source: mainline/kernel/generic/src/mm/as.c@ c0697c4c

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since c0697c4c was c0697c4c, checked in by Jakub Jermar <jakub@…>, 18 years ago

Fix a bug in anonymous address space area sharing. Call the backend's share
function only if the source area is not already shared. Otherwise increment the
sh_info refcount. Without this fix, the kernel will try to recreate the pagemap
if three and more address space areas attempt to share the same data.

  • Property mode set to 100644
File size: 45.5 KB
Line 
1/*
2 * Copyright (c) 2001-2006 Jakub Jermar
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/** @addtogroup genericmm
30 * @{
31 */
32
33/**
34 * @file
35 * @brief Address space related functions.
36 *
37 * This file contains address space manipulation functions.
38 * Roughly speaking, this is a higher-level client of
39 * Virtual Address Translation (VAT) subsystem.
40 *
41 * Functionality provided by this file allows one to
42 * create address spaces and create, resize and share
43 * address space areas.
44 *
45 * @see page.c
46 *
47 */
48
49#include <mm/as.h>
50#include <arch/mm/as.h>
51#include <mm/page.h>
52#include <mm/frame.h>
53#include <mm/slab.h>
54#include <mm/tlb.h>
55#include <arch/mm/page.h>
56#include <genarch/mm/page_pt.h>
57#include <genarch/mm/page_ht.h>
58#include <mm/asid.h>
59#include <arch/mm/asid.h>
60#include <preemption.h>
61#include <synch/spinlock.h>
62#include <synch/mutex.h>
63#include <adt/list.h>
64#include <adt/btree.h>
65#include <proc/task.h>
66#include <proc/thread.h>
67#include <arch/asm.h>
68#include <panic.h>
69#include <debug.h>
70#include <print.h>
71#include <memstr.h>
72#include <macros.h>
73#include <arch.h>
74#include <errno.h>
75#include <config.h>
76#include <align.h>
77#include <arch/types.h>
78#include <syscall/copy.h>
79#include <arch/interrupt.h>
80
81#ifdef CONFIG_VIRT_IDX_DCACHE
82#include <arch/mm/cache.h>
83#endif /* CONFIG_VIRT_IDX_DCACHE */
84
85#ifndef __OBJC__
86/**
87 * Each architecture decides what functions will be used to carry out
88 * address space operations such as creating or locking page tables.
89 */
90as_operations_t *as_operations = NULL;
91
92/**
93 * Slab for as_t objects.
94 */
95static slab_cache_t *as_slab;
96#endif
97
98/**
99 * This lock serializes access to the ASID subsystem.
100 * It protects:
101 * - inactive_as_with_asid_head list
102 * - as->asid for each as of the as_t type
103 * - asids_allocated counter
104 */
105SPINLOCK_INITIALIZE(asidlock);
106
107/**
108 * This list contains address spaces that are not active on any
109 * processor and that have valid ASID.
110 */
111LIST_INITIALIZE(inactive_as_with_asid_head);
112
113/** Kernel address space. */
114as_t *AS_KERNEL = NULL;
115
116static int area_flags_to_page_flags(int aflags);
117static as_area_t *find_area_and_lock(as_t *as, uintptr_t va);
118static bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
119 as_area_t *avoid_area);
120static void sh_info_remove_reference(share_info_t *sh_info);
121
122#ifndef __OBJC__
123static int as_constructor(void *obj, int flags)
124{
125 as_t *as = (as_t *) obj;
126 int rc;
127
128 link_initialize(&as->inactive_as_with_asid_link);
129 mutex_initialize(&as->lock);
130
131 rc = as_constructor_arch(as, flags);
132
133 return rc;
134}
135
136static int as_destructor(void *obj)
137{
138 as_t *as = (as_t *) obj;
139
140 return as_destructor_arch(as);
141}
142#endif
143
144/** Initialize address space subsystem. */
145void as_init(void)
146{
147 as_arch_init();
148
149#ifndef __OBJC__
150 as_slab = slab_cache_create("as_slab", sizeof(as_t), 0,
151 as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);
152#endif
153
154 AS_KERNEL = as_create(FLAG_AS_KERNEL);
155 if (!AS_KERNEL)
156 panic("can't create kernel address space\n");
157
158}
159
160/** Create address space.
161 *
162 * @param flags Flags that influence way in wich the address space is created.
163 */
164as_t *as_create(int flags)
165{
166 as_t *as;
167
168#ifdef __OBJC__
169 as = [as_t new];
170 link_initialize(&as->inactive_as_with_asid_link);
171 mutex_initialize(&as->lock);
172 (void) as_constructor_arch(as, flags);
173#else
174 as = (as_t *) slab_alloc(as_slab, 0);
175#endif
176 (void) as_create_arch(as, 0);
177
178 btree_create(&as->as_area_btree);
179
180 if (flags & FLAG_AS_KERNEL)
181 as->asid = ASID_KERNEL;
182 else
183 as->asid = ASID_INVALID;
184
185 atomic_set(&as->refcount, 0);
186 as->cpu_refcount = 0;
187#ifdef AS_PAGE_TABLE
188 as->genarch.page_table = page_table_create(flags);
189#else
190 page_table_create(flags);
191#endif
192
193 return as;
194}
195
196/** Destroy adress space.
197 *
198 * When there are no tasks referencing this address space (i.e. its refcount is
199 * zero), the address space can be destroyed.
200 *
201 * We know that we don't hold any spinlock.
202 */
203void as_destroy(as_t *as)
204{
205 ipl_t ipl;
206 bool cond;
207 DEADLOCK_PROBE_INIT(p_asidlock);
208
209 ASSERT(atomic_get(&as->refcount) == 0);
210
211 /*
212 * Since there is no reference to this area,
213 * it is safe not to lock its mutex.
214 */
215
216 /*
217 * We need to avoid deadlock between TLB shootdown and asidlock.
218 * We therefore try to take asid conditionally and if we don't succeed,
219 * we enable interrupts and try again. This is done while preemption is
220 * disabled to prevent nested context switches. We also depend on the
221 * fact that so far no spinlocks are held.
222 */
223 preemption_disable();
224 ipl = interrupts_read();
225retry:
226 interrupts_disable();
227 if (!spinlock_trylock(&asidlock)) {
228 interrupts_enable();
229 DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
230 goto retry;
231 }
232 preemption_enable(); /* Interrupts disabled, enable preemption */
233 if (as->asid != ASID_INVALID && as != AS_KERNEL) {
234 if (as != AS && as->cpu_refcount == 0)
235 list_remove(&as->inactive_as_with_asid_link);
236 asid_put(as->asid);
237 }
238 spinlock_unlock(&asidlock);
239
240 /*
241 * Destroy address space areas of the address space.
242 * The B+tree must be walked carefully because it is
243 * also being destroyed.
