source: mainline/kernel/generic/src/mm/as.c@ d9d0088

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since d9d0088 was d9d0088, checked in by Jiri Svoboda <jiri@…>, 7 years ago

Fix case where no area has lower or equal base. Remove duplicate alignment.

  • Property mode set to 100644
File size: 57.0 KB
Line 
1/*
2 * Copyright (c) 2010 Jakub Jermar
3 * Copyright (c) 2018 Jiri Svoboda
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 *
10 * - Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * - Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * - The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */
29
30/** @addtogroup kernel_generic_mm
31 * @{
32 */
33
34/**
35 * @file
36 * @brief Address space related functions.
37 *
38 * This file contains address space manipulation functions.
39 * Roughly speaking, this is a higher-level client of
40 * Virtual Address Translation (VAT) subsystem.
41 *
42 * Functionality provided by this file allows one to
43 * create address spaces and create, resize and share
44 * address space areas.
45 *
46 * @see page.c
47 *
48 */
49
50#include <mm/as.h>
51#include <arch/mm/as.h>
52#include <mm/page.h>
53#include <mm/frame.h>
54#include <mm/slab.h>
55#include <mm/tlb.h>
56#include <arch/mm/page.h>
57#include <genarch/mm/page_pt.h>
58#include <genarch/mm/page_ht.h>
59#include <mm/asid.h>
60#include <arch/mm/asid.h>
61#include <preemption.h>
62#include <synch/spinlock.h>
63#include <synch/mutex.h>
64#include <adt/list.h>
65#include <adt/btree.h>
66#include <proc/task.h>
67#include <proc/thread.h>
68#include <arch/asm.h>
69#include <panic.h>
70#include <assert.h>
71#include <stdio.h>
72#include <mem.h>
73#include <macros.h>
74#include <bitops.h>
75#include <arch.h>
76#include <errno.h>
77#include <config.h>
78#include <align.h>
79#include <typedefs.h>
80#include <syscall/copy.h>
81#include <arch/interrupt.h>
82#include <interrupt.h>
83
84/**
85 * Each architecture decides what functions will be used to carry out
86 * address space operations such as creating or locking page tables.
87 */
88as_operations_t *as_operations = NULL;
89
90/** Slab for as_t objects.
91 *
92 */
93static slab_cache_t *as_cache;
94
95/** ASID subsystem lock.
96 *
97 * This lock protects:
98 * - inactive_as_with_asid_list
99 * - as->asid for each as of the as_t type
100 * - asids_allocated counter
101 *
102 */
103SPINLOCK_INITIALIZE(asidlock);
104
105/**
106 * Inactive address spaces (on all processors)
107 * that have valid ASID.
108 */
109LIST_INITIALIZE(inactive_as_with_asid_list);
110
111/** Kernel address space. */
112as_t *AS_KERNEL = NULL;
113
114static void *as_areas_getkey(odlink_t *);
115static int as_areas_cmp(void *, void *);
116
117NO_TRACE static errno_t as_constructor(void *obj, unsigned int flags)
118{
119 as_t *as = (as_t *) obj;
120
121 link_initialize(&as->inactive_as_with_asid_link);
122 mutex_initialize(&as->lock, MUTEX_PASSIVE);
123
124 return as_constructor_arch(as, flags);
125}
126
127NO_TRACE static size_t as_destructor(void *obj)
128{
129 return as_destructor_arch((as_t *) obj);
130}
131
132/** Initialize address space subsystem. */
133void as_init(void)
134{
135 as_arch_init();
136
137 as_cache = slab_cache_create("as_t", sizeof(as_t), 0,
138 as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);
139
140 AS_KERNEL = as_create(FLAG_AS_KERNEL);
141 if (!AS_KERNEL)
142 panic("Cannot create kernel address space.");
143
144 /*
145 * Make sure the kernel address space
146 * reference count never drops to zero.
147 */
148 as_hold(AS_KERNEL);
149}
150
151/** Create address space.
152 *
153 * @param flags Flags that influence the way in wich the address
154 * space is created.
155 *
156 */
157as_t *as_create(unsigned int flags)
158{
159 as_t *as = (as_t *) slab_alloc(as_cache, 0);
160 (void) as_create_arch(as, 0);
161
162 odict_initialize(&as->as_areas, as_areas_getkey, as_areas_cmp);
163
164 if (flags & FLAG_AS_KERNEL)
165 as->asid = ASID_KERNEL;
166 else
167 as->asid = ASID_INVALID;
168
169 refcount_init(&as->refcount);
170 as->cpu_refcount = 0;
171
172#ifdef AS_PAGE_TABLE
173 as->genarch.page_table = page_table_create(flags);
174#else
175 page_table_create(flags);
176#endif
177
178 return as;
179}
180
181/** Destroy adress space.
182 *
183 * When there are no tasks referencing this address space (i.e. its refcount is
184 * zero), the address space can be destroyed.
185 *
186 * We know that we don't hold any spinlock.
187 *
188 * @param as Address space to be destroyed.
189 *
190 */
191void as_destroy(as_t *as)
192{
193 DEADLOCK_PROBE_INIT(p_asidlock);
194
195 assert(as != AS);
196 assert(refcount_unique(&as->refcount));
197
198 /*
199 * Since there is no reference to this address space, it is safe not to
200 * lock its mutex.
201 */
202
203 /*
204 * We need to avoid deadlock between TLB shootdown and asidlock.
205 * We therefore try to take asid conditionally and if we don't succeed,
206 * we enable interrupts and try again. This is done while preemption is
207 * disabled to prevent nested context switches. We also depend on the
208 * fact that so far no spinlocks are held.
209 */
210 preemption_disable();
211 ipl_t ipl = interrupts_read();
212
213retry:
214 interrupts_disable();
215 if (!spinlock_trylock(&asidlock)) {
216 interrupts_enable();
217 DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
218 goto retry;
219 }
220
221 /* Interrupts disabled, enable preemption */
222 preemption_enable();
223
224 if ((as->asid != ASID_INVALID) && (as != AS_KERNEL)) {
225 if (as->cpu_refcount == 0)
226 list_remove(&as->inactive_as_with_asid_link);
227
228 asid_put(as->asid);
229 }
230
231 spinlock_unlock(&asidlock);
232 interrupts_restore(ipl);
233
234 /*
235 * Destroy address space areas of the address space.
236 * Need to start from the beginning each time since we are destroying
237 * the areas.
238 */
239 as_area_t *area = as_area_first(as);
240 while (area != NULL) {
241 /*
242 * XXX We already have as_area_t, but as_area_destroy will
243 * have to search for it. This could be made faster.
244 */
245 as_area_destroy(as, area->base);
246 area = as_area_first(as);
247 }
248
249 odict_finalize(&as->as_areas);
250
251#ifdef AS_PAGE_TABLE
252 page_table_destroy(as->genarch.page_table);
253#else
254 page_table_destroy(NULL);
255#endif
256
257 slab_free(as_cache, as);
258}
259
260/** Hold a reference to an address space.
261 *
262 * Holding a reference to an address space prevents destruction
263 * of that address space.
264 *
265 * @param as Address space to be held.
266 *
267 */
268NO_TRACE void as_hold(as_t *as)
269{
270 refcount_up(&as->refcount);
271}
272
273/** Release a reference to an address space.
274 *
275 * The last one to release a reference to an address space
276 * destroys the address space.
277 *
278 * @param as Address space to be released.
279 *
280 */
281NO_TRACE void as_release(as_t *as)
282{
283 if (refcount_down(&as->refcount))
284 as_destroy(as);
285}
286
287/** Return first address space area.
288 *
289 * @param as Address space
290 * @return First area in @a as (i.e. area with the lowest base address)
291 * or @c NULL if there is none
292 */
293as_area_t *as_area_first(as_t *as)
294{
295 odlink_t *odlink = odict_first(&as->as_areas);
296 if (odlink == NULL)
297 return NULL;
298
299 return odict_get_instance(odlink, as_area_t, las_areas);
300}
301
302/** Return next address space area.
303 *
304 * @param cur Current area
305 * @return Next area in the same address space or @c NULL if @a cur is the
306 * last area.
307 */
308as_area_t *as_area_next(as_area_t *cur)
309{
310 odlink_t *odlink = odict_next(&cur->las_areas, &cur->as->as_areas);
311 if (odlink == NULL)
312 return NULL;
313
314 return odict_get_instance(odlink, as_area_t, las_areas);
315}
316
317/** Determine if area with specified parameters would conflict with
318 * a specific existing address space area.
319 *
320 * @param addr Starting virtual address of the area being tested.
321 * @param count Number of pages in the area being tested.
322 * @param guarded True if the area being tested is protected by guard pages.
323 * @param area Area against which we are testing.
324 *
325 * @return True if the two areas conflict, false otherwise.
