source: mainline/kernel/generic/src/mm/as.c@ 88cc71c0

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since 88cc71c0 was 88cc71c0, checked in by Jiri Svoboda <jiri@…>, 7 years ago

Replace as_area_btree with ordered dictionary.

  • Property mode set to 100644
File size: 56.9 KB
Line 
1/*
2 * Copyright (c) 2010 Jakub Jermar
3 * Copyright (c) 2018 Jiri Svoboda
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 *
10 * - Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * - Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * - The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */
29
30/** @addtogroup kernel_generic_mm
31 * @{
32 */
33
34/**
35 * @file
36 * @brief Address space related functions.
37 *
38 * This file contains address space manipulation functions.
39 * Roughly speaking, this is a higher-level client of
40 * Virtual Address Translation (VAT) subsystem.
41 *
42 * Functionality provided by this file allows one to
43 * create address spaces and create, resize and share
44 * address space areas.
45 *
46 * @see page.c
47 *
48 */
49
50#include <mm/as.h>
51#include <arch/mm/as.h>
52#include <mm/page.h>
53#include <mm/frame.h>
54#include <mm/slab.h>
55#include <mm/tlb.h>
56#include <arch/mm/page.h>
57#include <genarch/mm/page_pt.h>
58#include <genarch/mm/page_ht.h>
59#include <mm/asid.h>
60#include <arch/mm/asid.h>
61#include <preemption.h>
62#include <synch/spinlock.h>
63#include <synch/mutex.h>
64#include <adt/list.h>
65#include <adt/btree.h>
66#include <proc/task.h>
67#include <proc/thread.h>
68#include <arch/asm.h>
69#include <panic.h>
70#include <assert.h>
71#include <stdio.h>
72#include <mem.h>
73#include <macros.h>
74#include <bitops.h>
75#include <arch.h>
76#include <errno.h>
77#include <config.h>
78#include <align.h>
79#include <typedefs.h>
80#include <syscall/copy.h>
81#include <arch/interrupt.h>
82#include <interrupt.h>
83
84/**
85 * Each architecture decides what functions will be used to carry out
86 * address space operations such as creating or locking page tables.
87 */
88as_operations_t *as_operations = NULL;
89
90/** Slab for as_t objects.
91 *
92 */
93static slab_cache_t *as_cache;
94
95/** ASID subsystem lock.
96 *
97 * This lock protects:
98 * - inactive_as_with_asid_list
99 * - as->asid for each as of the as_t type
100 * - asids_allocated counter
101 *
102 */
103SPINLOCK_INITIALIZE(asidlock);
104
105/**
106 * Inactive address spaces (on all processors)
107 * that have valid ASID.
108 */
109LIST_INITIALIZE(inactive_as_with_asid_list);
110
111/** Kernel address space. */
112as_t *AS_KERNEL = NULL;
113
114static void *as_areas_getkey(odlink_t *);
115static int as_areas_cmp(void *, void *);
116
117NO_TRACE static errno_t as_constructor(void *obj, unsigned int flags)
118{
119 as_t *as = (as_t *) obj;
120
121 link_initialize(&as->inactive_as_with_asid_link);
122 mutex_initialize(&as->lock, MUTEX_PASSIVE);
123
124 return as_constructor_arch(as, flags);
125}
126
127NO_TRACE static size_t as_destructor(void *obj)
128{
129 return as_destructor_arch((as_t *) obj);
130}
131
132/** Initialize address space subsystem. */
133void as_init(void)
134{
135 as_arch_init();
136
137 as_cache = slab_cache_create("as_t", sizeof(as_t), 0,
138 as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);
139
140 AS_KERNEL = as_create(FLAG_AS_KERNEL);
141 if (!AS_KERNEL)
142 panic("Cannot create kernel address space.");
143
144 /*
145 * Make sure the kernel address space
146 * reference count never drops to zero.
147 */
148 as_hold(AS_KERNEL);
149}
150
151/** Create address space.
152 *
153 * @param flags Flags that influence the way in wich the address
154 * space is created.
155 *
156 */
157as_t *as_create(unsigned int flags)
158{
159 as_t *as = (as_t *) slab_alloc(as_cache, 0);
160 (void) as_create_arch(as, 0);
161
162 odict_initialize(&as->as_areas, as_areas_getkey, as_areas_cmp);
163
164 if (flags & FLAG_AS_KERNEL)
165 as->asid = ASID_KERNEL;
166 else
167 as->asid = ASID_INVALID;
168
169 refcount_init(&as->refcount);
170 as->cpu_refcount = 0;
171
172#ifdef AS_PAGE_TABLE
173 as->genarch.page_table = page_table_create(flags);
174#else
175 page_table_create(flags);
176#endif
177
178 return as;
179}
180
181/** Destroy adress space.
182 *
183 * When there are no tasks referencing this address space (i.e. its refcount is
184 * zero), the address space can be destroyed.
185 *
186 * We know that we don't hold any spinlock.
187 *
188 * @param as Address space to be destroyed.
189 *
190 */
191void as_destroy(as_t *as)
192{
193 DEADLOCK_PROBE_INIT(p_asidlock);
194
195 assert(as != AS);
196 assert(refcount_unique(&as->refcount));
197
198 /*
199 * Since there is no reference to this address space, it is safe not to
200 * lock its mutex.
201 */
202
203 /*
204 * We need to avoid deadlock between TLB shootdown and asidlock.
205 * We therefore try to take asid conditionally and if we don't succeed,
206 * we enable interrupts and try again. This is done while preemption is
207 * disabled to prevent nested context switches. We also depend on the
208 * fact that so far no spinlocks are held.
209 */
210 preemption_disable();
211 ipl_t ipl = interrupts_read();
212
213retry:
214 interrupts_disable();
215 if (!spinlock_trylock(&asidlock)) {
216 interrupts_enable();
217 DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
218 goto retry;
219 }
220
221 /* Interrupts disabled, enable preemption */
222 preemption_enable();
223
224 if ((as->asid != ASID_INVALID) && (as != AS_KERNEL)) {
225 if (as->cpu_refcount == 0)
226 list_remove(&as->inactive_as_with_asid_link);
227
228 asid_put(as->asid);
229 }
230
231 spinlock_unlock(&asidlock);
232 interrupts_restore(ipl);
233
234 /*
235 * Destroy address space areas of the address space.
236 * Need to start from the beginning each time since we are destroying
237 * the areas.
238 */
239 as_area_t *area = as_area_first(as);
240 while (area != NULL) {
241 /*
242 * XXX We already have as_area_t, but as_area_destroy will
243 * have to search for it. This could be made faster.
244 */
245 as_area_destroy(as, area->base);
246 area = as_area_first(as);
247 }
248
249 odict_finalize(&as->as_areas);
250
251#ifdef AS_PAGE_TABLE
252 page_table_destroy(as->genarch.page_table);
253#else
254 page_table_destroy(NULL);
255#endif
256
257 slab_free(as_cache, as);
258}
259
260/** Hold a reference to an address space.
261 *
262 * Holding a reference to an address space prevents destruction
263 * of that address space.
264 *
265 * @param as Address space to be held.
266 *
267 */
268NO_TRACE void as_hold(as_t *as)
269{
270 refcount_up(&as->refcount);
271}
272
273/** Release a reference to an address space.
274 *
275 * The last one to release a reference to an address space
276 * destroys the address space.
277 *
278 * @param as Address space to be released.
279 *
280 */
281NO_TRACE void as_release(as_t *as)
282{
283 if (refcount_down(&as->refcount))
284 as_destroy(as);
285}
286
287/** Return first address space area.
288 *
289 * @param as Address space
290 * @return First area in @a as (i.e. area with the lowest base address)
291 * or @c NULL if there is none
292 */
293as_area_t *as_area_first(as_t *as)
294{
295 odlink_t *odlink = odict_first(&as->as_areas);
296 if (odlink == NULL)
297 return NULL;
298
299 return odict_get_instance(odlink, as_area_t, las_areas);
300}
301
302/** Return next address space area.
303 *
304 * @param cur Current area
305 * @return Next area in the same address space or @c NULL if @a cur is the
306 * last area.
307 */
308as_area_t *as_area_next(as_area_t *cur)
309{
310 odlink_t *odlink = odict_next(&cur->las_areas, &cur->as->as_areas);
311 if (odlink == NULL)
312 return NULL;
313
314 return odict_get_instance(odlink, as_area_t, las_areas);
315}
316
317/** Determine if area with specified parameters would conflict with
318 * a specific existing address space area.
319 *
320 * @param addr Starting virtual address of the area being tested.
321 * @param count Number of pages in the area being tested.
322 * @param guarded True if the area being tested is protected by guard pages.
323 * @param area Area against which we are testing.
324 *
325 * @return True if the two areas conflict, false otherwise.