244 */
245 for (cond = true; cond; ) {
246 btree_node_t *node;
247
248 ASSERT(!list_empty(&as->as_area_btree.leaf_head));
249 node = list_get_instance(as->as_area_btree.leaf_head.next,
250 btree_node_t, leaf_link);
251
252 if ((cond = node->keys)) {
253 as_area_destroy(as, node->key[0]);
254 }
255 }
256
257 btree_destroy(&as->as_area_btree);
258#ifdef AS_PAGE_TABLE
259 page_table_destroy(as->genarch.page_table);
260#else
261 page_table_destroy(NULL);
262#endif
263
264 interrupts_restore(ipl);
265
266#ifdef __OBJC__
267 [as free];
268#else
269 slab_free(as_slab, as);
270#endif
271}
272
273/** Create address space area of common attributes.
274 *
275 * The created address space area is added to the target address space.
276 *
277 * @param as Target address space.
278 * @param flags Flags of the area memory.
279 * @param size Size of area.
280 * @param base Base address of area.
281 * @param attrs Attributes of the area.
282 * @param backend Address space area backend. NULL if no backend is used.
283 * @param backend_data NULL or a pointer to an array holding two void *.
284 *
285 * @return Address space area on success or NULL on failure.
286 */
287as_area_t *
288as_area_create(as_t *as, int flags, size_t size, uintptr_t base, int attrs,
289 mem_backend_t *backend, mem_backend_data_t *backend_data)
290{
291 ipl_t ipl;
292 as_area_t *a;
293
294 if (base % PAGE_SIZE)
295 return NULL;
296
297 if (!size)
298 return NULL;
299
300 /* Writeable executable areas are not supported. */
301 if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
302 return NULL;
303
304 ipl = interrupts_disable();
305 mutex_lock(&as->lock);
306
307 if (!check_area_conflicts(as, base, size, NULL)) {
308 mutex_unlock(&as->lock);
309 interrupts_restore(ipl);
310 return NULL;
311 }
312
313 a = (as_area_t *) malloc(sizeof(as_area_t), 0);
314
315 mutex_initialize(&a->lock);
316
317 a->as = as;
318 a->flags = flags;
319 a->attributes = attrs;
320 a->pages = SIZE2FRAMES(size);
321 a->base = base;
322 a->sh_info = NULL;
323 a->backend = backend;
324 if (backend_data)
325 a->backend_data = *backend_data;
326 else
327 memsetb((uintptr_t) &a->backend_data, sizeof(a->backend_data),
328 0);
329
330 btree_create(&a->used_space);
331
332 btree_insert(&as->as_area_btree, base, (void *) a, NULL);
333
334 mutex_unlock(&as->lock);
335 interrupts_restore(ipl);
336
337 return a;
338}
339
340/** Find address space area and change it.
341 *
342 * @param as Address space.
343 * @param address Virtual address belonging to the area to be changed. Must be
344 * page-aligned.
345 * @param size New size of the virtual memory block starting at address.
346 * @param flags Flags influencing the remap operation. Currently unused.
347 *
348 * @return Zero on success or a value from @ref errno.h otherwise.
349 */
350int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags)
351{
352 as_area_t *area;
353 ipl_t ipl;
354 size_t pages;
355
356 ipl = interrupts_disable();
357 mutex_lock(&as->lock);
358
359 /*
360 * Locate the area.
361 */
362 area = find_area_and_lock(as, address);
363 if (!area) {
364 mutex_unlock(&as->lock);
365 interrupts_restore(ipl);
366 return ENOENT;
367 }
368
369 if (area->backend == &phys_backend) {
370 /*
371 * Remapping of address space areas associated
372 * with memory mapped devices is not supported.
373 */
374 mutex_unlock(&area->lock);
375 mutex_unlock(&as->lock);
376 interrupts_restore(ipl);
377 return ENOTSUP;
378 }
379 if (area->sh_info) {
380 /*
381 * Remapping of shared address space areas
382 * is not supported.
383 */
384 mutex_unlock(&area->lock);
385 mutex_unlock(&as->lock);
386 interrupts_restore(ipl);
387 return ENOTSUP;
388 }
389
390 pages = SIZE2FRAMES((address - area->base) + size);
391 if (!pages) {
392 /*
393 * Zero size address space areas are not allowed.
394 */
395 mutex_unlock(&area->lock);
396 mutex_unlock(&as->lock);
397 interrupts_restore(ipl);
398 return EPERM;
399 }
400
401 if (pages < area->pages) {
402 bool cond;
403 uintptr_t start_free = area->base + pages*PAGE_SIZE;
404
405 /*
406 * Shrinking the area.
407 * No need to check for overlaps.
408 */
409
410 /*
411 * Start TLB shootdown sequence.
412 */
413 tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base +
414 pages * PAGE_SIZE, area->pages - pages);
415
416 /*
417 * Remove frames belonging to used space starting from
418 * the highest addresses downwards until an overlap with
419 * the resized address space area is found. Note that this
420 * is also the right way to remove part of the used_space
421 * B+tree leaf list.
422 */
423 for (cond = true; cond;) {
424 btree_node_t *node;
425
426 ASSERT(!list_empty(&area->used_space.leaf_head));
427 node =
428 list_get_instance(area->used_space.leaf_head.prev,
429 btree_node_t, leaf_link);
430 if ((cond = (bool) node->keys)) {
431 uintptr_t b = node->key[node->keys - 1];
432 count_t c =
433 (count_t) node->value[node->keys - 1];
434 int i = 0;
435
436 if (overlaps(b, c * PAGE_SIZE, area->base,
437 pages * PAGE_SIZE)) {
438
439 if (b + c * PAGE_SIZE <= start_free) {
440 /*
441 * The whole interval fits
442 * completely in the resized
443 * address space area.
444 */
445 break;
446 }
447
448 /*
449 * Part of the interval corresponding
450 * to b and c overlaps with the resized
451 * address space area.
452 */
453
454 cond = false; /* we are almost done */
455 i = (start_free - b) >> PAGE_WIDTH;
456 if (!used_space_remove(area, start_free,
457 c - i))
458 panic("Could not remove used "
459 "space.\n");
460 } else {
461 /*
462 * The interval of used space can be
463 * completely removed.
464 */
465 if (!used_space_remove(area, b, c))
466 panic("Could not remove used "
467 "space.\n");
468 }
469
470 for (; i < c; i++) {
471 pte_t *pte;
472
473 page_table_lock(as, false);
474 pte = page_mapping_find(as, b +
475 i * PAGE_SIZE);
476 ASSERT(pte && PTE_VALID(pte) &&
477 PTE_PRESENT(pte));
478 if (area->backend &&
479 area->backend->frame_free) {
480 area->backend->frame_free(area,
481 b + i * PAGE_SIZE,
482 PTE_GET_FRAME(pte));
483 }
484 page_mapping_remove(as, b +
485 i * PAGE_SIZE);
486 page_table_unlock(as, false);
487 }
488 }
489 }
490
491 /*
492 * Finish TLB shootdown sequence.