326 *
327 */
328NO_TRACE static bool area_is_conflicting(uintptr_t addr,
329 size_t count, bool guarded, as_area_t *area)
330{
331 assert((addr % PAGE_SIZE) == 0);
332
333 /* Add guard page size unless area is at the end of VA domain */
334 size_t gsize = P2SZ(count);
335 if (guarded && !overflows(addr, P2SZ(count)))
336 gsize += PAGE_SIZE;
337
338 /* Add guard page size unless area is at the end of VA domain */
339 size_t agsize = P2SZ(area->pages);
340 if ((area->flags & AS_AREA_GUARD) != 0 &&
341 !overflows(area->base, P2SZ(area->pages)))
342 agsize += PAGE_SIZE;
343
344 return overlaps(addr, gsize, area->base, agsize);
345
346}
347
348/** Check area conflicts with other areas.
349 *
350 * @param as Address space.
351 * @param addr Starting virtual address of the area being tested.
352 * @param count Number of pages in the area being tested.
353 * @param guarded True if the area being tested is protected by guard pages.
354 * @param avoid Do not touch this area. I.e. this area is not considered
355 * as presenting a conflict.
356 *
357 * @return True if there is no conflict, false otherwise.
358 *
359 */
360NO_TRACE static bool check_area_conflicts(as_t *as, uintptr_t addr,
361 size_t count, bool guarded, as_area_t *avoid)
362{
363 assert((addr % PAGE_SIZE) == 0);
364 assert(mutex_locked(&as->lock));
365
366 /*
367 * If the addition of the supposed area address and size overflows,
368 * report conflict.
369 */
370 if (overflows_into_positive(addr, P2SZ(count)))
371 return false;
372
373 /*
374 * We don't want any area to have conflicts with NULL page.
375 */
376 if (overlaps(addr, P2SZ(count), (uintptr_t) NULL, PAGE_SIZE))
377 return false;
378
379 /*
380 * To determine if we overlap with another area, we just need
381 * to look at overlap with the last area with base address <=
382 * to ours and on the first area with base address > than ours.
383 *
384 * First find last area with <= base address.
385 */
386 odlink_t *odlink = odict_find_leq(&as->as_areas, &addr, NULL);
387 if (odlink != NULL) {
388 as_area_t *area = odict_get_instance(odlink, as_area_t,
389 las_areas);
390
391 if (area != avoid) {
392 mutex_lock(&area->lock);
393 if (area_is_conflicting(addr, count, guarded, area)) {
394 mutex_unlock(&area->lock);
395 return false;
396 }
397
398 mutex_unlock(&area->lock);
399 }
400
401 /* Next area */
402 odlink = odict_next(odlink, &as->as_areas);
403 }
404
405 /*
406 * Next area, if any, is the first with base > than our base address.
407 * If there was no area with <= base, we need to look at the first area.
408 */
409 if (odlink == NULL)
410 odlink = odict_first(&as->as_areas);
411
412 if (odlink != NULL) {
413 as_area_t *area = odict_get_instance(odlink, as_area_t,
414 las_areas);
415
416 if (area != avoid) {
417 mutex_lock(&area->lock);
418 if (area_is_conflicting(addr, count, guarded, area)) {
419 mutex_unlock(&area->lock);
420 return false;
421 }
422
423 mutex_unlock(&area->lock);
424 }
425 }
426
427 /*
428 * So far, the area does not conflict with other areas.
429 * Check if it is contained in the user address space.
430 */
431 if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
432 return iswithin(USER_ADDRESS_SPACE_START,
433 (USER_ADDRESS_SPACE_END - USER_ADDRESS_SPACE_START) + 1,
434 addr, P2SZ(count));
435 }
436
437 return true;
438}
439
440/** Return pointer to unmapped address space area
441 *
442 * The address space must be already locked when calling
443 * this function.
444 *
445 * @param as Address space.
446 * @param bound Lowest address bound.
447 * @param size Requested size of the allocation.
448 * @param guarded True if the allocation must be protected by guard pages.
449 *
450 * @return Address of the beginning of unmapped address space area.
451 * @return -1 if no suitable address space area was found.
452 *
453 */
454NO_TRACE static uintptr_t as_get_unmapped_area(as_t *as, uintptr_t bound,
455 size_t size, bool guarded)
456{
457 assert(mutex_locked(&as->lock));
458
459 if (size == 0)
460 return (uintptr_t) -1;
461
462 /*
463 * Make sure we allocate from page-aligned
464 * address. Check for possible overflow in
465 * each step.
466 */
467
468 size_t pages = SIZE2FRAMES(size);
469
470 /*
471 * Find the lowest unmapped address aligned on the size
472 * boundary, not smaller than bound and of the required size.
473 */
474
475 /* First check the bound address itself */
476 uintptr_t addr = ALIGN_UP(bound, PAGE_SIZE);
477 if (addr >= bound) {
478 if (guarded) {
479 /*
480 * Leave an unmapped page between the lower
481 * bound and the area's start address.
482 */
483 addr += P2SZ(1);
484 }
485
486 if (check_area_conflicts(as, addr, pages, guarded, NULL))
487 return addr;
488 }
489
490 /* Eventually check the addresses behind each area */
491 as_area_t *area = as_area_first(as);
492 while (area != NULL) {
493 mutex_lock(&area->lock);
494
495 addr = area->base + P2SZ(area->pages);
496
497 if (guarded || area->flags & AS_AREA_GUARD) {
498 /*
499 * We must leave an unmapped page
500 * between the two areas.
501 */
502 addr += P2SZ(1);
503 }
504
505 bool avail =
506 ((addr >= bound) && (addr >= area->base) &&
507 (check_area_conflicts(as, addr, pages, guarded, area)));
508
509 mutex_unlock(&area->lock);
510
511 if (avail)
512 return addr;
513
514 area = as_area_next(area);
515 }
516
517 /* No suitable address space area found */
518 return (uintptr_t) -1;
519}
520
521/** Remove reference to address space area share info.
522 *
523 * If the reference count drops to 0, the sh_info is deallocated.
524 *
525 * @param sh_info Pointer to address space area share info.
526 *
527 */
528NO_TRACE static void sh_info_remove_reference(share_info_t *sh_info)
529{
530 bool dealloc = false;
531
532 mutex_lock(&sh_info->lock);
533 assert(sh_info->refcount);
534
535 if (--sh_info->refcount == 0) {
536 dealloc = true;
537
538 /*
539 * Now walk carefully the pagemap B+tree and free/remove
540 * reference from all frames found there.
541 */
542 list_foreach(sh_info->pagemap.leaf_list, leaf_link,
543 btree_node_t, node) {
544 btree_key_t i;
545
546 for (i = 0; i < node->keys; i++)
547 frame_free((uintptr_t) node->value[i], 1);
548 }
549
550 }
551 mutex_unlock(&sh_info->lock);
552
553 if (dealloc) {
554 if (sh_info->backend && sh_info->backend->destroy_shared_data) {
555 sh_info->backend->destroy_shared_data(
556 sh_info->backend_shared_data);
557 }
558 btree_destroy(&sh_info->pagemap);
559 free(sh_info);
560 }
561}
562
563/** Create address space area of common attributes.
564 *
565 * The created address space area is added to the target address space.
566 *
567 * @param as Target address space.
568 * @param flags Flags of the area memory.
569 * @param size Size of area.
570 * @param attrs Attributes of the area.
571 * @param backend Address space area backend. NULL if no backend is used.
572 * @param backend_data NULL or a pointer to custom backend data.
573 * @param base Starting virtual address of the area.
574 * If set to AS_AREA_ANY, a suitable mappable area is
575 * found.
576 * @param bound Lowest address bound if base is set to AS_AREA_ANY.
577 * Otherwise ignored.
578 *
579 * @return Address space area on success or NULL on failure.
580 *
581 */
582as_area_t *as_area_create(as_t *as, unsigned int flags, size_t size,
583 unsigned int attrs, mem_backend_t *backend,
584 mem_backend_data_t *backend_data, uintptr_t *base, uintptr_t bound)
585{
586 if ((*base != (uintptr_t) AS_AREA_ANY) && !IS_ALIGNED(*base, PAGE_SIZE))
587 return NULL;
588
589 if (size == 0)
590 return NULL;
591
592 size_t pages = SIZE2FRAMES(size);
593
594 /* Writeable executable areas are not supported. */
595 if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
596 return NULL;
597
598 bool const guarded = flags & AS_AREA_GUARD;
599
600 mutex_lock(&as->lock);
601
602 if (*base == (uintptr_t) AS_AREA_ANY) {
603 *base = as_get_unmapped_area(as, bound, size, guarded);
604 if (*base == (uintptr_t) -1) {
605 mutex_unlock(&as->lock);
606 return NULL;
607 }
608 }
609
610 if (overflows_into_positive(*base, size)) {
611 mutex_unlock(&as->lock);
612 return NULL;
613 }
614
615 if (!check_area_conflicts(as, *base, pages, guarded, NULL)) {
616 mutex_unlock(&as->lock);
617 return NULL;
618 }
619
620 as_area_t *area = (as_area_t *) malloc(sizeof(as_area_t));
621 if (!area) {
622 mutex_unlock(&as->lock);
623 return NULL;
624 }
625
626 mutex_initialize(&area->lock, MUTEX_PASSIVE);
627
628 area->as = as;
629 odlink_initialize(&area->las_areas);
630 area->flags = flags;
631 area->attributes = attrs;
632 area->pages = pages;
633 area->resident = 0;
634 area->base = *base;
635 area->backend = backend;
636 area->sh_info = NULL;
637
638 if (backend_data)
639 area->backend_data = *backend_data;
640 else
641 memsetb(&area->backend_data, sizeof(area->backend_data), 0);
642
643 share_info_t *si = NULL;
644
645 /*
646 * Create the sharing info structure.