326 *
327 */
328NO_TRACE static bool area_is_conflicting(uintptr_t addr,
329 size_t count, bool guarded, as_area_t *area)
330{
331 assert((addr % PAGE_SIZE) == 0);
332
333 /* Add guard page size unless area is at the end of VA domain */
334 size_t gsize = P2SZ(count);
335 if (guarded && !overflows(addr, P2SZ(count)))
336 gsize += PAGE_SIZE;
337
338 /* Add guard page size unless area is at the end of VA domain */
339 size_t agsize = P2SZ(area->pages);
340 if ((area->flags & AS_AREA_GUARD) != 0 &&
341 !overflows(area->base, P2SZ(area->pages)))
342 agsize += PAGE_SIZE;
343
344 return overlaps(addr, gsize, area->base, agsize);
345
346}
347
348/** Check area conflicts with other areas.
349 *
350 * @param as Address space.
351 * @param addr Starting virtual address of the area being tested.
352 * @param count Number of pages in the area being tested.
353 * @param guarded True if the area being tested is protected by guard pages.
354 * @param avoid Do not touch this area. I.e. this area is not considered
355 * as presenting a conflict.
356 *
357 * @return True if there is no conflict, false otherwise.
358 *
359 */
360NO_TRACE static bool check_area_conflicts(as_t *as, uintptr_t addr,
361 size_t count, bool guarded, as_area_t *avoid)
362{
363 assert((addr % PAGE_SIZE) == 0);
364 assert(mutex_locked(&as->lock));
365
366 /*
367 * If the addition of the supposed area address and size overflows,
368 * report conflict.
369 */
370 if (overflows_into_positive(addr, P2SZ(count)))
371 return false;
372
373 /*
374 * We don't want any area to have conflicts with NULL page.
375 */
376 if (overlaps(addr, P2SZ(count), (uintptr_t) NULL, PAGE_SIZE))
377 return false;
378
379 /*
380 * To determine if we overlap with another area, we just need
381 * to look at overlap with the last area with base address <=
382 * to ours and on the first area with base address > than ours.
383 *
384 * First find last area with <= base address.
385 */
386 odlink_t *odlink = odict_find_leq(&as->as_areas, &addr, NULL);
387 if (odlink != NULL) {
388 as_area_t *area = odict_get_instance(odlink, as_area_t,
389 las_areas);
390
391 if (area != avoid) {
392 mutex_lock(&area->lock);
393 if (area_is_conflicting(addr, count, guarded, area)) {
394 mutex_unlock(&area->lock);
395 return false;
396 }
397
398 mutex_unlock(&area->lock);
399 }
400
401 /* Next area */
402 odlink = odict_next(odlink, &as->as_areas);
403 }
404
405 /* Next area, if any, is the first with base > than our base address */
406 if (odlink != NULL) {
407 as_area_t *area = odict_get_instance(odlink, as_area_t,
408 las_areas);
409
410 if (area != avoid) {
411 mutex_lock(&area->lock);
412 if (area_is_conflicting(addr, count, guarded, area)) {
413 mutex_unlock(&area->lock);
414 return false;
415 }
416
417 mutex_unlock(&area->lock);
418 }
419 }
420
421 /*
422 * So far, the area does not conflict with other areas.
423 * Check if it is contained in the user address space.
424 */
425 if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
426 return iswithin(USER_ADDRESS_SPACE_START,
427 (USER_ADDRESS_SPACE_END - USER_ADDRESS_SPACE_START) + 1,
428 addr, P2SZ(count));
429 }
430
431 return true;
432}
433
434/** Return pointer to unmapped address space area
435 *
436 * The address space must be already locked when calling
437 * this function.
438 *
439 * @param as Address space.
440 * @param bound Lowest address bound.
441 * @param size Requested size of the allocation.
442 * @param guarded True if the allocation must be protected by guard pages.
443 *
444 * @return Address of the beginning of unmapped address space area.
445 * @return -1 if no suitable address space area was found.
446 *
447 */
448NO_TRACE static uintptr_t as_get_unmapped_area(as_t *as, uintptr_t bound,
449 size_t size, bool guarded)
450{
451 assert(mutex_locked(&as->lock));
452
453 if (size == 0)
454 return (uintptr_t) -1;
455
456 /*
457 * Make sure we allocate from page-aligned
458 * address. Check for possible overflow in
459 * each step.
460 */
461
462 size_t pages = SIZE2FRAMES(size);
463
464 /*
465 * Find the lowest unmapped address aligned on the size
466 * boundary, not smaller than bound and of the required size.
467 */
468
469 /* First check the bound address itself */
470 uintptr_t addr = ALIGN_UP(bound, PAGE_SIZE);
471 if (addr >= bound) {
472 if (guarded) {
473 /*
474 * Leave an unmapped page between the lower
475 * bound and the area's start address.
476 */
477 addr += P2SZ(1);
478 }
479
480 if (check_area_conflicts(as, addr, pages, guarded, NULL))
481 return addr;
482 }
483
484 /* Eventually check the addresses behind each area */
485 as_area_t *area = as_area_first(as);
486 while (area != NULL) {
487 mutex_lock(&area->lock);
488
489 addr = ALIGN_UP(area->base + P2SZ(area->pages), PAGE_SIZE);
490
491 if (guarded || area->flags & AS_AREA_GUARD) {
492 /*
493 * We must leave an unmapped page
494 * between the two areas.
495 */
496 addr += P2SZ(1);
497 }
498
499 bool avail =
500 ((addr >= bound) && (addr >= area->base) &&
501 (check_area_conflicts(as, addr, pages, guarded, area)));
502
503 mutex_unlock(&area->lock);
504
505 if (avail)
506 return addr;
507
508 area = as_area_next(area);
509 }
510
511 /* No suitable address space area found */
512 return (uintptr_t) -1;
513}
514
515/** Remove reference to address space area share info.
516 *
517 * If the reference count drops to 0, the sh_info is deallocated.
518 *
519 * @param sh_info Pointer to address space area share info.
520 *
521 */
522NO_TRACE static void sh_info_remove_reference(share_info_t *sh_info)
523{
524 bool dealloc = false;
525
526 mutex_lock(&sh_info->lock);
527 assert(sh_info->refcount);
528
529 if (--sh_info->refcount == 0) {
530 dealloc = true;
531
532 /*
533 * Now walk carefully the pagemap B+tree and free/remove
534 * reference from all frames found there.
535 */
536 list_foreach(sh_info->pagemap.leaf_list, leaf_link,
537 btree_node_t, node) {
538 btree_key_t i;
539
540 for (i = 0; i < node->keys; i++)
541 frame_free((uintptr_t) node->value[i], 1);
542 }
543
544 }
545 mutex_unlock(&sh_info->lock);
546
547 if (dealloc) {
548 if (sh_info->backend && sh_info->backend->destroy_shared_data) {
549 sh_info->backend->destroy_shared_data(
550 sh_info->backend_shared_data);
551 }
552 btree_destroy(&sh_info->pagemap);
553 free(sh_info);
554 }
555}
556
557/** Create address space area of common attributes.
558 *
559 * The created address space area is added to the target address space.
560 *
561 * @param as Target address space.
562 * @param flags Flags of the area memory.
563 * @param size Size of area.
564 * @param attrs Attributes of the area.
565 * @param backend Address space area backend. NULL if no backend is used.
566 * @param backend_data NULL or a pointer to custom backend data.
567 * @param base Starting virtual address of the area.
568 * If set to AS_AREA_ANY, a suitable mappable area is
569 * found.
570 * @param bound Lowest address bound if base is set to AS_AREA_ANY.
571 * Otherwise ignored.
572 *
573 * @return Address space area on success or NULL on failure.
574 *
575 */
576as_area_t *as_area_create(as_t *as, unsigned int flags, size_t size,
577 unsigned int attrs, mem_backend_t *backend,
578 mem_backend_data_t *backend_data, uintptr_t *base, uintptr_t bound)
579{
580 if ((*base != (uintptr_t) AS_AREA_ANY) && !IS_ALIGNED(*base, PAGE_SIZE))
581 return NULL;
582
583 if (size == 0)
584 return NULL;
585
586 size_t pages = SIZE2FRAMES(size);
587
588 /* Writeable executable areas are not supported. */
589 if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
590 return NULL;
591
592 bool const guarded = flags & AS_AREA_GUARD;
593
594 mutex_lock(&as->lock);
595
596 if (*base == (uintptr_t) AS_AREA_ANY) {
597 *base = as_get_unmapped_area(as, bound, size, guarded);
598 if (*base == (uintptr_t) -1) {
599 mutex_unlock(&as->lock);
600 return NULL;
601 }
602 }
603
604 if (overflows_into_positive(*base, size)) {
605 mutex_unlock(&as->lock);
606 return NULL;
607 }
608
609 if (!check_area_conflicts(as, *base, pages, guarded, NULL)) {
610 mutex_unlock(&as->lock);
611 return NULL;
612 }
613
614 as_area_t *area = (as_area_t *) malloc(sizeof(as_area_t));
615 if (!area) {
616 mutex_unlock(&as->lock);
617 return NULL;
618 }
619
620 mutex_initialize(&area->lock, MUTEX_PASSIVE);
621
622 area->as = as;
623 odlink_initialize(&area->las_areas);
624 area->flags = flags;
625 area->attributes = attrs;
626 area->pages = pages;
627 area->resident = 0;
628 area->base = *base;
629 area->backend = backend;
630 area->sh_info = NULL;
631
632 if (backend_data)
633 area->backend_data = *backend_data;
634 else
635 memsetb(&area->backend_data, sizeof(area->backend_data), 0);
636
637 share_info_t *si = NULL;
638
639 /*
640 * Create the sharing info structure.