493 */
494
495 tlb_invalidate_pages(as->asid, area->base + pages * PAGE_SIZE,
496 area->pages - pages);
497 /*
498 * Invalidate software translation caches (e.g. TSB on sparc64).
499 */
500 as_invalidate_translation_cache(as, area->base +
501 pages * PAGE_SIZE, area->pages - pages);
502 tlb_shootdown_finalize();
503
504 } else {
505 /*
506 * Growing the area.
507 * Check for overlaps with other address space areas.
508 */
509 if (!check_area_conflicts(as, address, pages * PAGE_SIZE,
510 area)) {
511 mutex_unlock(&area->lock);
512 mutex_unlock(&as->lock);
513 interrupts_restore(ipl);
514 return EADDRNOTAVAIL;
515 }
516 }
517
518 area->pages = pages;
519
520 mutex_unlock(&area->lock);
521 mutex_unlock(&as->lock);
522 interrupts_restore(ipl);
523
524 return 0;
525}
526
527/** Destroy address space area.
528 *
529 * @param as Address space.
530 * @param address Address withing the area to be deleted.
531 *
532 * @return Zero on success or a value from @ref errno.h on failure.
533 */
534int as_area_destroy(as_t *as, uintptr_t address)
535{
536 as_area_t *area;
537 uintptr_t base;
538 link_t *cur;
539 ipl_t ipl;
540
541 ipl = interrupts_disable();
542 mutex_lock(&as->lock);
543
544 area = find_area_and_lock(as, address);
545 if (!area) {
546 mutex_unlock(&as->lock);
547 interrupts_restore(ipl);
548 return ENOENT;
549 }
550
551 base = area->base;
552
553 /*
554 * Start TLB shootdown sequence.
555 */
556 tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
557
558 /*
559 * Visit only the pages mapped by used_space B+tree.
560 */
561 for (cur = area->used_space.leaf_head.next;
562 cur != &area->used_space.leaf_head; cur = cur->next) {
563 btree_node_t *node;
564 int i;
565
566 node = list_get_instance(cur, btree_node_t, leaf_link);
567 for (i = 0; i < node->keys; i++) {
568 uintptr_t b = node->key[i];
569 count_t j;
570 pte_t *pte;
571
572 for (j = 0; j < (count_t) node->value[i]; j++) {
573 page_table_lock(as, false);
574 pte = page_mapping_find(as, b + j * PAGE_SIZE);
575 ASSERT(pte && PTE_VALID(pte) &&
576 PTE_PRESENT(pte));
577 if (area->backend &&
578 area->backend->frame_free) {
579 area->backend->frame_free(area, b +
580 j * PAGE_SIZE, PTE_GET_FRAME(pte));
581 }
582 page_mapping_remove(as, b + j * PAGE_SIZE);
583 page_table_unlock(as, false);
584 }
585 }
586 }
587
588 /*
589 * Finish TLB shootdown sequence.
590 */
591
592 tlb_invalidate_pages(as->asid, area->base, area->pages);
593 /*
594 * Invalidate potential software translation caches (e.g. TSB on
595 * sparc64).
596 */
597 as_invalidate_translation_cache(as, area->base, area->pages);
598 tlb_shootdown_finalize();
599
600 btree_destroy(&area->used_space);
601
602 area->attributes |= AS_AREA_ATTR_PARTIAL;
603
604 if (area->sh_info)
605 sh_info_remove_reference(area->sh_info);
606
607 mutex_unlock(&area->lock);
608
609 /*
610 * Remove the empty area from address space.
611 */
612 btree_remove(&as->as_area_btree, base, NULL);
613
614 free(area);
615
616 mutex_unlock(&as->lock);
617 interrupts_restore(ipl);
618 return 0;
619}
620
621/** Share address space area with another or the same address space.
622 *
623 * Address space area mapping is shared with a new address space area.
624 * If the source address space area has not been shared so far,
625 * a new sh_info is created. The new address space area simply gets the
626 * sh_info of the source area. The process of duplicating the
627 * mapping is done through the backend share function.
628 *
629 * @param src_as Pointer to source address space.
630 * @param src_base Base address of the source address space area.
631 * @param acc_size Expected size of the source area.
632 * @param dst_as Pointer to destination address space.
633 * @param dst_base Target base address.
634 * @param dst_flags_mask Destination address space area flags mask.
635 *
636 * @return Zero on success or ENOENT if there is no such task or if there is no
637 * such address space area, EPERM if there was a problem in accepting the area
638 * or ENOMEM if there was a problem in allocating destination address space
639 * area. ENOTSUP is returned if the address space area backend does not support
640 * sharing.
641 */
642int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
643 as_t *dst_as, uintptr_t dst_base, int dst_flags_mask)
644{
645 ipl_t ipl;
646 int src_flags;
647 size_t src_size;
648 as_area_t *src_area, *dst_area;
649 share_info_t *sh_info;
650 mem_backend_t *src_backend;
651 mem_backend_data_t src_backend_data;
652
653 ipl = interrupts_disable();
654 mutex_lock(&src_as->lock);
655 src_area = find_area_and_lock(src_as, src_base);
656 if (!src_area) {
657 /*
658 * Could not find the source address space area.
659 */
660 mutex_unlock(&src_as->lock);
661 interrupts_restore(ipl);
662 return ENOENT;
663 }
664
665 if (!src_area->backend || !src_area->backend->share) {
666 /*
667 * There is no backend or the backend does not
668 * know how to share the area.
669 */
670 mutex_unlock(&src_area->lock);
671 mutex_unlock(&src_as->lock);
672 interrupts_restore(ipl);
673 return ENOTSUP;
674 }
675
676 src_size = src_area->pages * PAGE_SIZE;
677 src_flags = src_area->flags;
678 src_backend = src_area->backend;
679 src_backend_data = src_area->backend_data;
680
681 /* Share the cacheable flag from the original mapping */
682 if (src_flags & AS_AREA_CACHEABLE)
683 dst_flags_mask |= AS_AREA_CACHEABLE;
684
685 if (src_size != acc_size ||
686 (src_flags & dst_flags_mask) != dst_flags_mask) {
687 mutex_unlock(&src_area->lock);
688 mutex_unlock(&src_as->lock);
689 interrupts_restore(ipl);
690 return EPERM;
691 }
692
693 /*
694 * Now we are committed to sharing the area.
695 * First, prepare the area for sharing.
696 * Then it will be safe to unlock it.