647 * We do this in advance for every new area, even if it is not going
648 * to be shared.
649 */
650 if (!(attrs & AS_AREA_ATTR_PARTIAL)) {
651 si = (share_info_t *) malloc(sizeof(share_info_t));
652 if (!si) {
653 free(area);
654 mutex_unlock(&as->lock);
655 return NULL;
656 }
657 mutex_initialize(&si->lock, MUTEX_PASSIVE);
658 si->refcount = 1;
659 si->shared = false;
660 si->backend_shared_data = NULL;
661 si->backend = backend;
662 btree_create(&si->pagemap);
663
664 area->sh_info = si;
665
666 if (area->backend && area->backend->create_shared_data) {
667 if (!area->backend->create_shared_data(area)) {
668 free(area);
669 mutex_unlock(&as->lock);
670 sh_info_remove_reference(si);
671 return NULL;
672 }
673 }
674 }
675
676 if (area->backend && area->backend->create) {
677 if (!area->backend->create(area)) {
678 free(area);
679 mutex_unlock(&as->lock);
680 if (!(attrs & AS_AREA_ATTR_PARTIAL))
681 sh_info_remove_reference(si);
682 return NULL;
683 }
684 }
685
686 btree_create(&area->used_space);
687 odict_insert(&area->las_areas, &as->as_areas, NULL);
688
689 mutex_unlock(&as->lock);
690
691 return area;
692}
693
694/** Find address space area and lock it.
695 *
696 * @param as Address space.
697 * @param va Virtual address.
698 *
699 * @return Locked address space area containing va on success or
700 * NULL on failure.
701 *
702 */
703NO_TRACE static as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
704{
705 assert(mutex_locked(&as->lock));
706
707 odlink_t *odlink = odict_find_leq(&as->as_areas, &va, NULL);
708 if (odlink == NULL)
709 return NULL;
710
711 as_area_t *area = odict_get_instance(odlink, as_area_t, las_areas);
712 mutex_lock(&area->lock);
713
714 assert(area->base <= va);
715
716 if (va <= area->base + (P2SZ(area->pages) - 1))
717 return area;
718
719 mutex_unlock(&area->lock);
720 return NULL;
721}
722
723/** Find address space area and change it.
724 *
725 * @param as Address space.
726 * @param address Virtual address belonging to the area to be changed.
727 * Must be page-aligned.
728 * @param size New size of the virtual memory block starting at
729 * address.
730 * @param flags Flags influencing the remap operation. Currently unused.
731 *
732 * @return Zero on success or a value from @ref errno.h otherwise.
733 *
734 */
735errno_t as_area_resize(as_t *as, uintptr_t address, size_t size, unsigned int flags)
736{
737 if (!IS_ALIGNED(address, PAGE_SIZE))
738 return EINVAL;
739
740 mutex_lock(&as->lock);
741
742 /*
743 * Locate the area.
744 */
745 as_area_t *area = find_area_and_lock(as, address);
746 if (!area) {
747 mutex_unlock(&as->lock);
748 return ENOENT;
749 }
750
751 if (!area->backend->is_resizable(area)) {
752 /*
753 * The backend does not support resizing for this area.
754 */
755 mutex_unlock(&area->lock);
756 mutex_unlock(&as->lock);
757 return ENOTSUP;
758 }
759
760 mutex_lock(&area->sh_info->lock);
761 if (area->sh_info->shared) {
762 /*
763 * Remapping of shared address space areas
764 * is not supported.
765 */
766 mutex_unlock(&area->sh_info->lock);
767 mutex_unlock(&area->lock);
768 mutex_unlock(&as->lock);
769 return ENOTSUP;
770 }
771 mutex_unlock(&area->sh_info->lock);
772
773 size_t pages = SIZE2FRAMES((address - area->base) + size);
774 if (!pages) {
775 /*
776 * Zero size address space areas are not allowed.
777 */
778 mutex_unlock(&area->lock);
779 mutex_unlock(&as->lock);
780 return EPERM;
781 }
782
783 if (pages < area->pages) {
784 uintptr_t start_free = area->base + P2SZ(pages);
785
786 /*
787 * Shrinking the area.
788 * No need to check for overlaps.
789 */
790
791 page_table_lock(as, false);
792
793 /*
794 * Remove frames belonging to used space starting from
795 * the highest addresses downwards until an overlap with
796 * the resized address space area is found. Note that this
797 * is also the right way to remove part of the used_space
798 * B+tree leaf list.
799 */
800 bool cond = true;
801 while (cond) {
802 assert(!list_empty(&area->used_space.leaf_list));
803
804 btree_node_t *node =
805 list_get_instance(list_last(&area->used_space.leaf_list),
806 btree_node_t, leaf_link);
807
808 if ((cond = (node->keys != 0))) {
809 uintptr_t ptr = node->key[node->keys - 1];
810 size_t node_size =
811 (size_t) node->value[node->keys - 1];
812 size_t i = 0;
813
814 if (overlaps(ptr, P2SZ(node_size), area->base,
815 P2SZ(pages))) {
816
817 if (ptr + P2SZ(node_size) <= start_free) {
818 /*
819 * The whole interval fits
820 * completely in the resized
821 * address space area.
822 */
823 break;
824 }
825
826 /*
827 * Part of the interval corresponding
828 * to b and c overlaps with the resized
829 * address space area.
830 */
831
832 /* We are almost done */
833 cond = false;
834 i = (start_free - ptr) >> PAGE_WIDTH;
835 if (!used_space_remove(area, start_free,
836 node_size - i))
837 panic("Cannot remove used space.");
838 } else {
839 /*
840 * The interval of used space can be
841 * completely removed.
842 */
843 if (!used_space_remove(area, ptr, node_size))
844 panic("Cannot remove used space.");
845 }
846
847 /*
848 * Start TLB shootdown sequence.
849 *
850 * The sequence is rather short and can be
851 * repeated multiple times. The reason is that
852 * we don't want to have used_space_remove()
853 * inside the sequence as it may use a blocking
854 * memory allocation for its B+tree. Blocking
855 * while holding the tlblock spinlock is
856 * forbidden and would hit a kernel assertion.
857 */
858
859 ipl_t ipl = tlb_shootdown_start(TLB_INVL_PAGES,
860 as->asid, area->base + P2SZ(pages),
861 area->pages - pages);
862
863 for (; i < node_size; i++) {
864 pte_t pte;
865 bool found = page_mapping_find(as,
866 ptr + P2SZ(i), false, &pte);
867
868 assert(found);
869 assert(PTE_VALID(&pte));
870 assert(PTE_PRESENT(&pte));
871
872 if ((area->backend) &&
873 (area->backend->frame_free)) {
874 area->backend->frame_free(area,
875 ptr + P2SZ(i),
876 PTE_GET_FRAME(&pte));
877 }
878
879 page_mapping_remove(as, ptr + P2SZ(i));
880 }
881
882 /*
883 * Finish TLB shootdown sequence.
884 */
885
886 tlb_invalidate_pages(as->asid,
887 area->base + P2SZ(pages),
888 area->pages - pages);
889
890 /*
891 * Invalidate software translation caches
892 * (e.g. TSB on sparc64, PHT on ppc32).
893 */
894 as_invalidate_translation_cache(as,
895 area->base + P2SZ(pages),
896 area->pages - pages);
897 tlb_shootdown_finalize(ipl);
898 }
899 }
900 page_table_unlock(as, false);
901 } else {
902 /*
903 * Growing the area.
904 */
905
906 if (overflows_into_positive(address, P2SZ(pages)))
907 return EINVAL;
908
909 /*
910 * Check for overlaps with other address space areas.
911 */
912 bool const guarded = area->flags & AS_AREA_GUARD;
913 if (!check_area_conflicts(as, address, pages, guarded, area)) {
914 mutex_unlock(&area->lock);
915 mutex_unlock(&as->lock);
916 return EADDRNOTAVAIL;
917 }
918 }
919
920 if (area->backend && area->backend->resize) {
921 if (!area->backend->resize(area, pages)) {
922 mutex_unlock(&area->lock);
923 mutex_unlock(&as->lock);
924 return ENOMEM;
925 }
926 }
927
928 area->pages = pages;
929
930 mutex_unlock(&area->lock);
931 mutex_unlock(&as->lock);
932
933 return 0;
934}
935
936/** Destroy address space area.
937 *
938 * @param as Address space.
939 * @param address Address within the area to be deleted.