641 * We do this in advance for every new area, even if it is not going
642 * to be shared.
643 */
644 if (!(attrs & AS_AREA_ATTR_PARTIAL)) {
645 si = (share_info_t *) malloc(sizeof(share_info_t));
646 if (!si) {
647 free(area);
648 mutex_unlock(&as->lock);
649 return NULL;
650 }
651 mutex_initialize(&si->lock, MUTEX_PASSIVE);
652 si->refcount = 1;
653 si->shared = false;
654 si->backend_shared_data = NULL;
655 si->backend = backend;
656 btree_create(&si->pagemap);
657
658 area->sh_info = si;
659
660 if (area->backend && area->backend->create_shared_data) {
661 if (!area->backend->create_shared_data(area)) {
662 free(area);
663 mutex_unlock(&as->lock);
664 sh_info_remove_reference(si);
665 return NULL;
666 }
667 }
668 }
669
670 if (area->backend && area->backend->create) {
671 if (!area->backend->create(area)) {
672 free(area);
673 mutex_unlock(&as->lock);
674 if (!(attrs & AS_AREA_ATTR_PARTIAL))
675 sh_info_remove_reference(si);
676 return NULL;
677 }
678 }
679
680 btree_create(&area->used_space);
681 odict_insert(&area->las_areas, &as->as_areas, NULL);
682
683 mutex_unlock(&as->lock);
684
685 return area;
686}
687
688/** Find address space area and lock it.
689 *
690 * @param as Address space.
691 * @param va Virtual address.
692 *
693 * @return Locked address space area containing va on success or
694 * NULL on failure.
695 *
696 */
697NO_TRACE static as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
698{
699 assert(mutex_locked(&as->lock));
700
701 odlink_t *odlink = odict_find_leq(&as->as_areas, &va, NULL);
702 if (odlink == NULL)
703 return NULL;
704
705 as_area_t *area = odict_get_instance(odlink, as_area_t, las_areas);
706 mutex_lock(&area->lock);
707
708 assert(area->base <= va);
709
710 if (va <= area->base + (P2SZ(area->pages) - 1))
711 return area;
712
713 mutex_unlock(&area->lock);
714 return NULL;
715}
716
717/** Find address space area and change it.
718 *
719 * @param as Address space.
720 * @param address Virtual address belonging to the area to be changed.
721 * Must be page-aligned.
722 * @param size New size of the virtual memory block starting at
723 * address.
724 * @param flags Flags influencing the remap operation. Currently unused.
725 *
726 * @return Zero on success or a value from @ref errno.h otherwise.
727 *
728 */
729errno_t as_area_resize(as_t *as, uintptr_t address, size_t size, unsigned int flags)
730{
731 if (!IS_ALIGNED(address, PAGE_SIZE))
732 return EINVAL;
733
734 mutex_lock(&as->lock);
735
736 /*
737 * Locate the area.
738 */
739 as_area_t *area = find_area_and_lock(as, address);
740 if (!area) {
741 mutex_unlock(&as->lock);
742 return ENOENT;
743 }
744
745 if (!area->backend->is_resizable(area)) {
746 /*
747 * The backend does not support resizing for this area.
748 */
749 mutex_unlock(&area->lock);
750 mutex_unlock(&as->lock);
751 return ENOTSUP;
752 }
753
754 mutex_lock(&area->sh_info->lock);
755 if (area->sh_info->shared) {
756 /*
757 * Remapping of shared address space areas
758 * is not supported.
759 */
760 mutex_unlock(&area->sh_info->lock);
761 mutex_unlock(&area->lock);
762 mutex_unlock(&as->lock);
763 return ENOTSUP;
764 }
765 mutex_unlock(&area->sh_info->lock);
766
767 size_t pages = SIZE2FRAMES((address - area->base) + size);
768 if (!pages) {
769 /*
770 * Zero size address space areas are not allowed.
771 */
772 mutex_unlock(&area->lock);
773 mutex_unlock(&as->lock);
774 return EPERM;
775 }
776
777 if (pages < area->pages) {
778 uintptr_t start_free = area->base + P2SZ(pages);
779
780 /*
781 * Shrinking the area.
782 * No need to check for overlaps.
783 */
784
785 page_table_lock(as, false);
786
787 /*
788 * Remove frames belonging to used space starting from
789 * the highest addresses downwards until an overlap with
790 * the resized address space area is found. Note that this
791 * is also the right way to remove part of the used_space
792 * B+tree leaf list.
793 */
794 bool cond = true;
795 while (cond) {
796 assert(!list_empty(&area->used_space.leaf_list));
797
798 btree_node_t *node =
799 list_get_instance(list_last(&area->used_space.leaf_list),
800 btree_node_t, leaf_link);
801
802 if ((cond = (node->keys != 0))) {
803 uintptr_t ptr = node->key[node->keys - 1];
804 size_t node_size =
805 (size_t) node->value[node->keys - 1];
806 size_t i = 0;
807
808 if (overlaps(ptr, P2SZ(node_size), area->base,
809 P2SZ(pages))) {
810
811 if (ptr + P2SZ(node_size) <= start_free) {
812 /*
813 * The whole interval fits
814 * completely in the resized
815 * address space area.
816 */
817 break;
818 }
819
820 /*
821 * Part of the interval corresponding
822 * to b and c overlaps with the resized
823 * address space area.
824 */
825
826 /* We are almost done */
827 cond = false;
828 i = (start_free - ptr) >> PAGE_WIDTH;
829 if (!used_space_remove(area, start_free,
830 node_size - i))
831 panic("Cannot remove used space.");
832 } else {
833 /*
834 * The interval of used space can be
835 * completely removed.
836 */
837 if (!used_space_remove(area, ptr, node_size))
838 panic("Cannot remove used space.");
839 }
840
841 /*
842 * Start TLB shootdown sequence.
843 *
844 * The sequence is rather short and can be
845 * repeated multiple times. The reason is that
846 * we don't want to have used_space_remove()
847 * inside the sequence as it may use a blocking
848 * memory allocation for its B+tree. Blocking
849 * while holding the tlblock spinlock is
850 * forbidden and would hit a kernel assertion.
851 */
852
853 ipl_t ipl = tlb_shootdown_start(TLB_INVL_PAGES,
854 as->asid, area->base + P2SZ(pages),
855 area->pages - pages);
856
857 for (; i < node_size; i++) {
858 pte_t pte;
859 bool found = page_mapping_find(as,
860 ptr + P2SZ(i), false, &pte);
861
862 assert(found);
863 assert(PTE_VALID(&pte));
864 assert(PTE_PRESENT(&pte));
865
866 if ((area->backend) &&
867 (area->backend->frame_free)) {
868 area->backend->frame_free(area,
869 ptr + P2SZ(i),
870 PTE_GET_FRAME(&pte));
871 }
872
873 page_mapping_remove(as, ptr + P2SZ(i));
874 }
875
876 /*
877 * Finish TLB shootdown sequence.
878 */
879
880 tlb_invalidate_pages(as->asid,
881 area->base + P2SZ(pages),
882 area->pages - pages);
883
884 /*
885 * Invalidate software translation caches
886 * (e.g. TSB on sparc64, PHT on ppc32).
887 */
888 as_invalidate_translation_cache(as,
889 area->base + P2SZ(pages),
890 area->pages - pages);
891 tlb_shootdown_finalize(ipl);
892 }
893 }
894 page_table_unlock(as, false);
895 } else {
896 /*
897 * Growing the area.
898 */
899
900 if (overflows_into_positive(address, P2SZ(pages)))
901 return EINVAL;
902
903 /*
904 * Check for overlaps with other address space areas.
905 */
906 bool const guarded = area->flags & AS_AREA_GUARD;
907 if (!check_area_conflicts(as, address, pages, guarded, area)) {
908 mutex_unlock(&area->lock);
909 mutex_unlock(&as->lock);
910 return EADDRNOTAVAIL;
911 }
912 }
913
914 if (area->backend && area->backend->resize) {
915 if (!area->backend->resize(area, pages)) {
916 mutex_unlock(&area->lock);
917 mutex_unlock(&as->lock);
918 return ENOMEM;
919 }
920 }
921
922 area->pages = pages;
923
924 mutex_unlock(&area->lock);
925 mutex_unlock(&as->lock);
926
927 return 0;
928}
929
930/** Destroy address space area.
931 *
932 * @param as Address space.
933 * @param address Address within the area to be deleted.
934 *
935 * @return Zero on success or a value from @ref errno.h on failure.