697 */
698 sh_info = src_area->sh_info;
699 if (!sh_info) {
700 sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
701 mutex_initialize(&sh_info->lock);
702 sh_info->refcount = 2;
703 btree_create(&sh_info->pagemap);
704 src_area->sh_info = sh_info;
705 /*
706 * Call the backend to setup sharing.
707 */
708 src_area->backend->share(src_area);
709 } else {
710 mutex_lock(&sh_info->lock);
711 sh_info->refcount++;
712 mutex_unlock(&sh_info->lock);
713 }
714
715 mutex_unlock(&src_area->lock);
716 mutex_unlock(&src_as->lock);
717
718 /*
719 * Create copy of the source address space area.
720 * The destination area is created with AS_AREA_ATTR_PARTIAL
721 * attribute set which prevents race condition with
722 * preliminary as_page_fault() calls.
723 * The flags of the source area are masked against dst_flags_mask
724 * to support sharing in less privileged mode.
725 */
726 dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
727 AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
728 if (!dst_area) {
729 /*
730 * Destination address space area could not be created.
731 */
732 sh_info_remove_reference(sh_info);
733
734 interrupts_restore(ipl);
735 return ENOMEM;
736 }
737
738 /*
739 * Now the destination address space area has been
740 * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
741 * attribute and set the sh_info.
742 */
743 mutex_lock(&dst_as->lock);
744 mutex_lock(&dst_area->lock);
745 dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
746 dst_area->sh_info = sh_info;
747 mutex_unlock(&dst_area->lock);
748 mutex_unlock(&dst_as->lock);
749
750 interrupts_restore(ipl);
751
752 return 0;
753}
754
755/** Check access mode for address space area.
756 *
757 * The address space area must be locked prior to this call.
758 *
759 * @param area Address space area.
760 * @param access Access mode.
761 *
762 * @return False if access violates area's permissions, true otherwise.
763 */
764bool as_area_check_access(as_area_t *area, pf_access_t access)
765{
766 int flagmap[] = {
767 [PF_ACCESS_READ] = AS_AREA_READ,
768 [PF_ACCESS_WRITE] = AS_AREA_WRITE,
769 [PF_ACCESS_EXEC] = AS_AREA_EXEC
770 };
771
772 if (!(area->flags & flagmap[access]))
773 return false;
774
775 return true;
776}
777
778/** Handle page fault within the current address space.
779 *
780 * This is the high-level page fault handler. It decides
781 * whether the page fault can be resolved by any backend
782 * and if so, it invokes the backend to resolve the page
783 * fault.
784 *
785 * Interrupts are assumed disabled.
786 *
787 * @param page Faulting page.
788 * @param access Access mode that caused the fault (i.e. read/write/exec).
789 * @param istate Pointer to interrupted state.
790 *
791 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
792 * fault was caused by copy_to_uspace() or copy_from_uspace().
793 */
794int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
795{
796 pte_t *pte;
797 as_area_t *area;
798
799 if (!THREAD)
800 return AS_PF_FAULT;
801
802 ASSERT(AS);
803
804 mutex_lock(&AS->lock);
805 area = find_area_and_lock(AS, page);
806 if (!area) {
807 /*
808 * No area contained mapping for 'page'.
809 * Signal page fault to low-level handler.
810 */
811 mutex_unlock(&AS->lock);
812 goto page_fault;
813 }
814
815 if (area->attributes & AS_AREA_ATTR_PARTIAL) {
816 /*
817 * The address space area is not fully initialized.
818 * Avoid possible race by returning error.
819 */
820 mutex_unlock(&area->lock);
821 mutex_unlock(&AS->lock);
822 goto page_fault;
823 }
824
825 if (!area->backend || !area->backend->page_fault) {
826 /*
827 * The address space area is not backed by any backend
828 * or the backend cannot handle page faults.
829 */
830 mutex_unlock(&area->lock);
831 mutex_unlock(&AS->lock);
832 goto page_fault;
833 }
834
835 page_table_lock(AS, false);
836
837 /*
838 * To avoid race condition between two page faults
839 * on the same address, we need to make sure
840 * the mapping has not been already inserted.
841 */
842 if ((pte = page_mapping_find(AS, page))) {
843 if (PTE_PRESENT(pte)) {
844 if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
845 (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
846 (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
847 page_table_unlock(AS, false);
848 mutex_unlock(&area->lock);
849 mutex_unlock(&AS->lock);
850 return AS_PF_OK;
851 }
852 }
853 }
854
855 /*
856 * Resort to the backend page fault handler.
857 */
858 if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
859 page_table_unlock(AS, false);
860 mutex_unlock(&area->lock);
861 mutex_unlock(&AS->lock);
862 goto page_fault;
863 }
864
865 page_table_unlock(AS, false);
866 mutex_unlock(&area->lock);
867 mutex_unlock(&AS->lock);
868 return AS_PF_OK;
869
870page_fault:
871 if (THREAD->in_copy_from_uspace) {
872 THREAD->in_copy_from_uspace = false;
873 istate_set_retaddr(istate,
874 (uintptr_t) &memcpy_from_uspace_failover_address);
875 } else if (THREAD->in_copy_to_uspace) {
876 THREAD->in_copy_to_uspace = false;
877 istate_set_retaddr(istate,
878 (uintptr_t) &memcpy_to_uspace_failover_address);
879 } else {
880 return AS_PF_FAULT;
881 }
882
883 return AS_PF_DEFER;
884}
885
886/** Switch address spaces.
887 *
888 * Note that this function cannot sleep as it is essentially a part of
889 * scheduling. Sleeping here would lead to deadlock on wakeup. Another
890 * thing which is forbidden in this context is locking the address space.
891 *
892 * When this function is enetered, no spinlocks may be held.
893 *
894 * @param old Old address space or NULL.
895 * @param new New address space.
896 */
897void as_switch(as_t *old_as, as_t *new_as)
898{
899 DEADLOCK_PROBE_INIT(p_asidlock);
900 preemption_disable();
901retry:
902 (void) interrupts_disable();
903 if (!spinlock_trylock(&asidlock)) {
904 /*
905 * Avoid deadlock with TLB shootdown.
906 * We can enable interrupts here because
907 * preemption is disabled. We should not be
908 * holding any other lock.
909 */
910 (void) interrupts_enable();
911 DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
912 goto retry;
913 }
914 preemption_enable();
915
916 /*
917 * First, take care of the old address space.
918 */
919 if (old_as) {
920 ASSERT(old_as->cpu_refcount);
921 if((--old_as->cpu_refcount == 0) && (old_as != AS_KERNEL)) {
922 /*
923 * The old address space is no longer active on
924 * any processor. It can be appended to the
925 * list of inactive address spaces with assigned
926 * ASID.
927 */
928 ASSERT(old_as->asid != ASID_INVALID);
929 list_append(&old_as->inactive_as_with_asid_link,
930 &inactive_as_with_asid_head);
931 }
932
933 /*
934 * Perform architecture-specific tasks when the address space
935 * is being removed from the CPU.