940 *
941 * @return Zero on success or a value from @ref errno.h on failure.
942 *
943 */
944errno_t as_area_destroy(as_t *as, uintptr_t address)
945{
946 mutex_lock(&as->lock);
947
948 as_area_t *area = find_area_and_lock(as, address);
949 if (!area) {
950 mutex_unlock(&as->lock);
951 return ENOENT;
952 }
953
954 if (area->backend && area->backend->destroy)
955 area->backend->destroy(area);
956
957 page_table_lock(as, false);
958
959 /*
960 * Start TLB shootdown sequence.
961 */
962 ipl_t ipl = tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base,
963 area->pages);
964
965 /*
966 * Visit only the pages mapped by used_space B+tree.
967 */
968 list_foreach(area->used_space.leaf_list, leaf_link, btree_node_t,
969 node) {
970 btree_key_t i;
971
972 for (i = 0; i < node->keys; i++) {
973 uintptr_t ptr = node->key[i];
974 size_t size;
975
976 for (size = 0; size < (size_t) node->value[i]; size++) {
977 pte_t pte;
978 bool found = page_mapping_find(as,
979 ptr + P2SZ(size), false, &pte);
980
981 assert(found);
982 assert(PTE_VALID(&pte));
983 assert(PTE_PRESENT(&pte));
984
985 if ((area->backend) &&
986 (area->backend->frame_free)) {
987 area->backend->frame_free(area,
988 ptr + P2SZ(size),
989 PTE_GET_FRAME(&pte));
990 }
991
992 page_mapping_remove(as, ptr + P2SZ(size));
993 }
994 }
995 }
996
997 /*
998 * Finish TLB shootdown sequence.
999 */
1000
1001 tlb_invalidate_pages(as->asid, area->base, area->pages);
1002
1003 /*
1004 * Invalidate potential software translation caches
1005 * (e.g. TSB on sparc64, PHT on ppc32).
1006 */
1007 as_invalidate_translation_cache(as, area->base, area->pages);
1008 tlb_shootdown_finalize(ipl);
1009
1010 page_table_unlock(as, false);
1011
1012 btree_destroy(&area->used_space);
1013
1014 area->attributes |= AS_AREA_ATTR_PARTIAL;
1015
1016 sh_info_remove_reference(area->sh_info);
1017
1018 mutex_unlock(&area->lock);
1019
1020 /*
1021 * Remove the empty area from address space.
1022 */
1023 odict_remove(&area->las_areas);
1024
1025 free(area);
1026
1027 mutex_unlock(&as->lock);
1028 return 0;
1029}
1030
1031/** Share address space area with another or the same address space.
1032 *
1033 * Address space area mapping is shared with a new address space area.
1034 * If the source address space area has not been shared so far,
1035 * a new sh_info is created. The new address space area simply gets the
1036 * sh_info of the source area. The process of duplicating the
1037 * mapping is done through the backend share function.
1038 *
1039 * @param src_as Pointer to source address space.
1040 * @param src_base Base address of the source address space area.
1041 * @param acc_size Expected size of the source area.
1042 * @param dst_as Pointer to destination address space.
1043 * @param dst_flags_mask Destination address space area flags mask.
1044 * @param dst_base Target base address. If set to -1,
1045 * a suitable mappable area is found.
1046 * @param bound Lowest address bound if dst_base is set to -1.
1047 * Otherwise ignored.
1048 *
1049 * @return Zero on success.
1050 * @return ENOENT if there is no such task or such address space.
1051 * @return EPERM if there was a problem in accepting the area.
1052 * @return ENOMEM if there was a problem in allocating destination
1053 * address space area.
1054 * @return ENOTSUP if the address space area backend does not support
1055 * sharing.
1056 *
1057 */
1058errno_t as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
1059 as_t *dst_as, unsigned int dst_flags_mask, uintptr_t *dst_base,
1060 uintptr_t bound)
1061{
1062 mutex_lock(&src_as->lock);
1063 as_area_t *src_area = find_area_and_lock(src_as, src_base);
1064 if (!src_area) {
1065 /*
1066 * Could not find the source address space area.
1067 */
1068 mutex_unlock(&src_as->lock);
1069 return ENOENT;
1070 }
1071
1072 if (!src_area->backend->is_shareable(src_area)) {
1073 /*
1074 * The backend does not permit sharing of this area.
1075 */
1076 mutex_unlock(&src_area->lock);
1077 mutex_unlock(&src_as->lock);
1078 return ENOTSUP;
1079 }
1080
1081 size_t src_size = P2SZ(src_area->pages);
1082 unsigned int src_flags = src_area->flags;
1083 mem_backend_t *src_backend = src_area->backend;
1084 mem_backend_data_t src_backend_data = src_area->backend_data;
1085
1086 /* Share the cacheable flag from the original mapping */
1087 if (src_flags & AS_AREA_CACHEABLE)
1088 dst_flags_mask |= AS_AREA_CACHEABLE;
1089
1090 if ((src_size != acc_size) ||
1091 ((src_flags & dst_flags_mask) != dst_flags_mask)) {
1092 mutex_unlock(&src_area->lock);
1093 mutex_unlock(&src_as->lock);
1094 return EPERM;
1095 }
1096
1097 /*
1098 * Now we are committed to sharing the area.
1099 * First, prepare the area for sharing.
1100 * Then it will be safe to unlock it.
1101 */
1102 share_info_t *sh_info = src_area->sh_info;
1103
1104 mutex_lock(&sh_info->lock);
1105 sh_info->refcount++;
1106 bool shared = sh_info->shared;
1107 sh_info->shared = true;
1108 mutex_unlock(&sh_info->lock);
1109
1110 if (!shared) {
1111 /*
1112 * Call the backend to setup sharing.
1113 * This only happens once for each sh_info.
1114 */
1115 src_area->backend->share(src_area);
1116 }
1117
1118 mutex_unlock(&src_area->lock);
1119 mutex_unlock(&src_as->lock);
1120
1121 /*
1122 * Create copy of the source address space area.
1123 * The destination area is created with AS_AREA_ATTR_PARTIAL
1124 * attribute set which prevents race condition with
1125 * preliminary as_page_fault() calls.
1126 * The flags of the source area are masked against dst_flags_mask
1127 * to support sharing in less privileged mode.
1128 */
1129 as_area_t *dst_area = as_area_create(dst_as, dst_flags_mask,
1130 src_size, AS_AREA_ATTR_PARTIAL, src_backend,
1131 &src_backend_data, dst_base, bound);
1132 if (!dst_area) {
1133 /*
1134 * Destination address space area could not be created.
1135 */
1136 sh_info_remove_reference(sh_info);
1137
1138 return ENOMEM;
1139 }
1140
1141 /*
1142 * Now the destination address space area has been
1143 * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
1144 * attribute and set the sh_info.
1145 */
1146 mutex_lock(&dst_as->lock);
1147 mutex_lock(&dst_area->lock);
1148 dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
1149 dst_area->sh_info = sh_info;
1150 mutex_unlock(&dst_area->lock);
1151 mutex_unlock(&dst_as->lock);
1152
1153 return 0;
1154}
1155
1156/** Check access mode for address space area.
1157 *
1158 * @param area Address space area.
1159 * @param access Access mode.
1160 *
1161 * @return False if access violates area's permissions, true
1162 * otherwise.
1163 *
1164 */
1165NO_TRACE bool as_area_check_access(as_area_t *area, pf_access_t access)
1166{
1167 assert(mutex_locked(&area->lock));
1168
1169 int flagmap[] = {
1170 [PF_ACCESS_READ] = AS_AREA_READ,
1171 [PF_ACCESS_WRITE] = AS_AREA_WRITE,
1172 [PF_ACCESS_EXEC] = AS_AREA_EXEC
1173 };
1174
1175 if (!(area->flags & flagmap[access]))
1176 return false;
1177
1178 return true;
1179}
1180
1181/** Convert address space area flags to page flags.
1182 *
1183 * @param aflags Flags of some address space area.
1184 *
1185 * @return Flags to be passed to page_mapping_insert().
1186 *
1187 */
1188NO_TRACE static unsigned int area_flags_to_page_flags(unsigned int aflags)
1189{
1190 unsigned int flags = PAGE_USER | PAGE_PRESENT;
1191
1192 if (aflags & AS_AREA_READ)
1193 flags |= PAGE_READ;
1194
1195 if (aflags & AS_AREA_WRITE)
1196 flags |= PAGE_WRITE;
1197
1198 if (aflags & AS_AREA_EXEC)
1199 flags |= PAGE_EXEC;
1200
1201 if (aflags & AS_AREA_CACHEABLE)
1202 flags |= PAGE_CACHEABLE;
1203
1204 return flags;
1205}
1206
1207/** Change adress space area flags.
1208 *
1209 * The idea is to have the same data, but with a different access mode.
1210 * This is needed e.g. for writing code into memory and then executing it.
1211 * In order for this to work properly, this may copy the data
1212 * into private anonymous memory (unless it's already there).
1213 *
1214 * @param as Address space.