936 *
937 */
938errno_t as_area_destroy(as_t *as, uintptr_t address)
939{
940 mutex_lock(&as->lock);
941
942 as_area_t *area = find_area_and_lock(as, address);
943 if (!area) {
944 mutex_unlock(&as->lock);
945 return ENOENT;
946 }
947
948 if (area->backend && area->backend->destroy)
949 area->backend->destroy(area);
950
951 page_table_lock(as, false);
952
953 /*
954 * Start TLB shootdown sequence.
955 */
956 ipl_t ipl = tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base,
957 area->pages);
958
959 /*
960 * Visit only the pages mapped by used_space B+tree.
961 */
962 list_foreach(area->used_space.leaf_list, leaf_link, btree_node_t,
963 node) {
964 btree_key_t i;
965
966 for (i = 0; i < node->keys; i++) {
967 uintptr_t ptr = node->key[i];
968 size_t size;
969
970 for (size = 0; size < (size_t) node->value[i]; size++) {
971 pte_t pte;
972 bool found = page_mapping_find(as,
973 ptr + P2SZ(size), false, &pte);
974
975 assert(found);
976 assert(PTE_VALID(&pte));
977 assert(PTE_PRESENT(&pte));
978
979 if ((area->backend) &&
980 (area->backend->frame_free)) {
981 area->backend->frame_free(area,
982 ptr + P2SZ(size),
983 PTE_GET_FRAME(&pte));
984 }
985
986 page_mapping_remove(as, ptr + P2SZ(size));
987 }
988 }
989 }
990
991 /*
992 * Finish TLB shootdown sequence.
993 */
994
995 tlb_invalidate_pages(as->asid, area->base, area->pages);
996
997 /*
998 * Invalidate potential software translation caches
999 * (e.g. TSB on sparc64, PHT on ppc32).
1000 */
1001 as_invalidate_translation_cache(as, area->base, area->pages);
1002 tlb_shootdown_finalize(ipl);
1003
1004 page_table_unlock(as, false);
1005
1006 btree_destroy(&area->used_space);
1007
1008 area->attributes |= AS_AREA_ATTR_PARTIAL;
1009
1010 sh_info_remove_reference(area->sh_info);
1011
1012 mutex_unlock(&area->lock);
1013
1014 /*
1015 * Remove the empty area from address space.
1016 */
1017 odict_remove(&area->las_areas);
1018
1019 free(area);
1020
1021 mutex_unlock(&as->lock);
1022 return 0;
1023}
1024
1025/** Share address space area with another or the same address space.
1026 *
1027 * Address space area mapping is shared with a new address space area.
1028 * If the source address space area has not been shared so far,
1029 * a new sh_info is created. The new address space area simply gets the
1030 * sh_info of the source area. The process of duplicating the
1031 * mapping is done through the backend share function.
1032 *
1033 * @param src_as Pointer to source address space.
1034 * @param src_base Base address of the source address space area.
1035 * @param acc_size Expected size of the source area.
1036 * @param dst_as Pointer to destination address space.
1037 * @param dst_flags_mask Destination address space area flags mask.
1038 * @param dst_base Target base address. If set to -1,
1039 * a suitable mappable area is found.
1040 * @param bound Lowest address bound if dst_base is set to -1.
1041 * Otherwise ignored.
1042 *
1043 * @return Zero on success.
1044 * @return ENOENT if there is no such task or such address space.
1045 * @return EPERM if there was a problem in accepting the area.
1046 * @return ENOMEM if there was a problem in allocating destination
1047 * address space area.
1048 * @return ENOTSUP if the address space area backend does not support
1049 * sharing.
1050 *
1051 */
1052errno_t as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
1053 as_t *dst_as, unsigned int dst_flags_mask, uintptr_t *dst_base,
1054 uintptr_t bound)
1055{
1056 mutex_lock(&src_as->lock);
1057 as_area_t *src_area = find_area_and_lock(src_as, src_base);
1058 if (!src_area) {
1059 /*
1060 * Could not find the source address space area.
1061 */
1062 mutex_unlock(&src_as->lock);
1063 return ENOENT;
1064 }
1065
1066 if (!src_area->backend->is_shareable(src_area)) {
1067 /*
1068 * The backend does not permit sharing of this area.
1069 */
1070 mutex_unlock(&src_area->lock);
1071 mutex_unlock(&src_as->lock);
1072 return ENOTSUP;
1073 }
1074
1075 size_t src_size = P2SZ(src_area->pages);
1076 unsigned int src_flags = src_area->flags;
1077 mem_backend_t *src_backend = src_area->backend;
1078 mem_backend_data_t src_backend_data = src_area->backend_data;
1079
1080 /* Share the cacheable flag from the original mapping */
1081 if (src_flags & AS_AREA_CACHEABLE)
1082 dst_flags_mask |= AS_AREA_CACHEABLE;
1083
1084 if ((src_size != acc_size) ||
1085 ((src_flags & dst_flags_mask) != dst_flags_mask)) {
1086 mutex_unlock(&src_area->lock);
1087 mutex_unlock(&src_as->lock);
1088 return EPERM;
1089 }
1090
1091 /*
1092 * Now we are committed to sharing the area.
1093 * First, prepare the area for sharing.
1094 * Then it will be safe to unlock it.
1095 */
1096 share_info_t *sh_info = src_area->sh_info;
1097
1098 mutex_lock(&sh_info->lock);
1099 sh_info->refcount++;
1100 bool shared = sh_info->shared;
1101 sh_info->shared = true;
1102 mutex_unlock(&sh_info->lock);
1103
1104 if (!shared) {
1105 /*
1106 * Call the backend to setup sharing.
1107 * This only happens once for each sh_info.
1108 */
1109 src_area->backend->share(src_area);
1110 }
1111
1112 mutex_unlock(&src_area->lock);
1113 mutex_unlock(&src_as->lock);
1114
1115 /*
1116 * Create copy of the source address space area.
1117 * The destination area is created with AS_AREA_ATTR_PARTIAL
1118 * attribute set which prevents race condition with
1119 * preliminary as_page_fault() calls.
1120 * The flags of the source area are masked against dst_flags_mask
1121 * to support sharing in less privileged mode.
1122 */
1123 as_area_t *dst_area = as_area_create(dst_as, dst_flags_mask,
1124 src_size, AS_AREA_ATTR_PARTIAL, src_backend,
1125 &src_backend_data, dst_base, bound);
1126 if (!dst_area) {
1127 /*
1128 * Destination address space area could not be created.
1129 */
1130 sh_info_remove_reference(sh_info);
1131
1132 return ENOMEM;
1133 }
1134
1135 /*
1136 * Now the destination address space area has been
1137 * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
1138 * attribute and set the sh_info.
1139 */
1140 mutex_lock(&dst_as->lock);
1141 mutex_lock(&dst_area->lock);
1142 dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
1143 dst_area->sh_info = sh_info;
1144 mutex_unlock(&dst_area->lock);
1145 mutex_unlock(&dst_as->lock);
1146
1147 return 0;
1148}
1149
1150/** Check access mode for address space area.
1151 *
1152 * @param area Address space area.
1153 * @param access Access mode.
1154 *
1155 * @return False if access violates area's permissions, true
1156 * otherwise.
1157 *
1158 */
1159NO_TRACE bool as_area_check_access(as_area_t *area, pf_access_t access)
1160{
1161 assert(mutex_locked(&area->lock));
1162
1163 int flagmap[] = {
1164 [PF_ACCESS_READ] = AS_AREA_READ,
1165 [PF_ACCESS_WRITE] = AS_AREA_WRITE,
1166 [PF_ACCESS_EXEC] = AS_AREA_EXEC
1167 };
1168
1169 if (!(area->flags & flagmap[access]))
1170 return false;
1171
1172 return true;
1173}
1174
1175/** Convert address space area flags to page flags.
1176 *
1177 * @param aflags Flags of some address space area.
1178 *
1179 * @return Flags to be passed to page_mapping_insert().
1180 *
1181 */
1182NO_TRACE static unsigned int area_flags_to_page_flags(unsigned int aflags)
1183{
1184 unsigned int flags = PAGE_USER | PAGE_PRESENT;
1185
1186 if (aflags & AS_AREA_READ)
1187 flags |= PAGE_READ;
1188
1189 if (aflags & AS_AREA_WRITE)
1190 flags |= PAGE_WRITE;
1191
1192 if (aflags & AS_AREA_EXEC)
1193 flags |= PAGE_EXEC;
1194
1195 if (aflags & AS_AREA_CACHEABLE)
1196 flags |= PAGE_CACHEABLE;
1197
1198 return flags;
1199}
1200
1201/** Change adress space area flags.
1202 *
1203 * The idea is to have the same data, but with a different access mode.
1204 * This is needed e.g. for writing code into memory and then executing it.
1205 * In order for this to work properly, this may copy the data
1206 * into private anonymous memory (unless it's already there).
1207 *
1208 * @param as Address space.
1209 * @param flags Flags of the area memory.
1210 * @param address Address within the area to be changed.