936 */
937 as_deinstall_arch(old_as);
938 }
939
940 /*
941 * Second, prepare the new address space.
942 */
943 if ((new_as->cpu_refcount++ == 0) && (new_as != AS_KERNEL)) {
944 if (new_as->asid != ASID_INVALID)
945 list_remove(&new_as->inactive_as_with_asid_link);
946 else
947 new_as->asid = asid_get();
948 }
949#ifdef AS_PAGE_TABLE
950 SET_PTL0_ADDRESS(new_as->genarch.page_table);
951#endif
952
953 /*
954 * Perform architecture-specific steps.
955 * (e.g. write ASID to hardware register etc.)
956 */
957 as_install_arch(new_as);
958
959 spinlock_unlock(&asidlock);
960
961 AS = new_as;
962}
963
964/** Convert address space area flags to page flags.
965 *
966 * @param aflags Flags of some address space area.
967 *
968 * @return Flags to be passed to page_mapping_insert().
969 */
970int area_flags_to_page_flags(int aflags)
971{
972 int flags;
973
974 flags = PAGE_USER | PAGE_PRESENT;
975
976 if (aflags & AS_AREA_READ)
977 flags |= PAGE_READ;
978
979 if (aflags & AS_AREA_WRITE)
980 flags |= PAGE_WRITE;
981
982 if (aflags & AS_AREA_EXEC)
983 flags |= PAGE_EXEC;
984
985 if (aflags & AS_AREA_CACHEABLE)
986 flags |= PAGE_CACHEABLE;
987
988 return flags;
989}
990
991/** Compute flags for virtual address translation subsytem.
992 *
993 * The address space area must be locked.
994 * Interrupts must be disabled.
995 *
996 * @param a Address space area.
997 *
998 * @return Flags to be used in page_mapping_insert().
999 */
1000int as_area_get_flags(as_area_t *a)
1001{
1002 return area_flags_to_page_flags(a->flags);
1003}
1004
1005/** Create page table.
1006 *
1007 * Depending on architecture, create either address space
1008 * private or global page table.
1009 *
1010 * @param flags Flags saying whether the page table is for kernel address space.
1011 *
1012 * @return First entry of the page table.
1013 */
1014pte_t *page_table_create(int flags)
1015{
1016#ifdef __OBJC__
1017 return [as_t page_table_create: flags];
1018#else
1019 ASSERT(as_operations);
1020 ASSERT(as_operations->page_table_create);
1021
1022 return as_operations->page_table_create(flags);
1023#endif
1024}
1025
1026/** Destroy page table.
1027 *
1028 * Destroy page table in architecture specific way.
1029 *
1030 * @param page_table Physical address of PTL0.
1031 */
1032void page_table_destroy(pte_t *page_table)
1033{
1034#ifdef __OBJC__
1035 return [as_t page_table_destroy: page_table];
1036#else
1037 ASSERT(as_operations);
1038 ASSERT(as_operations->page_table_destroy);
1039
1040 as_operations->page_table_destroy(page_table);
1041#endif
1042}
1043
1044/** Lock page table.
1045 *
1046 * This function should be called before any page_mapping_insert(),
1047 * page_mapping_remove() and page_mapping_find().
1048 *
1049 * Locking order is such that address space areas must be locked
1050 * prior to this call. Address space can be locked prior to this
1051 * call in which case the lock argument is false.
1052 *
1053 * @param as Address space.
1054 * @param lock If false, do not attempt to lock as->lock.
1055 */
1056void page_table_lock(as_t *as, bool lock)
1057{
1058#ifdef __OBJC__
1059 [as page_table_lock: lock];
1060#else
1061 ASSERT(as_operations);
1062 ASSERT(as_operations->page_table_lock);
1063
1064 as_operations->page_table_lock(as, lock);
1065#endif
1066}
1067
1068/** Unlock page table.
1069 *
1070 * @param as Address space.
1071 * @param unlock If false, do not attempt to unlock as->lock.
1072 */
1073void page_table_unlock(as_t *as, bool unlock)
1074{
1075#ifdef __OBJC__
1076 [as page_table_unlock: unlock];
1077#else
1078 ASSERT(as_operations);
1079 ASSERT(as_operations->page_table_unlock);
1080
1081 as_operations->page_table_unlock(as, unlock);
1082#endif
1083}
1084
1085
1086/** Find address space area and lock it.
1087 *
1088 * The address space must be locked and interrupts must be disabled.
1089 *
1090 * @param as Address space.
1091 * @param va Virtual address.
1092 *
1093 * @return Locked address space area containing va on success or NULL on
1094 * failure.
1095 */
1096as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
1097{
1098 as_area_t *a;
1099 btree_node_t *leaf, *lnode;
1100 int i;
1101
1102 a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
1103 if (a) {
1104 /* va is the base address of an address space area */
1105 mutex_lock(&a->lock);
1106 return a;
1107 }
1108
1109 /*
1110 * Search the leaf node and the righmost record of its left neighbour
1111 * to find out whether this is a miss or va belongs to an address
1112 * space area found there.
1113 */
1114
1115 /* First, search the leaf node itself. */
1116 for (i = 0; i < leaf->keys; i++) {
1117 a = (as_area_t *) leaf->value[i];
1118 mutex_lock(&a->lock);
1119 if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
1120 return a;
1121 }
1122 mutex_unlock(&a->lock);
1123 }
1124
1125 /*
1126 * Second, locate the left neighbour and test its last record.
1127 * Because of its position in the B+tree, it must have base < va.
1128 */
1129 lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf);
1130 if (lnode) {
1131 a = (as_area_t *) lnode->value[lnode->keys - 1];
1132 mutex_lock(&a->lock);
1133 if (va < a->base + a->pages * PAGE_SIZE) {
1134 return a;
1135 }
1136 mutex_unlock(&a->lock);
1137 }
1138
1139 return NULL;
1140}
1141
1142/** Check area conflicts with other areas.
1143 *
1144 * The address space must be locked and interrupts must be disabled.
1145 *
1146 * @param as Address space.
1147 * @param va Starting virtual address of the area being tested.
1148 * @param size Size of the area being tested.
1149 * @param avoid_area Do not touch this area.
1150 *
1151 * @return True if there is no conflict, false otherwise.
1152 */
1153bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
1154 as_area_t *avoid_area)
1155{
1156 as_area_t *a;
1157 btree_node_t *leaf, *node;
1158 int i;
1159
1160 /*
1161 * We don't want any area to have conflicts with NULL page.
1162 */
1163 if (overlaps(va, size, NULL, PAGE_SIZE))
1164 return false;
1165
1166 /*
1167 * The leaf node is found in O(log n), where n is proportional to
1168 * the number of address space areas belonging to as.