1215 * @param flags Flags of the area memory.
1216 * @param address Address within the area to be changed.
1217 *
1218 * @return Zero on success or a value from @ref errno.h on failure.
1219 *
1220 */
1221errno_t as_area_change_flags(as_t *as, unsigned int flags, uintptr_t address)
1222{
1223 /* Flags for the new memory mapping */
1224 unsigned int page_flags = area_flags_to_page_flags(flags);
1225
1226 mutex_lock(&as->lock);
1227
1228 as_area_t *area = find_area_and_lock(as, address);
1229 if (!area) {
1230 mutex_unlock(&as->lock);
1231 return ENOENT;
1232 }
1233
1234 if (area->backend != &anon_backend) {
1235 /* Copying non-anonymous memory not supported yet */
1236 mutex_unlock(&area->lock);
1237 mutex_unlock(&as->lock);
1238 return ENOTSUP;
1239 }
1240
1241 mutex_lock(&area->sh_info->lock);
1242 if (area->sh_info->shared) {
1243 /* Copying shared areas not supported yet */
1244 mutex_unlock(&area->sh_info->lock);
1245 mutex_unlock(&area->lock);
1246 mutex_unlock(&as->lock);
1247 return ENOTSUP;
1248 }
1249 mutex_unlock(&area->sh_info->lock);
1250
1251 /*
1252 * Compute total number of used pages in the used_space B+tree
1253 */
1254 size_t used_pages = 0;
1255
1256 list_foreach(area->used_space.leaf_list, leaf_link, btree_node_t,
1257 node) {
1258 btree_key_t i;
1259
1260 for (i = 0; i < node->keys; i++)
1261 used_pages += (size_t) node->value[i];
1262 }
1263
1264 /* An array for storing frame numbers */
1265 uintptr_t *old_frame = malloc(used_pages * sizeof(uintptr_t));
1266 if (!old_frame) {
1267 mutex_unlock(&area->lock);
1268 mutex_unlock(&as->lock);
1269 return ENOMEM;
1270 }
1271
1272 page_table_lock(as, false);
1273
1274 /*
1275 * Start TLB shootdown sequence.
1276 */
1277 ipl_t ipl = tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base,
1278 area->pages);
1279
1280 /*
1281 * Remove used pages from page tables and remember their frame
1282 * numbers.
1283 */
1284 size_t frame_idx = 0;
1285
1286 list_foreach(area->used_space.leaf_list, leaf_link, btree_node_t,
1287 node) {
1288 btree_key_t i;
1289
1290 for (i = 0; i < node->keys; i++) {
1291 uintptr_t ptr = node->key[i];
1292 size_t size;
1293
1294 for (size = 0; size < (size_t) node->value[i]; size++) {
1295 pte_t pte;
1296 bool found = page_mapping_find(as,
1297 ptr + P2SZ(size), false, &pte);
1298
1299 assert(found);
1300 assert(PTE_VALID(&pte));
1301 assert(PTE_PRESENT(&pte));
1302
1303 old_frame[frame_idx++] = PTE_GET_FRAME(&pte);
1304
1305 /* Remove old mapping */
1306 page_mapping_remove(as, ptr + P2SZ(size));
1307 }
1308 }
1309 }
1310
1311 /*
1312 * Finish TLB shootdown sequence.
1313 */
1314
1315 tlb_invalidate_pages(as->asid, area->base, area->pages);
1316
1317 /*
1318 * Invalidate potential software translation caches
1319 * (e.g. TSB on sparc64, PHT on ppc32).
1320 */
1321 as_invalidate_translation_cache(as, area->base, area->pages);
1322 tlb_shootdown_finalize(ipl);
1323
1324 page_table_unlock(as, false);
1325
1326 /*
1327 * Set the new flags.
1328 */
1329 area->flags = flags;
1330
1331 /*
1332 * Map pages back in with new flags. This step is kept separate
1333 * so that the memory area could not be accesed with both the old and
1334 * the new flags at once.
1335 */
1336 frame_idx = 0;
1337
1338 list_foreach(area->used_space.leaf_list, leaf_link, btree_node_t,
1339 node) {
1340 btree_key_t i;
1341
1342 for (i = 0; i < node->keys; i++) {
1343 uintptr_t ptr = node->key[i];
1344 size_t size;
1345
1346 for (size = 0; size < (size_t) node->value[i]; size++) {
1347 page_table_lock(as, false);
1348
1349 /* Insert the new mapping */
1350 page_mapping_insert(as, ptr + P2SZ(size),
1351 old_frame[frame_idx++], page_flags);
1352
1353 page_table_unlock(as, false);
1354 }
1355 }
1356 }
1357
1358 free(old_frame);
1359
1360 mutex_unlock(&area->lock);
1361 mutex_unlock(&as->lock);
1362
1363 return 0;
1364}
1365
1366/** Handle page fault within the current address space.
1367 *
1368 * This is the high-level page fault handler. It decides whether the page fault
1369 * can be resolved by any backend and if so, it invokes the backend to resolve
1370 * the page fault.
1371 *
1372 * Interrupts are assumed disabled.
1373 *
1374 * @param address Faulting address.
1375 * @param access Access mode that caused the page fault (i.e.
1376 * read/write/exec).
1377 * @param istate Pointer to the interrupted state.
1378 *
1379 * @return AS_PF_FAULT on page fault.
1380 * @return AS_PF_OK on success.
1381 * @return AS_PF_DEFER if the fault was caused by copy_to_uspace()
1382 * or copy_from_uspace().
1383 *
1384 */
1385int as_page_fault(uintptr_t address, pf_access_t access, istate_t *istate)
1386{
1387 uintptr_t page = ALIGN_DOWN(address, PAGE_SIZE);
1388 int rc = AS_PF_FAULT;
1389
1390 if (!THREAD)
1391 goto page_fault;
1392
1393 if (!AS)
1394 goto page_fault;
1395
1396 mutex_lock(&AS->lock);
1397 as_area_t *area = find_area_and_lock(AS, page);
1398 if (!area) {
1399 /*
1400 * No area contained mapping for 'page'.
1401 * Signal page fault to low-level handler.
1402 */
1403 mutex_unlock(&AS->lock);
1404 goto page_fault;
1405 }
1406
1407 if (area->attributes & AS_AREA_ATTR_PARTIAL) {
1408 /*
1409 * The address space area is not fully initialized.
1410 * Avoid possible race by returning error.
1411 */
1412 mutex_unlock(&area->lock);
1413 mutex_unlock(&AS->lock);
1414 goto page_fault;
1415 }
1416
1417 if ((!area->backend) || (!area->backend->page_fault)) {
1418 /*
1419 * The address space area is not backed by any backend
1420 * or the backend cannot handle page faults.
1421 */
1422 mutex_unlock(&area->lock);
1423 mutex_unlock(&AS->lock);
1424 goto page_fault;
1425 }
1426
1427 page_table_lock(AS, false);
1428
1429 /*
1430 * To avoid race condition between two page faults on the same address,
1431 * we need to make sure the mapping has not been already inserted.
1432 */
1433 pte_t pte;
1434 bool found = page_mapping_find(AS, page, false, &pte);
1435 if (found && PTE_PRESENT(&pte)) {
1436 if (((access == PF_ACCESS_READ) && PTE_READABLE(&pte)) ||
1437 (access == PF_ACCESS_WRITE && PTE_WRITABLE(&pte)) ||
1438 (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(&pte))) {
1439 page_table_unlock(AS, false);
1440 mutex_unlock(&area->lock);
1441 mutex_unlock(&AS->lock);
1442 return AS_PF_OK;
1443 }
1444 }
1445
1446 /*
1447 * Resort to the backend page fault handler.
1448 */
1449 rc = area->backend->page_fault(area, page, access);
1450 if (rc != AS_PF_OK) {
1451 page_table_unlock(AS, false);
1452 mutex_unlock(&area->lock);
1453 mutex_unlock(&AS->lock);
1454 goto page_fault;
1455 }
1456
1457 page_table_unlock(AS, false);
1458 mutex_unlock(&area->lock);
1459 mutex_unlock(&AS->lock);
1460 return AS_PF_OK;
1461
1462page_fault:
1463 if (THREAD->in_copy_from_uspace) {
1464 THREAD->in_copy_from_uspace = false;
1465 istate_set_retaddr(istate,
1466 (uintptr_t) &memcpy_from_uspace_failover_address);
1467 } else if (THREAD->in_copy_to_uspace) {
1468 THREAD->in_copy_to_uspace = false;
1469 istate_set_retaddr(istate,
1470 (uintptr_t) &memcpy_to_uspace_failover_address);
1471 } else if (rc == AS_PF_SILENT) {
1472 printf("Killing task %" PRIu64 " due to a "
1473 "failed late reservation request.\n", TASK->taskid);
1474 task_kill_self(true);
1475 } else {
1476 fault_if_from_uspace(istate, "Page fault: %p.", (void *) address);
1477 panic_memtrap(istate, access, address, NULL);
1478 }
1479
1480 return AS_PF_DEFER;
1481}
1482
1483/** Switch address spaces.
