area.
857 *
858 * @return Flags to be passed to page_mapping_insert().
859 */
860int area_flags_to_page_flags(int aflags)
861{
862 int flags;
863
864 flags = PAGE_USER | PAGE_PRESENT;
865
866 if (aflags & AS_AREA_READ)
867 flags |= PAGE_READ;
868
869 if (aflags & AS_AREA_WRITE)
870 flags |= PAGE_WRITE;
871
872 if (aflags & AS_AREA_EXEC)
873 flags |= PAGE_EXEC;
874
875 if (aflags & AS_AREA_CACHEABLE)
876 flags |= PAGE_CACHEABLE;
877
878 return flags;
879}
880
881/** Compute flags for virtual address translation subsytem.
882 *
883 * The address space area must be locked.
884 * Interrupts must be disabled.
885 *
886 * @param a Address space area.
887 *
888 * @return Flags to be used in page_mapping_insert().
889 */
890int as_area_get_flags(as_area_t *a)
891{
892 return area_flags_to_page_flags(a->flags);
893}
894
895/** Create page table.
896 *
897 * Depending on architecture, create either address space
898 * private or global page table.
899 *
900 * @param flags Flags saying whether the page table is for kernel address space.
901 *
902 * @return First entry of the page table.
903 */
904pte_t *page_table_create(int flags)
905{
906 ASSERT(as_operations);
907 ASSERT(as_operations->page_table_create);
908
909 return as_operations->page_table_create(flags);
910}
911
912/** Destroy page table.
913 *
914 * Destroy page table in architecture specific way.
915 *
916 * @param page_table Physical address of PTL0.
917 */
918void page_table_destroy(pte_t *page_table)
919{
920 ASSERT(as_operations);
921 ASSERT(as_operations->page_table_destroy);
922
923 as_operations->page_table_destroy(page_table);
924}
925
926/** Lock page table.
927 *
928 * This function should be called before any page_mapping_insert(),
929 * page_mapping_remove() and page_mapping_find().
930 *
931 * Locking order is such that address space areas must be locked
932 * prior to this call. Address space can be locked prior to this
933 * call in which case the lock argument is false.
934 *
935 * @param as Address space.
936 * @param lock If false, do not attempt to lock as->lock.
937 */
938void page_table_lock(as_t *as, bool lock)
939{
940 ASSERT(as_operations);
941 ASSERT(as_operations->page_table_lock);
942
943 as_operations->page_table_lock(as, lock);
944}
945
946/** Unlock page table.
947 *
948 * @param as Address space.
949 * @param unlock If false, do not attempt to unlock as->lock.
950 */
951void page_table_unlock(as_t *as, bool unlock)
952{
953 ASSERT(as_operations);
954 ASSERT(as_operations->page_table_unlock);
955
956 as_operations->page_table_unlock(as, unlock);
957}
958
959
960/** Find address space area and lock it.
961 *
962 * The address space must be locked and interrupts must be disabled.
963 *
964 * @param as Address space.
965 * @param va Virtual address.
966 *
967 * @return Locked address space area containing va on success or NULL on failure.
968 */
969as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
970{
971 as_area_t *a;
972 btree_node_t *leaf, *lnode;
973 int i;
974
975 a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
976 if (a) {
977 /* va is the base address of an address space area */
978 mutex_lock(&a->lock);
979 return a;
980 }
981
982 /*
983 * Search the leaf node and the righmost record of its left neighbour
984 * to find out whether this is a miss or va belongs to an address
985 * space area found there.
986 */
987
988 /* First, search the leaf node itself. */
989 for (i = 0; i < leaf->keys; i++) {
990 a = (as_area_t *) leaf->value[i];
991 mutex_lock(&a->lock);
992 if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
993 return a;
994 }
995 mutex_unlock(&a->lock);
996 }
997
998 /*
999 * Second, locate the left neighbour and test its last record.
1000 * Because of its position in the B+tree, it must have base < va.
1001 */
1002 if ((lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1003 a = (as_area_t *) lnode->value[lnode->keys - 1];
1004 mutex_lock(&a->lock);
1005 if (va < a->base + a->pages * PAGE_SIZE) {
1006 return a;
1007 }
1008 mutex_unlock(&a->lock);
1009 }
1010
1011 return NULL;
1012}
1013
1014/** Check area conflicts with other areas.