1169 * The check for conflicts is then attempted on the rightmost
1170 * record in the left neighbour, the leftmost record in the right
1171 * neighbour and all records in the leaf node itself.
1172 */
1173
1174 if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1175 if (a != avoid_area)
1176 return false;
1177 }
1178
1179 /* First, check the two border cases. */
1180 if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1181 a = (as_area_t *) node->value[node->keys - 1];
1182 mutex_lock(&a->lock);
1183 if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1184 mutex_unlock(&a->lock);
1185 return false;
1186 }
1187 mutex_unlock(&a->lock);
1188 }
1189 node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf);
1190 if (node) {
1191 a = (as_area_t *) node->value[0];
1192 mutex_lock(&a->lock);
1193 if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1194 mutex_unlock(&a->lock);
1195 return false;
1196 }
1197 mutex_unlock(&a->lock);
1198 }
1199
1200 /* Second, check the leaf node. */
1201 for (i = 0; i < leaf->keys; i++) {
1202 a = (as_area_t *) leaf->value[i];
1203
1204 if (a == avoid_area)
1205 continue;
1206
1207 mutex_lock(&a->lock);
1208 if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1209 mutex_unlock(&a->lock);
1210 return false;
1211 }
1212 mutex_unlock(&a->lock);
1213 }
1214
1215 /*
1216 * So far, the area does not conflict with other areas.
1217 * Check if it doesn't conflict with kernel address space.
1218 */
1219 if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1220 return !overlaps(va, size,
1221 KERNEL_ADDRESS_SPACE_START,
1222 KERNEL_ADDRESS_SPACE_END - KERNEL_ADDRESS_SPACE_START);
1223 }
1224
1225 return true;
1226}
1227
1228/** Return size of the address space area with given base.
1229 *
1230 * @param base Arbitrary address insede the address space area.
1231 *
1232 * @return Size of the address space area in bytes or zero if it
1233 * does not exist.
1234 */
1235size_t as_area_get_size(uintptr_t base)
1236{
1237 ipl_t ipl;
1238 as_area_t *src_area;
1239 size_t size;
1240
1241 ipl = interrupts_disable();
1242 src_area = find_area_and_lock(AS, base);
1243 if (src_area){
1244 size = src_area->pages * PAGE_SIZE;
1245 mutex_unlock(&src_area->lock);
1246 } else {
1247 size = 0;
1248 }
1249 interrupts_restore(ipl);
1250 return size;
1251}
1252
1253/** Mark portion of address space area as used.
1254 *
1255 * The address space area must be already locked.
1256 *
1257 * @param a Address space area.
1258 * @param page First page to be marked.
1259 * @param count Number of page to be marked.
1260 *
1261 * @return 0 on failure and 1 on success.
1262 */
1263int used_space_insert(as_area_t *a, uintptr_t page, count_t count)
1264{
1265 btree_node_t *leaf, *node;
1266 count_t pages;
1267 int i;
1268
1269 ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1270 ASSERT(count);
1271
1272 pages = (count_t) btree_search(&a->used_space, page, &leaf);
1273 if (pages) {
1274 /*
1275 * We hit the beginning of some used space.
1276 */
1277 return 0;
1278 }
1279
1280 if (!leaf->keys) {
1281 btree_insert(&a->used_space, page, (void *) count, leaf);
1282 return 1;
1283 }
1284
1285 node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1286 if (node) {
1287 uintptr_t left_pg = node->key[node->keys - 1];
1288 uintptr_t right_pg = leaf->key[0];
1289 count_t left_cnt = (count_t) node->value[node->keys - 1];
1290 count_t right_cnt = (count_t) leaf->value[0];
1291
1292 /*
1293 * Examine the possibility that the interval fits
1294 * somewhere between the rightmost interval of
1295 * the left neigbour and the first interval of the leaf.
1296 */
1297
1298 if (page >= right_pg) {
1299 /* Do nothing. */
1300 } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1301 left_cnt * PAGE_SIZE)) {
1302 /* The interval intersects with the left interval. */
1303 return 0;
1304 } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1305 right_cnt * PAGE_SIZE)) {
1306 /* The interval intersects with the right interval. */
1307 return 0;
1308 } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1309 (page + count * PAGE_SIZE == right_pg)) {
1310 /*
1311 * The interval can be added by merging the two already
1312 * present intervals.
1313 */
1314 node->value[node->keys - 1] += count + right_cnt;
1315 btree_remove(&a->used_space, right_pg, leaf);
1316 return 1;
1317 } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1318 /*
1319 * The interval can be added by simply growing the left
1320 * interval.
1321 */
1322 node->value[node->keys - 1] += count;
1323 return 1;
1324 } else if (page + count * PAGE_SIZE == right_pg) {
1325 /*
1326 * The interval can be addded by simply moving base of
1327 * the right interval down and increasing its size
1328 * accordingly.
1329 */
1330 leaf->value[0] += count;
1331 leaf->key[0] = page;
1332 return 1;
1333 } else {
1334 /*
1335 * The interval is between both neigbouring intervals,
1336 * but cannot be merged with any of them.
1337 */
1338 btree_insert(&a->used_space, page, (void *) count,
1339 leaf);
1340 return 1;
1341 }
1342 } else if (page < leaf->key[0]) {
1343 uintptr_t right_pg = leaf->key[0];
1344 count_t right_cnt = (count_t) leaf->value[0];
1345
1346 /*
1347 * Investigate the border case in which the left neighbour does
1348 * not exist but the interval fits from the left.
1349 */
1350
1351 if (overlaps(page, count * PAGE_SIZE, right_pg,
1352 right_cnt * PAGE_SIZE)) {
1353 /* The interval intersects with the right interval. */
1354 return 0;
1355 } else if (page + count * PAGE_SIZE == right_pg) {
1356 /*
1357 * The interval can be added by moving the base of the
1358 * right interval down and increasing its size
1359 * accordingly.
1360 */
1361 leaf->key[0] = page;
1362 leaf->value[0] += count;
1363 return 1;
1364 } else {
1365 /*
1366 * The interval doesn't adjoin with the right interval.
1367 * It must be added individually.
1368 */
1369 btree_insert(&a->used_space, page, (void *) count,
1370 leaf);
1371 return 1;
1372 }
1373 }
1374
1375 node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1376 if (node) {
1377 uintptr_t left_pg = leaf->key[leaf->keys - 1];
1378 uintptr_t right_pg = node->key[0];
1379 count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1380 count_t right_cnt = (count_t) node->value[0];
1381
1382 /*
1383 * Examine the possibility that the interval fits
1384 * somewhere between the leftmost interval of
1385 * the right neigbour and the last interval of the leaf.