1484 *
1485 * Note that this function cannot sleep as it is essentially a part of
1486 * scheduling. Sleeping here would lead to deadlock on wakeup. Another
1487 * thing which is forbidden in this context is locking the address space.
1488 *
1489 * When this function is entered, no spinlocks may be held.
1490 *
1491 * @param old Old address space or NULL.
1492 * @param new New address space.
1493 *
1494 */
1495void as_switch(as_t *old_as, as_t *new_as)
1496{
1497 DEADLOCK_PROBE_INIT(p_asidlock);
1498 preemption_disable();
1499
1500retry:
1501 (void) interrupts_disable();
1502 if (!spinlock_trylock(&asidlock)) {
1503 /*
1504 * Avoid deadlock with TLB shootdown.
1505 * We can enable interrupts here because
1506 * preemption is disabled. We should not be
1507 * holding any other lock.
1508 */
1509 (void) interrupts_enable();
1510 DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
1511 goto retry;
1512 }
1513 preemption_enable();
1514
1515 /*
1516 * First, take care of the old address space.
1517 */
1518 if (old_as) {
1519 assert(old_as->cpu_refcount);
1520
1521 if ((--old_as->cpu_refcount == 0) && (old_as != AS_KERNEL)) {
1522 /*
1523 * The old address space is no longer active on
1524 * any processor. It can be appended to the
1525 * list of inactive address spaces with assigned
1526 * ASID.
1527 */
1528 assert(old_as->asid != ASID_INVALID);
1529
1530 list_append(&old_as->inactive_as_with_asid_link,
1531 &inactive_as_with_asid_list);
1532 }
1533
1534 /*
1535 * Perform architecture-specific tasks when the address space
1536 * is being removed from the CPU.
1537 */
1538 as_deinstall_arch(old_as);
1539 }
1540
1541 /*
1542 * Second, prepare the new address space.
1543 */
1544 if ((new_as->cpu_refcount++ == 0) && (new_as != AS_KERNEL)) {
1545 if (new_as->asid != ASID_INVALID)
1546 list_remove(&new_as->inactive_as_with_asid_link);
1547 else
1548 new_as->asid = asid_get();
1549 }
1550
1551#ifdef AS_PAGE_TABLE
1552 SET_PTL0_ADDRESS(new_as->genarch.page_table);
1553#endif
1554
1555 /*
1556 * Perform architecture-specific steps.
1557 * (e.g. write ASID to hardware register etc.)
1558 */
1559 as_install_arch(new_as);
1560
1561 spinlock_unlock(&asidlock);
1562
1563 AS = new_as;
1564}
1565
1566/** Compute flags for virtual address translation subsytem.
1567 *
1568 * @param area Address space area.
1569 *
1570 * @return Flags to be used in page_mapping_insert().
1571 *
1572 */
1573NO_TRACE unsigned int as_area_get_flags(as_area_t *area)
1574{
1575 assert(mutex_locked(&area->lock));
1576
1577 return area_flags_to_page_flags(area->flags);
1578}
1579
1580/** Get key function for the @c as_t.as_areas ordered dictionary.
1581 *
1582 * @param odlink Link
1583 * @return Pointer to task ID cast as 'void *'
1584 */
1585static void *as_areas_getkey(odlink_t *odlink)
1586{
1587 as_area_t *area = odict_get_instance(odlink, as_area_t, las_areas);
1588 return (void *) &area->base;
1589}
1590
1591/** Key comparison function for the @c as_t.as_areas ordered dictionary.
1592 *
1593 * @param a Pointer to area A base
1594 * @param b Pointer to area B base
1595 * @return -1, 0, 1 iff base of A is lower than, equal to, higher than B
1596 */
1597static int as_areas_cmp(void *a, void *b)
1598{
1599 uintptr_t base_a = *(uintptr_t *)a;
1600 uintptr_t base_b = *(uintptr_t *)b;
1601
1602 if (base_a < base_b)
1603 return -1;
1604 else if (base_a == base_b)
1605 return 0;
1606 else
1607 return +1;
1608}
1609
1610/** Create page table.
1611 *
1612 * Depending on architecture, create either address space private or global page
1613 * table.
1614 *
1615 * @param flags Flags saying whether the page table is for the kernel
1616 * address space.
1617 *
1618 * @return First entry of the page table.
1619 *
1620 */
1621NO_TRACE pte_t *page_table_create(unsigned int flags)
1622{
1623 assert(as_operations);
1624 assert(as_operations->page_table_create);
1625
1626 return as_operations->page_table_create(flags);
1627}
1628
1629/** Destroy page table.
1630 *
1631 * Destroy page table in architecture specific way.
1632 *
1633 * @param page_table Physical address of PTL0.
1634 *
1635 */
1636NO_TRACE void page_table_destroy(pte_t *page_table)
1637{
1638 assert(as_operations);
1639 assert(as_operations->page_table_destroy);
1640
1641 as_operations->page_table_destroy(page_table);
1642}
1643
1644/** Lock page table.
1645 *
1646 * This function should be called before any page_mapping_insert(),
1647 * page_mapping_remove() and page_mapping_find().
1648 *
1649 * Locking order is such that address space areas must be locked
1650 * prior to this call. Address space can be locked prior to this
1651 * call in which case the lock argument is false.
1652 *
1653 * @param as Address space.
1654 * @param lock If false, do not attempt to lock as->lock.
1655 *
1656 */
1657NO_TRACE void page_table_lock(as_t *as, bool lock)
1658{
1659 assert(as_operations);
1660 assert(as_operations->page_table_lock);
1661
1662 as_operations->page_table_lock(as, lock);
1663}
1664
1665/** Unlock page table.
1666 *
1667 * @param as Address space.
1668 * @param unlock If false, do not attempt to unlock as->lock.
1669 *
1670 */
1671NO_TRACE void page_table_unlock(as_t *as, bool unlock)
1672{
1673 assert(as_operations);
1674 assert(as_operations->page_table_unlock);
1675
1676 as_operations->page_table_unlock(as, unlock);
1677}
1678
1679/** Test whether page tables are locked.
1680 *
1681 * @param as Address space where the page tables belong.
1682 *
1683 * @return True if the page tables belonging to the address soace
1684 * are locked, otherwise false.
1685 */
1686NO_TRACE bool page_table_locked(as_t *as)
1687{
1688 assert(as_operations);
1689 assert(as_operations->page_table_locked);
1690
1691 return as_operations->page_table_locked(as);
1692}
1693
1694/** Return size of the address space area with given base.
1695 *
1696 * @param base Arbitrary address inside the address space area.
1697 *
1698 * @return Size of the address space area in bytes or zero if it
1699 * does not exist.
1700 *
1701 */
1702size_t as_area_get_size(uintptr_t base)
1703{
1704 size_t size;
1705
1706 page_table_lock(AS, true);
1707 as_area_t *src_area = find_area_and_lock(AS, base);
1708
1709 if (src_area) {
1710 size = P2SZ(src_area->pages);
1711 mutex_unlock(&src_area->lock);
1712 } else
1713 size = 0;
1714
1715 page_table_unlock(AS, true);
1716 return size;
1717}
1718
1719/** Mark portion of address space area as used.
1720 *
1721 * The address space area must be already locked.
1722 *
1723 * @param area Address space area.
1724 * @param page First page to be marked.
1725 * @param count Number of page to be marked.
1726 *
1727 * @return False on failure or true on success.
1728 *
1729 */
1730bool used_space_insert(as_area_t *area, uintptr_t page, size_t count)
1731{
1732 assert(mutex_locked(&area->lock));
1733 assert(IS_ALIGNED(page, PAGE_SIZE));
1734 assert(count);
1735
1736 btree_node_t *leaf = NULL;
1737 size_t pages = (size_t) btree_search(&area->used_space, page, &leaf);
1738 if (pages) {
1739 /*
1740 * We hit the beginning of some used space.
1741 */
1742 return false;
1743 }
1744
1745 assert(leaf != NULL);
1746
1747 if (!leaf->keys) {
1748 btree_insert(&area->used_space, page, (void *) count, leaf);
1749 goto success;
1750 }
1751
1752 btree_node_t *node = btree_leaf_node_left_neighbour(&area->used_space, leaf);
1753 if (node) {
1754 uintptr_t left_pg = node->key[node->keys - 1];
1755 uintptr_t right_pg = leaf->key[0];
1756 size_t left_cnt = (size_t) node->value[node->keys - 1];
1757 size_t right_cnt = (size_t) leaf->value[0];
1758
1759 /*
1760 * Examine the possibility that the interval fits
1761 * somewhere between the rightmost interval of
1762 * the left neigbour and the first interval of the leaf.