1015 *
1016 * The address space must be locked and interrupts must be disabled.
1017 *
1018 * @param as Address space.
1019 * @param va Starting virtual address of the area being tested.
1020 * @param size Size of the area being tested.
1021 * @param avoid_area Do not touch this area.
1022 *
1023 * @return True if there is no conflict, false otherwise.
1024 */
1025bool check_area_conflicts(as_t *as, uintptr_t va, size_t size, as_area_t *avoid_area)
1026{
1027 as_area_t *a;
1028 btree_node_t *leaf, *node;
1029 int i;
1030
1031 /*
1032 * We don't want any area to have conflicts with NULL page.
1033 */
1034 if (overlaps(va, size, NULL, PAGE_SIZE))
1035 return false;
1036
1037 /*
1038 * The leaf node is found in O(log n), where n is proportional to
1039 * the number of address space areas belonging to as.
1040 * The check for conflicts is then attempted on the rightmost
1041 * record in the left neighbour, the leftmost record in the right
1042 * neighbour and all records in the leaf node itself.
1043 */
1044
1045 if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1046 if (a != avoid_area)
1047 return false;
1048 }
1049
1050 /* First, check the two border cases. */
1051 if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1052 a = (as_area_t *) node->value[node->keys - 1];
1053 mutex_lock(&a->lock);
1054 if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1055 mutex_unlock(&a->lock);
1056 return false;
1057 }
1058 mutex_unlock(&a->lock);
1059 }
1060 if ((node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf))) {
1061 a = (as_area_t *) node->value[0];
1062 mutex_lock(&a->lock);
1063 if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1064 mutex_unlock(&a->lock);
1065 return false;
1066 }
1067 mutex_unlock(&a->lock);
1068 }
1069
1070 /* Second, check the leaf node. */
1071 for (i = 0; i < leaf->keys; i++) {
1072 a = (as_area_t *) leaf->value[i];
1073
1074 if (a == avoid_area)
1075 continue;
1076
1077 mutex_lock(&a->lock);
1078 if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1079 mutex_unlock(&a->lock);
1080 return false;
1081 }
1082 mutex_unlock(&a->lock);
1083 }
1084
1085 /*
1086 * So far, the area does not conflict with other areas.
1087 * Check if it doesn't conflict with kernel address space.
1088 */
1089 if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1090 return !overlaps(va, size,
1091 KERNEL_ADDRESS_SPACE_START, KERNEL_ADDRESS_SPACE_END-KERNEL_ADDRESS_SPACE_START);
1092 }
1093
1094 return true;
1095}
1096
1097/** Return size of the address space area with given base. */
1098size_t as_get_size(uintptr_t base)
1099{
1100 ipl_t ipl;
1101 as_area_t *src_area;
1102 size_t size;
1103
1104 ipl = interrupts_disable();
1105 src_area = find_area_and_lock(AS, base);
1106 if (src_area){
1107 size = src_area->pages * PAGE_SIZE;
1108 mutex_unlock(&src_area->lock);
1109 } else {
1110 size = 0;
1111 }
1112 interrupts_restore(ipl);
1113 return size;
1114}
1115
1116/** Mark portion of address space area as used.
1117 *
1118 * The address space area must be already locked.
1119 *
1120 * @param a Address space area.
1121 * @param page First page to be marked.
1122 * @param count Number of page to be marked.
1123 *
1124 * @return 0 on failure and 1 on success.
1125 */
1126int used_space_insert(as_area_t *a, uintptr_t page, count_t count)
1127{
1128 btree_node_t *leaf, *node;
1129 count_t pages;
1130 int i;
1131
1132 ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1133 ASSERT(count);
1134
1135 pages = (count_t) btree_search(&a->used_space, page, &leaf);
1136 if (pages) {
1137 /*
1138 * We hit the beginning of some used space.
1139 */
1140 return 0;
1141 }
1142
1143 if (!leaf->keys) {
1144 btree_insert(&a->used_space, page, (void *) count, leaf);
1145 return 1;
1146 }
1147
1148 node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1149 if (node) {
1150 uintptr_t left_pg = node->key[node->keys - 1], right_pg = leaf->key[0];
1151 count_t left_cnt = (count_t) node->value[node->keys - 1], right_cnt = (count_t) leaf->value[0];
1152
1153 /*
1154 * Examine the possibility that the interval fits
1155 * somewhere between the rightmost interval of
1156 * the left neigbour and the first interval of the leaf.