1211 *
1212 * @return Zero on success or a value from @ref errno.h on failure.
1213 *
1214 */
1215errno_t as_area_change_flags(as_t *as, unsigned int flags, uintptr_t address)
1216{
1217 /* Flags for the new memory mapping */
1218 unsigned int page_flags = area_flags_to_page_flags(flags);
1219
1220 mutex_lock(&as->lock);
1221
1222 as_area_t *area = find_area_and_lock(as, address);
1223 if (!area) {
1224 mutex_unlock(&as->lock);
1225 return ENOENT;
1226 }
1227
1228 if (area->backend != &anon_backend) {
1229 /* Copying non-anonymous memory not supported yet */
1230 mutex_unlock(&area->lock);
1231 mutex_unlock(&as->lock);
1232 return ENOTSUP;
1233 }
1234
1235 mutex_lock(&area->sh_info->lock);
1236 if (area->sh_info->shared) {
1237 /* Copying shared areas not supported yet */
1238 mutex_unlock(&area->sh_info->lock);
1239 mutex_unlock(&area->lock);
1240 mutex_unlock(&as->lock);
1241 return ENOTSUP;
1242 }
1243 mutex_unlock(&area->sh_info->lock);
1244
1245 /*
1246 * Compute total number of used pages in the used_space B+tree
1247 */
1248 size_t used_pages = 0;
1249
1250 list_foreach(area->used_space.leaf_list, leaf_link, btree_node_t,
1251 node) {
1252 btree_key_t i;
1253
1254 for (i = 0; i < node->keys; i++)
1255 used_pages += (size_t) node->value[i];
1256 }
1257
1258 /* An array for storing frame numbers */
1259 uintptr_t *old_frame = malloc(used_pages * sizeof(uintptr_t));
1260 if (!old_frame) {
1261 mutex_unlock(&area->lock);
1262 mutex_unlock(&as->lock);
1263 return ENOMEM;
1264 }
1265
1266 page_table_lock(as, false);
1267
1268 /*
1269 * Start TLB shootdown sequence.
1270 */
1271 ipl_t ipl = tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base,
1272 area->pages);
1273
1274 /*
1275 * Remove used pages from page tables and remember their frame
1276 * numbers.
1277 */
1278 size_t frame_idx = 0;
1279
1280 list_foreach(area->used_space.leaf_list, leaf_link, btree_node_t,
1281 node) {
1282 btree_key_t i;
1283
1284 for (i = 0; i < node->keys; i++) {
1285 uintptr_t ptr = node->key[i];
1286 size_t size;
1287
1288 for (size = 0; size < (size_t) node->value[i]; size++) {
1289 pte_t pte;
1290 bool found = page_mapping_find(as,
1291 ptr + P2SZ(size), false, &pte);
1292
1293 assert(found);
1294 assert(PTE_VALID(&pte));
1295 assert(PTE_PRESENT(&pte));
1296
1297 old_frame[frame_idx++] = PTE_GET_FRAME(&pte);
1298
1299 /* Remove old mapping */
1300 page_mapping_remove(as, ptr + P2SZ(size));
1301 }
1302 }
1303 }
1304
1305 /*
1306 * Finish TLB shootdown sequence.
1307 */
1308
1309 tlb_invalidate_pages(as->asid, area->base, area->pages);
1310
1311 /*
1312 * Invalidate potential software translation caches
1313 * (e.g. TSB on sparc64, PHT on ppc32).
1314 */
1315 as_invalidate_translation_cache(as, area->base, area->pages);
1316 tlb_shootdown_finalize(ipl);
1317
1318 page_table_unlock(as, false);
1319
1320 /*
1321 * Set the new flags.
1322 */
1323 area->flags = flags;
1324
1325 /*
1326 * Map pages back in with new flags. This step is kept separate
1327 * so that the memory area could not be accesed with both the old and
1328 * the new flags at once.
1329 */
1330 frame_idx = 0;
1331
1332 list_foreach(area->used_space.leaf_list, leaf_link, btree_node_t,
1333 node) {
1334 btree_key_t i;
1335
1336 for (i = 0; i < node->keys; i++) {
1337 uintptr_t ptr = node->key[i];
1338 size_t size;
1339
1340 for (size = 0; size < (size_t) node->value[i]; size++) {
1341 page_table_lock(as, false);
1342
1343 /* Insert the new mapping */
1344 page_mapping_insert(as, ptr + P2SZ(size),
1345 old_frame[frame_idx++], page_flags);
1346
1347 page_table_unlock(as, false);
1348 }
1349 }
1350 }
1351
1352 free(old_frame);
1353
1354 mutex_unlock(&area->lock);
1355 mutex_unlock(&as->lock);
1356
1357 return 0;
1358}
1359
1360/** Handle page fault within the current address space.
1361 *
1362 * This is the high-level page fault handler. It decides whether the page fault
1363 * can be resolved by any backend and if so, it invokes the backend to resolve
1364 * the page fault.
1365 *
1366 * Interrupts are assumed disabled.
1367 *
1368 * @param address Faulting address.
1369 * @param access Access mode that caused the page fault (i.e.
1370 * read/write/exec).
1371 * @param istate Pointer to the interrupted state.
1372 *
1373 * @return AS_PF_FAULT on page fault.
1374 * @return AS_PF_OK on success.
1375 * @return AS_PF_DEFER if the fault was caused by copy_to_uspace()
1376 * or copy_from_uspace().
1377 *
1378 */
1379int as_page_fault(uintptr_t address, pf_access_t access, istate_t *istate)
1380{
1381 uintptr_t page = ALIGN_DOWN(address, PAGE_SIZE);
1382 int rc = AS_PF_FAULT;
1383
1384 if (!THREAD)
1385 goto page_fault;
1386
1387 if (!AS)
1388 goto page_fault;
1389
1390 mutex_lock(&AS->lock);
1391 as_area_t *area = find_area_and_lock(AS, page);
1392 if (!area) {
1393 /*
1394 * No area contained mapping for 'page'.
1395 * Signal page fault to low-level handler.
1396 */
1397 mutex_unlock(&AS->lock);
1398 goto page_fault;
1399 }
1400
1401 if (area->attributes & AS_AREA_ATTR_PARTIAL) {
1402 /*
1403 * The address space area is not fully initialized.
1404 * Avoid possible race by returning error.
1405 */
1406 mutex_unlock(&area->lock);
1407 mutex_unlock(&AS->lock);
1408 goto page_fault;
1409 }
1410
1411 if ((!area->backend) || (!area->backend->page_fault)) {
1412 /*
1413 * The address space area is not backed by any backend
1414 * or the backend cannot handle page faults.
1415 */
1416 mutex_unlock(&area->lock);
1417 mutex_unlock(&AS->lock);
1418 goto page_fault;
1419 }
1420
1421 page_table_lock(AS, false);
1422
1423 /*
1424 * To avoid race condition between two page faults on the same address,
1425 * we need to make sure the mapping has not been already inserted.
1426 */
1427 pte_t pte;
1428 bool found = page_mapping_find(AS, page, false, &pte);
1429 if (found && PTE_PRESENT(&pte)) {
1430 if (((access == PF_ACCESS_READ) && PTE_READABLE(&pte)) ||
1431 (access == PF_ACCESS_WRITE && PTE_WRITABLE(&pte)) ||
1432 (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(&pte))) {
1433 page_table_unlock(AS, false);
1434 mutex_unlock(&area->lock);
1435 mutex_unlock(&AS->lock);
1436 return AS_PF_OK;
1437 }
1438 }
1439
1440 /*
1441 * Resort to the backend page fault handler.
1442 */
1443 rc = area->backend->page_fault(area, page, access);
1444 if (rc != AS_PF_OK) {
1445 page_table_unlock(AS, false);
1446 mutex_unlock(&area->lock);
1447 mutex_unlock(&AS->lock);
1448 goto page_fault;
1449 }
1450
1451 page_table_unlock(AS, false);
1452 mutex_unlock(&area->lock);
1453 mutex_unlock(&AS->lock);
1454 return AS_PF_OK;
1455
1456page_fault:
1457 if (THREAD->in_copy_from_uspace) {
1458 THREAD->in_copy_from_uspace = false;
1459 istate_set_retaddr(istate,
1460 (uintptr_t) &memcpy_from_uspace_failover_address);
1461 } else if (THREAD->in_copy_to_uspace) {
1462 THREAD->in_copy_to_uspace = false;
1463 istate_set_retaddr(istate,
1464 (uintptr_t) &memcpy_to_uspace_failover_address);
1465 } else if (rc == AS_PF_SILENT) {
1466 printf("Killing task %" PRIu64 " due to a "
1467 "failed late reservation request.\n", TASK->taskid);
1468 task_kill_self(true);
1469 } else {
1470 fault_if_from_uspace(istate, "Page fault: %p.", (void *) address);
1471 panic_memtrap(istate, access, address, NULL);
1472 }
1473
1474 return AS_PF_DEFER;
1475}
1476
1477/** Switch address spaces.