1763 */
1764
1765 if (page >= right_pg) {
1766 /* Do nothing. */
1767 } else if (overlaps(page, P2SZ(count), left_pg,
1768 P2SZ(left_cnt))) {
1769 /* The interval intersects with the left interval. */
1770 return false;
1771 } else if (overlaps(page, P2SZ(count), right_pg,
1772 P2SZ(right_cnt))) {
1773 /* The interval intersects with the right interval. */
1774 return false;
1775 } else if ((page == left_pg + P2SZ(left_cnt)) &&
1776 (page + P2SZ(count) == right_pg)) {
1777 /*
1778 * The interval can be added by merging the two already
1779 * present intervals.
1780 */
1781 node->value[node->keys - 1] += count + right_cnt;
1782 btree_remove(&area->used_space, right_pg, leaf);
1783 goto success;
1784 } else if (page == left_pg + P2SZ(left_cnt)) {
1785 /*
1786 * The interval can be added by simply growing the left
1787 * interval.
1788 */
1789 node->value[node->keys - 1] += count;
1790 goto success;
1791 } else if (page + P2SZ(count) == right_pg) {
1792 /*
1793 * The interval can be addded by simply moving base of
1794 * the right interval down and increasing its size
1795 * accordingly.
1796 */
1797 leaf->value[0] += count;
1798 leaf->key[0] = page;
1799 goto success;
1800 } else {
1801 /*
1802 * The interval is between both neigbouring intervals,
1803 * but cannot be merged with any of them.
1804 */
1805 btree_insert(&area->used_space, page, (void *) count,
1806 leaf);
1807 goto success;
1808 }
1809 } else if (page < leaf->key[0]) {
1810 uintptr_t right_pg = leaf->key[0];
1811 size_t right_cnt = (size_t) leaf->value[0];
1812
1813 /*
1814 * Investigate the border case in which the left neighbour does
1815 * not exist but the interval fits from the left.
1816 */
1817
1818 if (overlaps(page, P2SZ(count), right_pg, P2SZ(right_cnt))) {
1819 /* The interval intersects with the right interval. */
1820 return false;
1821 } else if (page + P2SZ(count) == right_pg) {
1822 /*
1823 * The interval can be added by moving the base of the
1824 * right interval down and increasing its size
1825 * accordingly.
1826 */
1827 leaf->key[0] = page;
1828 leaf->value[0] += count;
1829 goto success;
1830 } else {
1831 /*
1832 * The interval doesn't adjoin with the right interval.
1833 * It must be added individually.
1834 */
1835 btree_insert(&area->used_space, page, (void *) count,
1836 leaf);
1837 goto success;
1838 }
1839 }
1840
1841 node = btree_leaf_node_right_neighbour(&area->used_space, leaf);
1842 if (node) {
1843 uintptr_t left_pg = leaf->key[leaf->keys - 1];
1844 uintptr_t right_pg = node->key[0];
1845 size_t left_cnt = (size_t) leaf->value[leaf->keys - 1];
1846 size_t right_cnt = (size_t) node->value[0];
1847
1848 /*
1849 * Examine the possibility that the interval fits
1850 * somewhere between the leftmost interval of
1851 * the right neigbour and the last interval of the leaf.
1852 */
1853
1854 if (page < left_pg) {
1855 /* Do nothing. */
1856 } else if (overlaps(page, P2SZ(count), left_pg,
1857 P2SZ(left_cnt))) {
1858 /* The interval intersects with the left interval. */
1859 return false;
1860 } else if (overlaps(page, P2SZ(count), right_pg,
1861 P2SZ(right_cnt))) {
1862 /* The interval intersects with the right interval. */
1863 return false;
1864 } else if ((page == left_pg + P2SZ(left_cnt)) &&
1865 (page + P2SZ(count) == right_pg)) {
1866 /*
1867 * The interval can be added by merging the two already
1868 * present intervals.
1869 */
1870 leaf->value[leaf->keys - 1] += count + right_cnt;
1871 btree_remove(&area->used_space, right_pg, node);
1872 goto success;
1873 } else if (page == left_pg + P2SZ(left_cnt)) {
1874 /*
1875 * The interval can be added by simply growing the left
1876 * interval.
1877 */
1878 leaf->value[leaf->keys - 1] += count;
1879 goto success;
1880 } else if (page + P2SZ(count) == right_pg) {
1881 /*
1882 * The interval can be addded by simply moving base of
1883 * the right interval down and increasing its size
1884 * accordingly.
1885 */
1886 node->value[0] += count;
1887 node->key[0] = page;
1888 goto success;
1889 } else {
1890 /*
1891 * The interval is between both neigbouring intervals,
1892 * but cannot be merged with any of them.
1893 */
1894 btree_insert(&area->used_space, page, (void *) count,
1895 leaf);
1896 goto success;
1897 }
1898 } else if (page >= leaf->key[leaf->keys - 1]) {
1899 uintptr_t left_pg = leaf->key[leaf->keys - 1];
1900 size_t left_cnt = (size_t) leaf->value[leaf->keys - 1];
1901
1902 /*
1903 * Investigate the border case in which the right neighbour
1904 * does not exist but the interval fits from the right.
1905 */
1906
1907 if (overlaps(page, P2SZ(count), left_pg, P2SZ(left_cnt))) {
1908 /* The interval intersects with the left interval. */
1909 return false;
1910 } else if (left_pg + P2SZ(left_cnt) == page) {
1911 /*
1912 * The interval can be added by growing the left
1913 * interval.
1914 */
1915 leaf->value[leaf->keys - 1] += count;
1916 goto success;
1917 } else {
1918 /*
1919 * The interval doesn't adjoin with the left interval.
1920 * It must be added individually.
1921 */
1922 btree_insert(&area->used_space, page, (void *) count,
1923 leaf);
1924 goto success;
1925 }
1926 }
1927
1928 /*
1929 * Note that if the algorithm made it thus far, the interval can fit
1930 * only between two other intervals of the leaf. The two border cases
1931 * were already resolved.
1932 */
1933 btree_key_t i;
1934 for (i = 1; i < leaf->keys; i++) {
1935 if (page < leaf->key[i]) {
1936 uintptr_t left_pg = leaf->key[i - 1];
1937 uintptr_t right_pg = leaf->key[i];
1938 size_t left_cnt = (size_t) leaf->value[i - 1];
1939 size_t right_cnt = (size_t) leaf->value[i];
1940
1941 /*
1942 * The interval fits between left_pg and right_pg.
1943 */
1944
1945 if (overlaps(page, P2SZ(count), left_pg,
1946 P2SZ(left_cnt))) {
1947 /*
1948 * The interval intersects with the left
1949 * interval.
1950 */
1951 return false;
1952 } else if (overlaps(page, P2SZ(count), right_pg,
1953 P2SZ(right_cnt))) {
1954 /*
1955 * The interval intersects with the right
1956 * interval.
1957 */
1958 return false;
1959 } else if ((page == left_pg + P2SZ(left_cnt)) &&
1960 (page + P2SZ(count) == right_pg)) {
1961 /*
1962 * The interval can be added by merging the two
1963 * already present intervals.
1964 */
1965 leaf->value[i - 1] += count + right_cnt;
1966 btree_remove(&area->used_space, right_pg, leaf);
1967 goto success;
1968 } else if (page == left_pg + P2SZ(left_cnt)) {
1969 /*
1970 * The interval can be added by simply growing
1971 * the left interval.
1972 */
1973 leaf->value[i - 1] += count;
1974 goto success;
1975 } else if (page + P2SZ(count) == right_pg) {
1976 /*
1977 * The interval can be addded by simply moving
1978 * base of the right interval down and
1979 * increasing its size accordingly.
1980 */
1981 leaf->value[i] += count;
1982 leaf->key[i] = page;
1983 goto success;
1984 } else {
1985 /*
1986 * The interval is between both neigbouring
1987 * intervals, but cannot be merged with any of
1988 * them.
1989 */
1990 btree_insert(&area->used_space, page,
1991 (void *) count, leaf);
1992 goto success;
1993 }
1994 }
1995 }
1996
1997 panic("Inconsistency detected while adding %zu pages of used "
1998 "space at %p.", count, (void *) page);
1999
2000success:
2001 area->resident += count;
2002 return true;
2003}
2004
2005/** Mark portion of address space area as unused.
2006 *
2007 * The address space area must be already locked.
2008 *
2009 * @param area Address space area.
2010 * @param page First page to be marked.
2011 * @param count Number of page to be marked.
2012 *
2013 * @return False on failure or true on success.
2014 *
2015 */
2016bool used_space_remove(as_area_t *area, uintptr_t page, size_t count)
2017{
2018 assert(mutex_locked(&area->lock));
2019 assert(IS_ALIGNED(page, PAGE_SIZE));
2020 assert(count);
2021
2022 btree_node_t *leaf;
2023 size_t pages = (size_t) btree_search(&area->used_space, page, &leaf);
2024 if (pages) {
2025 /*
2026 * We are lucky, page is the beginning of some interval.
2027 */
2028 if (count > pages) {
2029 return false;
2030 } else if (count == pages) {
2031 btree_remove(&area->used_space, page, leaf);
2032 goto success;
2033 } else {
2034 /*
2035 * Find the respective interval.
2036 * Decrease its size and relocate its start address.