1386 */
1387
1388 if (page < left_pg) {
1389 /* Do nothing. */
1390 } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1391 left_cnt * PAGE_SIZE)) {
1392 /* The interval intersects with the left interval. */
1393 return 0;
1394 } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1395 right_cnt * PAGE_SIZE)) {
1396 /* The interval intersects with the right interval. */
1397 return 0;
1398 } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1399 (page + count * PAGE_SIZE == right_pg)) {
1400 /*
1401 * The interval can be added by merging the two already
1402 * present intervals.
1403 * */
1404 leaf->value[leaf->keys - 1] += count + right_cnt;
1405 btree_remove(&a->used_space, right_pg, node);
1406 return 1;
1407 } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1408 /*
1409 * The interval can be added by simply growing the left
1410 * interval.
1411 * */
1412 leaf->value[leaf->keys - 1] += count;
1413 return 1;
1414 } else if (page + count * PAGE_SIZE == right_pg) {
1415 /*
1416 * The interval can be addded by simply moving base of
1417 * the right interval down and increasing its size
1418 * accordingly.
1419 */
1420 node->value[0] += count;
1421 node->key[0] = page;
1422 return 1;
1423 } else {
1424 /*
1425 * The interval is between both neigbouring intervals,
1426 * but cannot be merged with any of them.
1427 */
1428 btree_insert(&a->used_space, page, (void *) count,
1429 leaf);
1430 return 1;
1431 }
1432 } else if (page >= leaf->key[leaf->keys - 1]) {
1433 uintptr_t left_pg = leaf->key[leaf->keys - 1];
1434 count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1435
1436 /*
1437 * Investigate the border case in which the right neighbour
1438 * does not exist but the interval fits from the right.
1439 */
1440
1441 if (overlaps(page, count * PAGE_SIZE, left_pg,
1442 left_cnt * PAGE_SIZE)) {
1443 /* The interval intersects with the left interval. */
1444 return 0;
1445 } else if (left_pg + left_cnt * PAGE_SIZE == page) {
1446 /*
1447 * The interval can be added by growing the left
1448 * interval.
1449 */
1450 leaf->value[leaf->keys - 1] += count;
1451 return 1;
1452 } else {
1453 /*
1454 * The interval doesn't adjoin with the left interval.
1455 * It must be added individually.
1456 */
1457 btree_insert(&a->used_space, page, (void *) count,
1458 leaf);
1459 return 1;
1460 }
1461 }
1462
1463 /*
1464 * Note that if the algorithm made it thus far, the interval can fit
1465 * only between two other intervals of the leaf. The two border cases
1466 * were already resolved.
1467 */
1468 for (i = 1; i < leaf->keys; i++) {
1469 if (page < leaf->key[i]) {
1470 uintptr_t left_pg = leaf->key[i - 1];
1471 uintptr_t right_pg = leaf->key[i];
1472 count_t left_cnt = (count_t) leaf->value[i - 1];
1473 count_t right_cnt = (count_t) leaf->value[i];
1474
1475 /*
1476 * The interval fits between left_pg and right_pg.
1477 */
1478
1479 if (overlaps(page, count * PAGE_SIZE, left_pg,
1480 left_cnt * PAGE_SIZE)) {
1481 /*
1482 * The interval intersects with the left
1483 * interval.
1484 */
1485 return 0;
1486 } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1487 right_cnt * PAGE_SIZE)) {
1488 /*
1489 * The interval intersects with the right
1490 * interval.
1491 */
1492 return 0;
1493 } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1494 (page + count * PAGE_SIZE == right_pg)) {
1495 /*
1496 * The interval can be added by merging the two
1497 * already present intervals.
1498 */
1499 leaf->value[i - 1] += count + right_cnt;
1500 btree_remove(&a->used_space, right_pg, leaf);
1501 return 1;
1502 } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1503 /*
1504 * The interval can be added by simply growing
1505 * the left interval.
1506 */
1507 leaf->value[i - 1] += count;
1508 return 1;
1509 } else if (page + count * PAGE_SIZE == right_pg) {
1510 /*
1511 * The interval can be addded by simply moving
1512 * base of the right interval down and
1513 * increasing its size accordingly.
1514 */
1515 leaf->value[i] += count;
1516 leaf->key[i] = page;
1517 return 1;
1518 } else {
1519 /*
1520 * The interval is between both neigbouring
1521 * intervals, but cannot be merged with any of
1522 * them.
1523 */
1524 btree_insert(&a->used_space, page,
1525 (void *) count, leaf);
1526 return 1;
1527 }
1528 }
1529 }
1530
1531 panic("Inconsistency detected while adding %d pages of used space at "
1532 "%p.\n", count, page);
1533}
1534
1535/** Mark portion of address space area as unused.
1536 *
1537 * The address space area must be already locked.
1538 *
1539 * @param a Address space area.
1540 * @param page First page to be marked.
1541 * @param count Number of page to be marked.
1542 *
1543 * @return 0 on failure and 1 on success.
1544 */
1545int used_space_remove(as_area_t *a, uintptr_t page, count_t count)
1546{
1547 btree_node_t *leaf, *node;
1548 count_t pages;
1549 int i;
1550
1551 ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1552 ASSERT(count);
1553
1554 pages = (count_t) btree_search(&a->used_space, page, &leaf);
1555 if (pages) {
1556 /*
1557 * We are lucky, page is the beginning of some interval.
1558 */
1559 if (count > pages) {
1560 return 0;
1561 } else if (count == pages) {
1562 btree_remove(&a->used_space, page, leaf);
1563 return 1;
1564 } else {
1565 /*
1566 * Find the respective interval.
1567 * Decrease its size and relocate its start address.
1568 */
1569 for (i = 0; i < leaf->keys; i++) {
1570 if (leaf->key[i] == page) {
1571 leaf->key[i] += count * PAGE_SIZE;
1572 leaf->value[i] -= count;
1573 return 1;
1574 }
1575 }
1576 goto error;
1577 }
1578 }
1579
1580 node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1581 if (node && page < leaf->key[0]) {
1582 uintptr_t left_pg = node->key[node->keys - 1];
1583 count_t left_cnt = (count_t) node->value[node->keys - 1];
1584
1585 if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1586 count * PAGE_SIZE)) {
1587 if (page + count * PAGE_SIZE ==
1588 left_pg + left_cnt * PAGE_SIZE) {
1589 /*
1590 * The interval is contained in the rightmost
1591 * interval of the left neighbour and can be
1592 * removed by updating the size of the bigger
1593 * interval.
1594 */
1595 node->value[node->keys - 1] -= count;
1596 return 1;
1597 } else if (page + count * PAGE_SIZE <
1598 left_pg + left_cnt*PAGE_SIZE) {
1599 count_t new_cnt;
1600
1601 /*
1602 * The interval is contained in the rightmost
1603 * interval of the left neighbour but its
1604 * removal requires both updating the size of
1605 * the original interval and also inserting a
1606 * new interval.