1157 */
1158
1159 if (page >= right_pg) {
1160 /* Do nothing. */
1161 } else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1162 /* The interval intersects with the left interval. */
1163 return 0;
1164 } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1165 /* The interval intersects with the right interval. */
1166 return 0;
1167 } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1168 /* The interval can be added by merging the two already present intervals. */
1169 node->value[node->keys - 1] += count + right_cnt;
1170 btree_remove(&a->used_space, right_pg, leaf);
1171 return 1;
1172 } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1173 /* The interval can be added by simply growing the left interval. */
1174 node->value[node->keys - 1] += count;
1175 return 1;
1176 } else if (page + count*PAGE_SIZE == right_pg) {
1177 /*
1178 * The interval can be addded by simply moving base of the right
1179 * interval down and increasing its size accordingly.
1180 */
1181 leaf->value[0] += count;
1182 leaf->key[0] = page;
1183 return 1;
1184 } else {
1185 /*
1186 * The interval is between both neigbouring intervals,
1187 * but cannot be merged with any of them.
1188 */
1189 btree_insert(&a->used_space, page, (void *) count, leaf);
1190 return 1;
1191 }
1192 } else if (page < leaf->key[0]) {
1193 uintptr_t right_pg = leaf->key[0];
1194 count_t right_cnt = (count_t) leaf->value[0];
1195
1196 /*
1197 * Investigate the border case in which the left neighbour does not
1198 * exist but the interval fits from the left.
1199 */
1200
1201 if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1202 /* The interval intersects with the right interval. */
1203 return 0;
1204 } else if (page + count*PAGE_SIZE == right_pg) {
1205 /*
1206 * The interval can be added by moving the base of the right interval down
1207 * and increasing its size accordingly.
1208 */
1209 leaf->key[0] = page;
1210 leaf->value[0] += count;
1211 return 1;
1212 } else {
1213 /*
1214 * The interval doesn't adjoin with the right interval.
1215 * It must be added individually.
1216 */
1217 btree_insert(&a->used_space, page, (void *) count, leaf);
1218 return 1;
1219 }
1220 }
1221
1222 node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1223 if (node) {
1224 uintptr_t left_pg = leaf->key[leaf->keys - 1], right_pg = node->key[0];
1225 count_t left_cnt = (count_t) leaf->value[leaf->keys - 1], right_cnt = (count_t) node->value[0];
1226
1227 /*
1228 * Examine the possibility that the interval fits
1229 * somewhere between the leftmost interval of
1230 * the right neigbour and the last interval of the leaf.
1231 */
1232
1233 if (page < left_pg) {
1234 /* Do nothing. */
1235 } else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1236 /* The interval intersects with the left interval. */
1237 return 0;
1238 } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1239 /* The interval intersects with the right interval. */
1240 return 0;
1241 } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1242 /* The interval can be added by merging the two already present intervals. */
1243 leaf->value[leaf->keys - 1] += count + right_cnt;
1244 btree_remove(&a->used_space, right_pg, node);
1245 return 1;
1246 } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1247 /* The interval can be added by simply growing the left interval. */
1248 leaf->value[leaf->keys - 1] += count;
1249 return 1;
1250 } else if (page + count*PAGE_SIZE == right_pg) {
1251 /*
1252 * The interval can be addded by simply moving base of the right
1253 * interval down and increasing its size accordingly.
1254 */
1255 node->value[0] += count;
1256 node->key[0] = page;
1257 return 1;
1258 } else {
1259 /*
1260 * The interval is between both neigbouring intervals,
1261 * but cannot be merged with any of them.
1262 */
1263 btree_insert(&a->used_space, page, (void *) count, leaf);
1264 return 1;
1265 }
1266 } else if (page >= leaf->key[leaf->keys - 1]) {
1267 uintptr_t left_pg = leaf->key[leaf->keys - 1];
1268 count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1269
1270 /*
1271 * Investigate the border case in which the right neighbour does not
1272 * exist but the interval fits from the right.
1273 */
1274
1275 if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1276 /* The interval intersects with the left interval. */
1277 return 0;
1278 } else if (left_pg + left_cnt*PAGE_SIZE == page) {
1279 /* The interval can be added by growing the left interval. */
1280 leaf->value[leaf->keys - 1] += count;
1281 return 1;
1282 } else {
1283 /*
1284 * The interval doesn't adjoin with the left interval.