1478 *
1479 * Note that this function cannot sleep as it is essentially a part of
1480 * scheduling. Sleeping here would lead to deadlock on wakeup. Another
1481 * thing which is forbidden in this context is locking the address space.
1482 *
1483 * When this function is entered, no spinlocks may be held.
1484 *
1485 * @param old Old address space or NULL.
1486 * @param new New address space.
1487 *
1488 */
1489void as_switch(as_t *old_as, as_t *new_as)
1490{
1491 DEADLOCK_PROBE_INIT(p_asidlock);
1492 preemption_disable();
1493
1494retry:
1495 (void) interrupts_disable();
1496 if (!spinlock_trylock(&asidlock)) {
1497 /*
1498 * Avoid deadlock with TLB shootdown.
1499 * We can enable interrupts here because
1500 * preemption is disabled. We should not be
1501 * holding any other lock.
1502 */
1503 (void) interrupts_enable();
1504 DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
1505 goto retry;
1506 }
1507 preemption_enable();
1508
1509 /*
1510 * First, take care of the old address space.
1511 */
1512 if (old_as) {
1513 assert(old_as->cpu_refcount);
1514
1515 if ((--old_as->cpu_refcount == 0) && (old_as != AS_KERNEL)) {
1516 /*
1517 * The old address space is no longer active on
1518 * any processor. It can be appended to the
1519 * list of inactive address spaces with assigned
1520 * ASID.
1521 */
1522 assert(old_as->asid != ASID_INVALID);
1523
1524 list_append(&old_as->inactive_as_with_asid_link,
1525 &inactive_as_with_asid_list);
1526 }
1527
1528 /*
1529 * Perform architecture-specific tasks when the address space
1530 * is being removed from the CPU.
1531 */
1532 as_deinstall_arch(old_as);
1533 }
1534
1535 /*
1536 * Second, prepare the new address space.
1537 */
1538 if ((new_as->cpu_refcount++ == 0) && (new_as != AS_KERNEL)) {
1539 if (new_as->asid != ASID_INVALID)
1540 list_remove(&new_as->inactive_as_with_asid_link);
1541 else
1542 new_as->asid = asid_get();
1543 }
1544
1545#ifdef AS_PAGE_TABLE
1546 SET_PTL0_ADDRESS(new_as->genarch.page_table);
1547#endif
1548
1549 /*
1550 * Perform architecture-specific steps.
1551 * (e.g. write ASID to hardware register etc.)
1552 */
1553 as_install_arch(new_as);
1554
1555 spinlock_unlock(&asidlock);
1556
1557 AS = new_as;
1558}
1559
1560/** Compute flags for virtual address translation subsytem.
1561 *
1562 * @param area Address space area.
1563 *
1564 * @return Flags to be used in page_mapping_insert().
1565 *
1566 */
1567NO_TRACE unsigned int as_area_get_flags(as_area_t *area)
1568{
1569 assert(mutex_locked(&area->lock));
1570
1571 return area_flags_to_page_flags(area->flags);
1572}
1573
1574/** Get key function for the @c as_t.as_areas ordered dictionary.
1575 *
1576 * @param odlink Link
1577 * @return Pointer to task ID cast as 'void *'
1578 */
1579static void *as_areas_getkey(odlink_t *odlink)
1580{
1581 as_area_t *area = odict_get_instance(odlink, as_area_t, las_areas);
1582 return (void *) &area->base;
1583}
1584
1585/** Key comparison function for the @c as_t.as_areas ordered dictionary.
1586 *
1587 * @param a Pointer to area A base
1588 * @param b Pointer to area B base
1589 * @return -1, 0, 1 iff base of A is lower than, equal to, higher than B
1590 */
1591static int as_areas_cmp(void *a, void *b)
1592{
1593 uintptr_t base_a = *(uintptr_t *)a;
1594 uintptr_t base_b = *(uintptr_t *)b;
1595
1596 if (base_a < base_b)
1597 return -1;
1598 else if (base_a == base_b)
1599 return 0;
1600 else
1601 return +1;
1602}
1603
1604/** Create page table.
1605 *
1606 * Depending on architecture, create either address space private or global page
1607 * table.
1608 *
1609 * @param flags Flags saying whether the page table is for the kernel
1610 * address space.
1611 *
1612 * @return First entry of the page table.
1613 *
1614 */
1615NO_TRACE pte_t *page_table_create(unsigned int flags)
1616{
1617 assert(as_operations);
1618 assert(as_operations->page_table_create);
1619
1620 return as_operations->page_table_create(flags);
1621}
1622
1623/** Destroy page table.
1624 *
1625 * Destroy page table in architecture specific way.
1626 *
1627 * @param page_table Physical address of PTL0.
1628 *
1629 */
1630NO_TRACE void page_table_destroy(pte_t *page_table)
1631{
1632 assert(as_operations);
1633 assert(as_operations->page_table_destroy);
1634
1635 as_operations->page_table_destroy(page_table);
1636}
1637
1638/** Lock page table.
1639 *
1640 * This function should be called before any page_mapping_insert(),
1641 * page_mapping_remove() and page_mapping_find().
1642 *
1643 * Locking order is such that address space areas must be locked
1644 * prior to this call. Address space can be locked prior to this
1645 * call in which case the lock argument is false.
1646 *
1647 * @param as Address space.
1648 * @param lock If false, do not attempt to lock as->lock.
1649 *
1650 */
1651NO_TRACE void page_table_lock(as_t *as, bool lock)
1652{
1653 assert(as_operations);
1654 assert(as_operations->page_table_lock);
1655
1656 as_operations->page_table_lock(as, lock);
1657}
1658
1659/** Unlock page table.
1660 *
1661 * @param as Address space.
1662 * @param unlock If false, do not attempt to unlock as->lock.
1663 *
1664 */
1665NO_TRACE void page_table_unlock(as_t *as, bool unlock)
1666{
1667 assert(as_operations);
1668 assert(as_operations->page_table_unlock);
1669
1670 as_operations->page_table_unlock(as, unlock);
1671}
1672
1673/** Test whether page tables are locked.
1674 *
1675 * @param as Address space where the page tables belong.
1676 *
1677 * @return True if the page tables belonging to the address soace
1678 * are locked, otherwise false.
1679 */
1680NO_TRACE bool page_table_locked(as_t *as)
1681{
1682 assert(as_operations);
1683 assert(as_operations->page_table_locked);
1684
1685 return as_operations->page_table_locked(as);
1686}
1687
1688/** Return size of the address space area with given base.
1689 *
1690 * @param base Arbitrary address inside the address space area.
1691 *
1692 * @return Size of the address space area in bytes or zero if it
1693 * does not exist.
1694 *
1695 */
1696size_t as_area_get_size(uintptr_t base)
1697{
1698 size_t size;
1699
1700 page_table_lock(AS, true);
1701 as_area_t *src_area = find_area_and_lock(AS, base);
1702
1703 if (src_area) {
1704 size = P2SZ(src_area->pages);
1705 mutex_unlock(&src_area->lock);
1706 } else
1707 size = 0;
1708
1709 page_table_unlock(AS, true);
1710 return size;
1711}
1712
1713/** Mark portion of address space area as used.
1714 *
1715 * The address space area must be already locked.
1716 *
1717 * @param area Address space area.
1718 * @param page First page to be marked.
1719 * @param count Number of page to be marked.
1720 *
1721 * @return False on failure or true on success.
1722 *
1723 */
1724bool used_space_insert(as_area_t *area, uintptr_t page, size_t count)
1725{
1726 assert(mutex_locked(&area->lock));
1727 assert(IS_ALIGNED(page, PAGE_SIZE));
1728 assert(count);
1729
1730 btree_node_t *leaf = NULL;
1731 size_t pages = (size_t) btree_search(&area->used_space, page, &leaf);
1732 if (pages) {
1733 /*
1734 * We hit the beginning of some used space.
1735 */
1736 return false;
1737 }
1738
1739 assert(leaf != NULL);
1740
1741 if (!leaf->keys) {
1742 btree_insert(&area->used_space, page, (void *) count, leaf);
1743 goto success;
1744 }
1745
1746 btree_node_t *node = btree_leaf_node_left_neighbour(&area->used_space, leaf);
1747 if (node) {
1748 uintptr_t left_pg = node->key[node->keys - 1];
1749 uintptr_t right_pg = leaf->key[0];
1750 size_t left_cnt = (size_t) node->value[node->keys - 1];
1751 size_t right_cnt = (size_t) leaf->value[0];
1752
1753 /*
1754 * Examine the possibility that the interval fits
1755 * somewhere between the rightmost interval of
1756 * the left neigbour and the first interval of the leaf.
1757 */
1758
1759 if (page >= right_pg) {
1760 /* Do nothing. */
1761 } else if (overlaps(page, P2SZ(count), left_pg,
1762 P2SZ(left_cnt))) {
1763 /* The interval intersects with the left interval. */
1764 return false;
1765 } else if (overlaps(page, P2SZ(count), right_pg,
1766 P2SZ(right_cnt))) {
1767 /* The interval intersects with the right interval. */
1768 return false;
1769 } else if ((page == left_pg + P2SZ(left_cnt)) &&
1770 (page + P2SZ(count) == right_pg)) {
1771 /*
1772 * The interval can be added by merging the two already
1773 * present intervals.