1607 */
1608 new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1609 (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1610 node->value[node->keys - 1] -= count + new_cnt;
1611 btree_insert(&a->used_space, page +
1612 count * PAGE_SIZE, (void *) new_cnt, leaf);
1613 return 1;
1614 }
1615 }
1616 return 0;
1617 } else if (page < leaf->key[0]) {
1618 return 0;
1619 }
1620
1621 if (page > leaf->key[leaf->keys - 1]) {
1622 uintptr_t left_pg = leaf->key[leaf->keys - 1];
1623 count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1624
1625 if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1626 count * PAGE_SIZE)) {
1627 if (page + count * PAGE_SIZE ==
1628 left_pg + left_cnt * PAGE_SIZE) {
1629 /*
1630 * The interval is contained in the rightmost
1631 * interval of the leaf and can be removed by
1632 * updating the size of the bigger interval.
1633 */
1634 leaf->value[leaf->keys - 1] -= count;
1635 return 1;
1636 } else if (page + count * PAGE_SIZE < left_pg +
1637 left_cnt * PAGE_SIZE) {
1638 count_t new_cnt;
1639
1640 /*
1641 * The interval is contained in the rightmost
1642 * interval of the leaf but its removal
1643 * requires both updating the size of the
1644 * original interval and also inserting a new
1645 * interval.
1646 */
1647 new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1648 (page + count * PAGE_SIZE)) >> PAGE_WIDTH;
1649 leaf->value[leaf->keys - 1] -= count + new_cnt;
1650 btree_insert(&a->used_space, page +
1651 count * PAGE_SIZE, (void *) new_cnt, leaf);
1652 return 1;
1653 }
1654 }
1655 return 0;
1656 }
1657
1658 /*
1659 * The border cases have been already resolved.
1660 * Now the interval can be only between intervals of the leaf.
1661 */
1662 for (i = 1; i < leaf->keys - 1; i++) {
1663 if (page < leaf->key[i]) {
1664 uintptr_t left_pg = leaf->key[i - 1];
1665 count_t left_cnt = (count_t) leaf->value[i - 1];
1666
1667 /*
1668 * Now the interval is between intervals corresponding
1669 * to (i - 1) and i.
1670 */
1671 if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1672 count * PAGE_SIZE)) {
1673 if (page + count * PAGE_SIZE ==
1674 left_pg + left_cnt*PAGE_SIZE) {
1675 /*
1676 * The interval is contained in the
1677 * interval (i - 1) of the leaf and can
1678 * be removed by updating the size of
1679 * the bigger interval.
1680 */
1681 leaf->value[i - 1] -= count;
1682 return 1;
1683 } else if (page + count * PAGE_SIZE <
1684 left_pg + left_cnt * PAGE_SIZE) {
1685 count_t new_cnt;
1686
1687 /*
1688 * The interval is contained in the
1689 * interval (i - 1) of the leaf but its
1690 * removal requires both updating the
1691 * size of the original interval and
1692 * also inserting a new interval.
1693 */
1694 new_cnt = ((left_pg +
1695 left_cnt * PAGE_SIZE) -
1696 (page + count * PAGE_SIZE)) >>
1697 PAGE_WIDTH;
1698 leaf->value[i - 1] -= count + new_cnt;
1699 btree_insert(&a->used_space, page +
1700 count * PAGE_SIZE, (void *) new_cnt,
1701 leaf);
1702 return 1;
1703 }
1704 }
1705 return 0;
1706 }
1707 }
1708
1709error:
1710 panic("Inconsistency detected while removing %d pages of used space "
1711 "from %p.\n", count, page);
1712}
1713
1714/** Remove reference to address space area share info.
1715 *
1716 * If the reference count drops to 0, the sh_info is deallocated.
1717 *
1718 * @param sh_info Pointer to address space area share info.
1719 */
1720void sh_info_remove_reference(share_info_t *sh_info)
1721{
1722 bool dealloc = false;
1723
1724 mutex_lock(&sh_info->lock);
1725 ASSERT(sh_info->refcount);
1726 if (--sh_info->refcount == 0) {
1727 dealloc = true;
1728 link_t *cur;
1729
1730 /*
1731 * Now walk carefully the pagemap B+tree and free/remove
1732 * reference from all frames found there.
1733 */
1734 for (cur = sh_info->pagemap.leaf_head.next;
1735 cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1736 btree_node_t *node;
1737 int i;
1738
1739 node = list_get_instance(cur, btree_node_t, leaf_link);
1740 for (i = 0; i < node->keys; i++)
1741 frame_free((uintptr_t) node->value[i]);
1742 }
1743
1744 }
1745 mutex_unlock(&sh_info->lock);
1746
1747 if (dealloc) {
1748 btree_destroy(&sh_info->pagemap);
1749 free(sh_info);
1750 }
1751}
1752
1753/*
1754 * Address space related syscalls.
1755 */
1756
1757/** Wrapper for as_area_create(). */
1758unative_t sys_as_area_create(uintptr_t address, size_t size, int flags)
1759{
1760 if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address,
1761 AS_AREA_ATTR_NONE, &anon_backend, NULL))
1762 return (unative_t) address;
1763 else
1764 return (unative_t) -1;
1765}
1766
1767/** Wrapper for as_area_resize(). */
1768unative_t sys_as_area_resize(uintptr_t address, size_t size, int flags)
1769{
1770 return (unative_t) as_area_resize(AS, address, size, 0);
1771}
1772
1773/** Wrapper for as_area_destroy(). */
1774unative_t sys_as_area_destroy(uintptr_t address)
1775{
1776 return (unative_t) as_area_destroy(AS, address);
1777}
1778
1779/** Print out information about address space.
1780 *
1781 * @param as Address space.
1782 */
1783void as_print(as_t *as)
1784{
1785 ipl_t ipl;
1786
1787 ipl = interrupts_disable();
1788 mutex_lock(&as->lock);
1789
1790 /* print out info about address space areas */
1791 link_t *cur;
1792 for (cur = as->as_area_btree.leaf_head.next;
1793 cur != &as->as_area_btree.leaf_head; cur = cur->next) {
1794 btree_node_t *node;
1795
1796 node = list_get_instance(cur, btree_node_t, leaf_link);
1797
1798 int i;
1799 for (i = 0; i < node->keys; i++) {
1800 as_area_t *area = node->value[i];
1801
1802 mutex_lock(&area->lock);
1803 printf("as_area: %p, base=%p, pages=%d (%p - %p)\n",
1804 area, area->base, area->pages, area->base,
1805 area->base + area->pages*PAGE_SIZE);
1806 mutex_unlock(&area->lock);
1807 }
1808 }
1809
1810 mutex_unlock(&as->lock);
1811 interrupts_restore(ipl);
1812}
1813
1814/** @}
1815 */
Note: See TracBrowser for help on using the repository browser.