1285 * It must be added individually.
1286 */
1287 btree_insert(&a->used_space, page, (void *) count, leaf);
1288 return 1;
1289 }
1290 }
1291
1292 /*
1293 * Note that if the algorithm made it thus far, the interval can fit only
1294 * between two other intervals of the leaf. The two border cases were already
1295 * resolved.
1296 */
1297 for (i = 1; i < leaf->keys; i++) {
1298 if (page < leaf->key[i]) {
1299 uintptr_t left_pg = leaf->key[i - 1], right_pg = leaf->key[i];
1300 count_t left_cnt = (count_t) leaf->value[i - 1], right_cnt = (count_t) leaf->value[i];
1301
1302 /*
1303 * The interval fits between left_pg and right_pg.
1304 */
1305
1306 if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1307 /* The interval intersects with the left interval. */
1308 return 0;
1309 } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1310 /* The interval intersects with the right interval. */
1311 return 0;
1312 } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1313 /* The interval can be added by merging the two already present intervals. */
1314 leaf->value[i - 1] += count + right_cnt;
1315 btree_remove(&a->used_space, right_pg, leaf);
1316 return 1;
1317 } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1318 /* The interval can be added by simply growing the left interval. */
1319 leaf->value[i - 1] += count;
1320 return 1;
1321 } else if (page + count*PAGE_SIZE == right_pg) {
1322 /*
1323 * The interval can be addded by simply moving base of the right
1324 * interval down and increasing its size accordingly.
1325 */
1326 leaf->value[i] += count;
1327 leaf->key[i] = page;
1328 return 1;
1329 } else {
1330 /*
1331 * The interval is between both neigbouring intervals,
1332 * but cannot be merged with any of them.
1333 */
1334 btree_insert(&a->used_space, page, (void *) count, leaf);
1335 return 1;
1336 }
1337 }
1338 }
1339
1340 panic("Inconsistency detected while adding %d pages of used space at %p.\n", count, page);
1341}
1342
1343/** Mark portion of address space area as unused.
1344 *
1345 * The address space area must be already locked.
1346 *
1347 * @param a Address space area.
1348 * @param page First page to be marked.
1349 * @param count Number of page to be marked.
1350 *
1351 * @return 0 on failure and 1 on success.
1352 */
1353int used_space_remove(as_area_t *a, uintptr_t page, count_t count)
1354{
1355 btree_node_t *leaf, *node;
1356 count_t pages;
1357 int i;
1358
1359 ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1360 ASSERT(count);
1361
1362 pages = (count_t) btree_search(&a->used_space, page, &leaf);
1363 if (pages) {
1364 /*
1365 * We are lucky, page is the beginning of some interval.
1366 */
1367 if (count > pages) {
1368 return 0;
1369 } else if (count == pages) {
1370 btree_remove(&a->used_space, page, leaf);
1371 return 1;
1372 } else {
1373 /*
1374 * Find the respective interval.
1375 * Decrease its size and relocate its start address.
1376 */
1377 for (i = 0; i < leaf->keys; i++) {
1378 if (leaf->key[i] == page) {
1379 leaf->key[i] += count*PAGE_SIZE;
1380 leaf->value[i] -= count;
1381 return 1;
1382 }
1383 }
1384 goto error;
1385 }
1386 }
1387
1388 node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1389 if (node && page < leaf->key[0]) {
1390 uintptr_t left_pg = node->key[node->keys - 1];
1391 count_t left_cnt = (count_t) node->value[node->keys - 1];
1392
1393 if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1394 if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1395 /*
1396 * The interval is contained in the rightmost interval
1397 * of the left neighbour and can be removed by
1398 * updating the size of the bigger interval.
1399 */
1400 node->value[node->keys - 1] -= count;
1401 return 1;
1402 } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1403 count_t new_cnt;
1404
1405 /*
1406 * The interval is contained in the rightmost interval
1407 * of the left neighbour but its removal requires
1408 * both updating the size of the original interval and
1409 * also inserting a new interval.