1774 */
1775 node->value[node->keys - 1] += count + right_cnt;
1776 btree_remove(&area->used_space, right_pg, leaf);
1777 goto success;
1778 } else if (page == left_pg + P2SZ(left_cnt)) {
1779 /*
1780 * The interval can be added by simply growing the left
1781 * interval.
1782 */
1783 node->value[node->keys - 1] += count;
1784 goto success;
1785 } else if (page + P2SZ(count) == right_pg) {
1786 /*
1787 * The interval can be addded by simply moving base of
1788 * the right interval down and increasing its size
1789 * accordingly.
1790 */
1791 leaf->value[0] += count;
1792 leaf->key[0] = page;
1793 goto success;
1794 } else {
1795 /*
1796 * The interval is between both neigbouring intervals,
1797 * but cannot be merged with any of them.
1798 */
1799 btree_insert(&area->used_space, page, (void *) count,
1800 leaf);
1801 goto success;
1802 }
1803 } else if (page < leaf->key[0]) {
1804 uintptr_t right_pg = leaf->key[0];
1805 size_t right_cnt = (size_t) leaf->value[0];
1806
1807 /*
1808 * Investigate the border case in which the left neighbour does
1809 * not exist but the interval fits from the left.
1810 */
1811
1812 if (overlaps(page, P2SZ(count), right_pg, P2SZ(right_cnt))) {
1813 /* The interval intersects with the right interval. */
1814 return false;
1815 } else if (page + P2SZ(count) == right_pg) {
1816 /*
1817 * The interval can be added by moving the base of the
1818 * right interval down and increasing its size
1819 * accordingly.
1820 */
1821 leaf->key[0] = page;
1822 leaf->value[0] += count;
1823 goto success;
1824 } else {
1825 /*
1826 * The interval doesn't adjoin with the right interval.
1827 * It must be added individually.
1828 */
1829 btree_insert(&area->used_space, page, (void *) count,
1830 leaf);
1831 goto success;
1832 }
1833 }
1834
1835 node = btree_leaf_node_right_neighbour(&area->used_space, leaf);
1836 if (node) {
1837 uintptr_t left_pg = leaf->key[leaf->keys - 1];
1838 uintptr_t right_pg = node->key[0];
1839 size_t left_cnt = (size_t) leaf->value[leaf->keys - 1];
1840 size_t right_cnt = (size_t) node->value[0];
1841
1842 /*
1843 * Examine the possibility that the interval fits
1844 * somewhere between the leftmost interval of
1845 * the right neigbour and the last interval of the leaf.
1846 */
1847
1848 if (page < left_pg) {
1849 /* Do nothing. */
1850 } else if (overlaps(page, P2SZ(count), left_pg,
1851 P2SZ(left_cnt))) {
1852 /* The interval intersects with the left interval. */
1853 return false;
1854 } else if (overlaps(page, P2SZ(count), right_pg,
1855 P2SZ(right_cnt))) {
1856 /* The interval intersects with the right interval. */
1857 return false;
1858 } else if ((page == left_pg + P2SZ(left_cnt)) &&
1859 (page + P2SZ(count) == right_pg)) {
1860 /*
1861 * The interval can be added by merging the two already
1862 * present intervals.
1863 */
1864 leaf->value[leaf->keys - 1] += count + right_cnt;
1865 btree_remove(&area->used_space, right_pg, node);
1866 goto success;
1867 } else if (page == left_pg + P2SZ(left_cnt)) {
1868 /*
1869 * The interval can be added by simply growing the left
1870 * interval.
1871 */
1872 leaf->value[leaf->keys - 1] += count;
1873 goto success;
1874 } else if (page + P2SZ(count) == right_pg) {
1875 /*
1876 * The interval can be addded by simply moving base of
1877 * the right interval down and increasing its size
1878 * accordingly.
1879 */
1880 node->value[0] += count;
1881 node->key[0] = page;
1882 goto success;
1883 } else {
1884 /*
1885 * The interval is between both neigbouring intervals,
1886 * but cannot be merged with any of them.
1887 */
1888 btree_insert(&area->used_space, page, (void *) count,
1889 leaf);
1890 goto success;
1891 }
1892 } else if (page >= leaf->key[leaf->keys - 1]) {
1893 uintptr_t left_pg = leaf->key[leaf->keys - 1];
1894 size_t left_cnt = (size_t) leaf->value[leaf->keys - 1];
1895
1896 /*
1897 * Investigate the border case in which the right neighbour
1898 * does not exist but the interval fits from the right.
1899 */
1900
1901 if (overlaps(page, P2SZ(count), left_pg, P2SZ(left_cnt))) {
1902 /* The interval intersects with the left interval. */
1903 return false;
1904 } else if (left_pg + P2SZ(left_cnt) == page) {
1905 /*
1906 * The interval can be added by growing the left
1907 * interval.
1908 */
1909 leaf->value[leaf->keys - 1] += count;
1910 goto success;
1911 } else {
1912 /*
1913 * The interval doesn't adjoin with the left interval.
1914 * It must be added individually.
1915 */
1916 btree_insert(&area->used_space, page, (void *) count,
1917 leaf);
1918 goto success;
1919 }
1920 }
1921
1922 /*
1923 * Note that if the algorithm made it thus far, the interval can fit
1924 * only between two other intervals of the leaf. The two border cases
1925 * were already resolved.
1926 */
1927 btree_key_t i;
1928 for (i = 1; i < leaf->keys; i++) {
1929 if (page < leaf->key[i]) {
1930 uintptr_t left_pg = leaf->key[i - 1];
1931 uintptr_t right_pg = leaf->key[i];
1932 size_t left_cnt = (size_t) leaf->value[i - 1];
1933 size_t right_cnt = (size_t) leaf->value[i];
1934
1935 /*
1936 * The interval fits between left_pg and right_pg.
1937 */
1938
1939 if (overlaps(page, P2SZ(count), left_pg,
1940 P2SZ(left_cnt))) {
1941 /*
1942 * The interval intersects with the left
1943 * interval.
1944 */
1945 return false;
1946 } else if (overlaps(page, P2SZ(count), right_pg,
1947 P2SZ(right_cnt))) {
1948 /*
1949 * The interval intersects with the right
1950 * interval.
1951 */
1952 return false;
1953 } else if ((page == left_pg + P2SZ(left_cnt)) &&
1954 (page + P2SZ(count) == right_pg)) {
1955 /*
1956 * The interval can be added by merging the two
1957 * already present intervals.
1958 */
1959 leaf->value[i - 1] += count + right_cnt;
1960 btree_remove(&area->used_space, right_pg, leaf);
1961 goto success;
1962 } else if (page == left_pg + P2SZ(left_cnt)) {
1963 /*
1964 * The interval can be added by simply growing
1965 * the left interval.
1966 */
1967 leaf->value[i - 1] += count;
1968 goto success;
1969 } else if (page + P2SZ(count) == right_pg) {
1970 /*
1971 * The interval can be addded by simply moving
1972 * base of the right interval down and
1973 * increasing its size accordingly.
1974 */
1975 leaf->value[i] += count;
1976 leaf->key[i] = page;
1977 goto success;
1978 } else {
1979 /*
1980 * The interval is between both neigbouring
1981 * intervals, but cannot be merged with any of
1982 * them.
1983 */
1984 btree_insert(&area->used_space, page,
1985 (void *) count, leaf);
1986 goto success;
1987 }
1988 }
1989 }
1990
1991 panic("Inconsistency detected while adding %zu pages of used "
1992 "space at %p.", count, (void *) page);
1993
1994success:
1995 area->resident += count;
1996 return true;
1997}
1998
1999/** Mark portion of address space area as unused.
2000 *
2001 * The address space area must be already locked.
2002 *
2003 * @param area Address space area.
2004 * @param page First page to be marked.
2005 * @param count Number of page to be marked.
2006 *
2007 * @return False on failure or true on success.
2008 *
2009 */
2010bool used_space_remove(as_area_t *area, uintptr_t page, size_t count)
2011{
2012 assert(mutex_locked(&area->lock));
2013 assert(IS_ALIGNED(page, PAGE_SIZE));
2014 assert(count);
2015
2016 btree_node_t *leaf;
2017 size_t pages = (size_t) btree_search(&area->used_space, page, &leaf);
2018 if (pages) {
2019 /*
2020 * We are lucky, page is the beginning of some interval.
2021 */
2022 if (count > pages) {
2023 return false;
2024 } else if (count == pages) {
2025 btree_remove(&area->used_space, page, leaf);
2026 goto success;
2027 } else {
2028 /*
2029 * Find the respective interval.
2030 * Decrease its size and relocate its start address.