2037 */
2038 btree_key_t i;
2039 for (i = 0; i < leaf->keys; i++) {
2040 if (leaf->key[i] == page) {
2041 leaf->key[i] += P2SZ(count);
2042 leaf->value[i] -= count;
2043 goto success;
2044 }
2045 }
2046
2047 goto error;
2048 }
2049 }
2050
2051 btree_node_t *node = btree_leaf_node_left_neighbour(&area->used_space,
2052 leaf);
2053 if ((node) && (page < leaf->key[0])) {
2054 uintptr_t left_pg = node->key[node->keys - 1];
2055 size_t left_cnt = (size_t) node->value[node->keys - 1];
2056
2057 if (overlaps(left_pg, P2SZ(left_cnt), page, P2SZ(count))) {
2058 if (page + P2SZ(count) == left_pg + P2SZ(left_cnt)) {
2059 /*
2060 * The interval is contained in the rightmost
2061 * interval of the left neighbour and can be
2062 * removed by updating the size of the bigger
2063 * interval.
2064 */
2065 node->value[node->keys - 1] -= count;
2066 goto success;
2067 } else if (page + P2SZ(count) <
2068 left_pg + P2SZ(left_cnt)) {
2069 size_t new_cnt;
2070
2071 /*
2072 * The interval is contained in the rightmost
2073 * interval of the left neighbour but its
2074 * removal requires both updating the size of
2075 * the original interval and also inserting a
2076 * new interval.
2077 */
2078 new_cnt = ((left_pg + P2SZ(left_cnt)) -
2079 (page + P2SZ(count))) >> PAGE_WIDTH;
2080 node->value[node->keys - 1] -= count + new_cnt;
2081 btree_insert(&area->used_space, page +
2082 P2SZ(count), (void *) new_cnt, leaf);
2083 goto success;
2084 }
2085 }
2086
2087 return false;
2088 } else if (page < leaf->key[0])
2089 return false;
2090
2091 if (page > leaf->key[leaf->keys - 1]) {
2092 uintptr_t left_pg = leaf->key[leaf->keys - 1];
2093 size_t left_cnt = (size_t) leaf->value[leaf->keys - 1];
2094
2095 if (overlaps(left_pg, P2SZ(left_cnt), page, P2SZ(count))) {
2096 if (page + P2SZ(count) == left_pg + P2SZ(left_cnt)) {
2097 /*
2098 * The interval is contained in the rightmost
2099 * interval of the leaf and can be removed by
2100 * updating the size of the bigger interval.
2101 */
2102 leaf->value[leaf->keys - 1] -= count;
2103 goto success;
2104 } else if (page + P2SZ(count) < left_pg +
2105 P2SZ(left_cnt)) {
2106 size_t new_cnt;
2107
2108 /*
2109 * The interval is contained in the rightmost
2110 * interval of the leaf but its removal
2111 * requires both updating the size of the
2112 * original interval and also inserting a new
2113 * interval.
2114 */
2115 new_cnt = ((left_pg + P2SZ(left_cnt)) -
2116 (page + P2SZ(count))) >> PAGE_WIDTH;
2117 leaf->value[leaf->keys - 1] -= count + new_cnt;
2118 btree_insert(&area->used_space, page +
2119 P2SZ(count), (void *) new_cnt, leaf);
2120 goto success;
2121 }
2122 }
2123
2124 return false;
2125 }
2126
2127 /*
2128 * The border cases have been already resolved.
2129 * Now the interval can be only between intervals of the leaf.
2130 */
2131 btree_key_t i;
2132 for (i = 1; i < leaf->keys - 1; i++) {
2133 if (page < leaf->key[i]) {
2134 uintptr_t left_pg = leaf->key[i - 1];
2135 size_t left_cnt = (size_t) leaf->value[i - 1];
2136
2137 /*
2138 * Now the interval is between intervals corresponding
2139 * to (i - 1) and i.
2140 */
2141 if (overlaps(left_pg, P2SZ(left_cnt), page,
2142 P2SZ(count))) {
2143 if (page + P2SZ(count) ==
2144 left_pg + P2SZ(left_cnt)) {
2145 /*
2146 * The interval is contained in the
2147 * interval (i - 1) of the leaf and can
2148 * be removed by updating the size of
2149 * the bigger interval.
2150 */
2151 leaf->value[i - 1] -= count;
2152 goto success;
2153 } else if (page + P2SZ(count) <
2154 left_pg + P2SZ(left_cnt)) {
2155 size_t new_cnt;
2156
2157 /*
2158 * The interval is contained in the
2159 * interval (i - 1) of the leaf but its
2160 * removal requires both updating the
2161 * size of the original interval and
2162 * also inserting a new interval.
2163 */
2164 new_cnt = ((left_pg + P2SZ(left_cnt)) -
2165 (page + P2SZ(count))) >>
2166 PAGE_WIDTH;
2167 leaf->value[i - 1] -= count + new_cnt;
2168 btree_insert(&area->used_space, page +
2169 P2SZ(count), (void *) new_cnt,
2170 leaf);
2171 goto success;
2172 }
2173 }
2174
2175 return false;
2176 }
2177 }
2178
2179error:
2180 panic("Inconsistency detected while removing %zu pages of used "
2181 "space from %p.", count, (void *) page);
2182
2183success:
2184 area->resident -= count;
2185 return true;
2186}
2187
2188/*
2189 * Address space related syscalls.
2190 */
2191
2192sysarg_t sys_as_area_create(uintptr_t base, size_t size, unsigned int flags,
2193 uintptr_t bound, as_area_pager_info_t *pager_info)
2194{
2195 uintptr_t virt = base;
2196 mem_backend_t *backend;
2197 mem_backend_data_t backend_data;
2198
2199 if (pager_info == AS_AREA_UNPAGED)
2200 backend = &anon_backend;
2201 else {
2202 backend = &user_backend;
2203 if (copy_from_uspace(&backend_data.pager_info, pager_info,
2204 sizeof(as_area_pager_info_t)) != EOK) {
2205 return (sysarg_t) AS_MAP_FAILED;
2206 }
2207 }
2208 as_area_t *area = as_area_create(AS, flags, size,
2209 AS_AREA_ATTR_NONE, backend, &backend_data, &virt, bound);
2210 if (area == NULL)
2211 return (sysarg_t) AS_MAP_FAILED;
2212
2213 return (sysarg_t) virt;
2214}
2215
2216sys_errno_t sys_as_area_resize(uintptr_t address, size_t size, unsigned int flags)
2217{
2218 return (sys_errno_t) as_area_resize(AS, address, size, 0);
2219}
2220
2221sys_errno_t sys_as_area_change_flags(uintptr_t address, unsigned int flags)
2222{
2223 return (sys_errno_t) as_area_change_flags(AS, flags, address);
2224}
2225
2226sys_errno_t sys_as_area_destroy(uintptr_t address)
2227{
2228 return (sys_errno_t) as_area_destroy(AS, address);
2229}
2230
2231/** Get list of adress space areas.
2232 *
2233 * @param as Address space.
2234 * @param obuf Place to save pointer to returned buffer.
2235 * @param osize Place to save size of returned buffer.
2236 *
2237 */
2238void as_get_area_info(as_t *as, as_area_info_t **obuf, size_t *osize)
2239{
2240 mutex_lock(&as->lock);
2241
2242 /* Count number of areas. */
2243 size_t area_cnt = odict_count(&as->as_areas);
2244
2245 size_t isize = area_cnt * sizeof(as_area_info_t);
2246 as_area_info_t *info = nfmalloc(isize);
2247
2248 /* Record area data. */
2249
2250 size_t area_idx = 0;
2251
2252 as_area_t *area = as_area_first(as);
2253 while (area != NULL) {
2254 assert(area_idx < area_cnt);
2255 mutex_lock(&area->lock);
2256
2257 info[area_idx].start_addr = area->base;
2258 info[area_idx].size = P2SZ(area->pages);
2259 info[area_idx].flags = area->flags;
2260 ++area_idx;
2261
2262 mutex_unlock(&area->lock);
2263 area = as_area_next(area);
2264 }
2265
2266 mutex_unlock(&as->lock);
2267
2268 *obuf = info;
2269 *osize = isize;
2270}
2271
2272/** Print out information about address space.
2273 *
2274 * @param as Address space.
2275 *
2276 */
2277void as_print(as_t *as)
2278{
2279 mutex_lock(&as->lock);
2280
2281 /* Print out info about address space areas */
2282 as_area_t *area = as_area_first(as);
2283 while (area != NULL) {
2284 mutex_lock(&area->lock);
2285 printf("as_area: %p, base=%p, pages=%zu"
2286 " (%p - %p)\n", area, (void *) area->base,
2287 area->pages, (void *) area->base,
2288 (void *) (area->base + P2SZ(area->pages)));
2289 mutex_unlock(&area->lock);
2290
2291 area = as_area_next(area);
2292 }
2293
2294 mutex_unlock(&as->lock);
2295}
2296
2297/** @}
2298 */
Note: See TracBrowser for help on using the repository browser.