1410 */
1411 new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1412 node->value[node->keys - 1] -= count + new_cnt;
1413 btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1414 return 1;
1415 }
1416 }
1417 return 0;
1418 } else if (page < leaf->key[0]) {
1419 return 0;
1420 }
1421
1422 if (page > leaf->key[leaf->keys - 1]) {
1423 uintptr_t left_pg = leaf->key[leaf->keys - 1];
1424 count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1425
1426 if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1427 if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1428 /*
1429 * The interval is contained in the rightmost interval
1430 * of the leaf and can be removed by updating the size
1431 * of the bigger interval.
1432 */
1433 leaf->value[leaf->keys - 1] -= count;
1434 return 1;
1435 } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1436 count_t new_cnt;
1437
1438 /*
1439 * The interval is contained in the rightmost interval
1440 * of the leaf but its removal requires both updating
1441 * the size of the original interval and
1442 * also inserting a new interval.
1443 */
1444 new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1445 leaf->value[leaf->keys - 1] -= count + new_cnt;
1446 btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1447 return 1;
1448 }
1449 }
1450 return 0;
1451 }
1452
1453 /*
1454 * The border cases have been already resolved.
1455 * Now the interval can be only between intervals of the leaf.
1456 */
1457 for (i = 1; i < leaf->keys - 1; i++) {
1458 if (page < leaf->key[i]) {
1459 uintptr_t left_pg = leaf->key[i - 1];
1460 count_t left_cnt = (count_t) leaf->value[i - 1];
1461
1462 /*
1463 * Now the interval is between intervals corresponding to (i - 1) and i.
1464 */
1465 if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1466 if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1467 /*
1468 * The interval is contained in the interval (i - 1)
1469 * of the leaf and can be removed by updating the size
1470 * of the bigger interval.
1471 */
1472 leaf->value[i - 1] -= count;
1473 return 1;
1474 } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1475 count_t new_cnt;
1476
1477 /*
1478 * The interval is contained in the interval (i - 1)
1479 * of the leaf but its removal requires both updating
1480 * the size of the original interval and
1481 * also inserting a new interval.
1482 */
1483 new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1484 leaf->value[i - 1] -= count + new_cnt;
1485 btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1486 return 1;
1487 }
1488 }
1489 return 0;
1490 }
1491 }
1492
1493error:
1494 panic("Inconsistency detected while removing %d pages of used space from %p.\n", count, page);
1495}
1496
1497/** Remove reference to address space area share info.
1498 *
1499 * If the reference count drops to 0, the sh_info is deallocated.
1500 *
1501 * @param sh_info Pointer to address space area share info.
1502 */
1503void sh_info_remove_reference(share_info_t *sh_info)
1504{
1505 bool dealloc = false;
1506
1507 mutex_lock(&sh_info->lock);
1508 ASSERT(sh_info->refcount);
1509 if (--sh_info->refcount == 0) {
1510 dealloc = true;
1511 link_t *cur;
1512
1513 /*
1514 * Now walk carefully the pagemap B+tree and free/remove
1515 * reference from all frames found there.
1516 */
1517 for (cur = sh_info->pagemap.leaf_head.next; cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1518 btree_node_t *node;
1519 int i;
1520
1521 node = list_get_instance(cur, btree_node_t, leaf_link);
1522 for (i = 0; i < node->keys; i++)
1523 frame_free((uintptr_t) node->value[i]);
1524 }
1525
1526 }
1527 mutex_unlock(&sh_info->lock);
1528
1529 if (dealloc) {
1530 btree_destroy(&sh_info->pagemap);
1531 free(sh_info);
1532 }
1533}
1534
1535/*
1536 * Address space related syscalls.
1537 */
1538
1539/** Wrapper for as_area_create(). */
1540unative_t sys_as_area_create(uintptr_t address, size_t size, int flags)
1541{
1542 if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address, AS_AREA_ATTR_NONE, &anon_backend, NULL))
1543 return (unative_t) address;
1544 else
1545 return (unative_t) -1;
1546}
1547
1548/** Wrapper for as_area_resize(). */
1549unative_t sys_as_area_resize(uintptr_t address, size_t size, int flags)
1550{
1551 return (unative_t) as_area_resize(AS, address, size, 0);
1552}
1553
1554/** Wrapper for as_area_destroy(). */
1555unative_t sys_as_area_destroy(uintptr_t address)
1556{
1557 return (unative_t) as_area_destroy(AS, address);
1558}
1559
1560/** @}
1561 */
Note: See TracBrowser for help on using the repository browser.