2031 */
2032 btree_key_t i;
2033 for (i = 0; i < leaf->keys; i++) {
2034 if (leaf->key[i] == page) {
2035 leaf->key[i] += P2SZ(count);
2036 leaf->value[i] -= count;
2037 goto success;
2038 }
2039 }
2040
2041 goto error;
2042 }
2043 }
2044
2045 btree_node_t *node = btree_leaf_node_left_neighbour(&area->used_space,
2046 leaf);
2047 if ((node) && (page < leaf->key[0])) {
2048 uintptr_t left_pg = node->key[node->keys - 1];
2049 size_t left_cnt = (size_t) node->value[node->keys - 1];
2050
2051 if (overlaps(left_pg, P2SZ(left_cnt), page, P2SZ(count))) {
2052 if (page + P2SZ(count) == left_pg + P2SZ(left_cnt)) {
2053 /*
2054 * The interval is contained in the rightmost
2055 * interval of the left neighbour and can be
2056 * removed by updating the size of the bigger
2057 * interval.
2058 */
2059 node->value[node->keys - 1] -= count;
2060 goto success;
2061 } else if (page + P2SZ(count) <
2062 left_pg + P2SZ(left_cnt)) {
2063 size_t new_cnt;
2064
2065 /*
2066 * The interval is contained in the rightmost
2067 * interval of the left neighbour but its
2068 * removal requires both updating the size of
2069 * the original interval and also inserting a
2070 * new interval.
2071 */
2072 new_cnt = ((left_pg + P2SZ(left_cnt)) -
2073 (page + P2SZ(count))) >> PAGE_WIDTH;
2074 node->value[node->keys - 1] -= count + new_cnt;
2075 btree_insert(&area->used_space, page +
2076 P2SZ(count), (void *) new_cnt, leaf);
2077 goto success;
2078 }
2079 }
2080
2081 return false;
2082 } else if (page < leaf->key[0])
2083 return false;
2084
2085 if (page > leaf->key[leaf->keys - 1]) {
2086 uintptr_t left_pg = leaf->key[leaf->keys - 1];
2087 size_t left_cnt = (size_t) leaf->value[leaf->keys - 1];
2088
2089 if (overlaps(left_pg, P2SZ(left_cnt), page, P2SZ(count))) {
2090 if (page + P2SZ(count) == left_pg + P2SZ(left_cnt)) {
2091 /*
2092 * The interval is contained in the rightmost
2093 * interval of the leaf and can be removed by
2094 * updating the size of the bigger interval.
2095 */
2096 leaf->value[leaf->keys - 1] -= count;
2097 goto success;
2098 } else if (page + P2SZ(count) < left_pg +
2099 P2SZ(left_cnt)) {
2100 size_t new_cnt;
2101
2102 /*
2103 * The interval is contained in the rightmost
2104 * interval of the leaf but its removal
2105 * requires both updating the size of the
2106 * original interval and also inserting a new
2107 * interval.
2108 */
2109 new_cnt = ((left_pg + P2SZ(left_cnt)) -
2110 (page + P2SZ(count))) >> PAGE_WIDTH;
2111 leaf->value[leaf->keys - 1] -= count + new_cnt;
2112 btree_insert(&area->used_space, page +
2113 P2SZ(count), (void *) new_cnt, leaf);
2114 goto success;
2115 }
2116 }
2117
2118 return false;
2119 }
2120
2121 /*
2122 * The border cases have been already resolved.
2123 * Now the interval can be only between intervals of the leaf.
2124 */
2125 btree_key_t i;
2126 for (i = 1; i < leaf->keys - 1; i++) {
2127 if (page < leaf->key[i]) {
2128 uintptr_t left_pg = leaf->key[i - 1];
2129 size_t left_cnt = (size_t) leaf->value[i - 1];
2130
2131 /*
2132 * Now the interval is between intervals corresponding
2133 * to (i - 1) and i.
2134 */
2135 if (overlaps(left_pg, P2SZ(left_cnt), page,
2136 P2SZ(count))) {
2137 if (page + P2SZ(count) ==
2138 left_pg + P2SZ(left_cnt)) {
2139 /*
2140 * The interval is contained in the
2141 * interval (i - 1) of the leaf and can
2142 * be removed by updating the size of
2143 * the bigger interval.
2144 */
2145 leaf->value[i - 1] -= count;
2146 goto success;
2147 } else if (page + P2SZ(count) <
2148 left_pg + P2SZ(left_cnt)) {
2149 size_t new_cnt;
2150
2151 /*
2152 * The interval is contained in the
2153 * interval (i - 1) of the leaf but its
2154 * removal requires both updating the
2155 * size of the original interval and
2156 * also inserting a new interval.
2157 */
2158 new_cnt = ((left_pg + P2SZ(left_cnt)) -
2159 (page + P2SZ(count))) >>
2160 PAGE_WIDTH;
2161 leaf->value[i - 1] -= count + new_cnt;
2162 btree_insert(&area->used_space, page +
2163 P2SZ(count), (void *) new_cnt,
2164 leaf);
2165 goto success;
2166 }
2167 }
2168
2169 return false;
2170 }
2171 }
2172
2173error:
2174 panic("Inconsistency detected while removing %zu pages of used "
2175 "space from %p.", count, (void *) page);
2176
2177success:
2178 area->resident -= count;
2179 return true;
2180}
2181
2182/*
2183 * Address space related syscalls.
2184 */
2185
2186sysarg_t sys_as_area_create(uintptr_t base, size_t size, unsigned int flags,
2187 uintptr_t bound, as_area_pager_info_t *pager_info)
2188{
2189 uintptr_t virt = base;
2190 mem_backend_t *backend;
2191 mem_backend_data_t backend_data;
2192
2193 if (pager_info == AS_AREA_UNPAGED)
2194 backend = &anon_backend;
2195 else {
2196 backend = &user_backend;
2197 if (copy_from_uspace(&backend_data.pager_info, pager_info,
2198 sizeof(as_area_pager_info_t)) != EOK) {
2199 return (sysarg_t) AS_MAP_FAILED;
2200 }
2201 }
2202 as_area_t *area = as_area_create(AS, flags, size,
2203 AS_AREA_ATTR_NONE, backend, &backend_data, &virt, bound);
2204 if (area == NULL)
2205 return (sysarg_t) AS_MAP_FAILED;
2206
2207 return (sysarg_t) virt;
2208}
2209
2210sys_errno_t sys_as_area_resize(uintptr_t address, size_t size, unsigned int flags)
2211{
2212 return (sys_errno_t) as_area_resize(AS, address, size, 0);
2213}
2214
2215sys_errno_t sys_as_area_change_flags(uintptr_t address, unsigned int flags)
2216{
2217 return (sys_errno_t) as_area_change_flags(AS, flags, address);
2218}
2219
2220sys_errno_t sys_as_area_destroy(uintptr_t address)
2221{
2222 return (sys_errno_t) as_area_destroy(AS, address);
2223}
2224
2225/** Get list of adress space areas.
2226 *
2227 * @param as Address space.
2228 * @param obuf Place to save pointer to returned buffer.
2229 * @param osize Place to save size of returned buffer.
2230 *
2231 */
2232void as_get_area_info(as_t *as, as_area_info_t **obuf, size_t *osize)
2233{
2234 mutex_lock(&as->lock);
2235
2236 /* Count number of areas. */
2237 size_t area_cnt = odict_count(&as->as_areas);
2238
2239 size_t isize = area_cnt * sizeof(as_area_info_t);
2240 as_area_info_t *info = nfmalloc(isize);
2241
2242 /* Record area data. */
2243
2244 size_t area_idx = 0;
2245
2246 as_area_t *area = as_area_first(as);
2247 while (area != NULL) {
2248 assert(area_idx < area_cnt);
2249 mutex_lock(&area->lock);
2250
2251 info[area_idx].start_addr = area->base;
2252 info[area_idx].size = P2SZ(area->pages);
2253 info[area_idx].flags = area->flags;
2254 ++area_idx;
2255
2256 mutex_unlock(&area->lock);
2257 area = as_area_next(area);
2258 }
2259
2260 mutex_unlock(&as->lock);
2261
2262 *obuf = info;
2263 *osize = isize;
2264}
2265
2266/** Print out information about address space.
2267 *
2268 * @param as Address space.
2269 *
2270 */
2271void as_print(as_t *as)
2272{
2273 mutex_lock(&as->lock);
2274
2275 /* Print out info about address space areas */
2276 as_area_t *area = as_area_first(as);
2277 while (area != NULL) {
2278 mutex_lock(&area->lock);
2279 printf("as_area: %p, base=%p, pages=%zu"
2280 " (%p - %p)\n", area, (void *) area->base,
2281 area->pages, (void *) area->base,
2282 (void *) (area->base + P2SZ(area->pages)));
2283 mutex_unlock(&area->lock);
2284
2285 area = as_area_next(area);
2286 }
2287
2288 mutex_unlock(&as->lock);
2289}
2290
2291/** @}
2292 */
Note: See TracBrowser for help on using the repository browser.