source: mainline/kernel/generic/src/mm/as.c@ cb08279

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since cb08279 was b878df3, checked in by Jakub Jermar <jakub@…>, 18 years ago

Rename as_get_size() to as_area_get_size() and add a doxygen comment.

  • Property mode set to 100644
File size: 45.5 KB
Line 
1/*
2 * Copyright (c) 2001-2006 Jakub Jermar
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/** @addtogroup genericmm
30 * @{
31 */
32
33/**
34 * @file
35 * @brief Address space related functions.
36 *
37 * This file contains address space manipulation functions.
38 * Roughly speaking, this is a higher-level client of
39 * Virtual Address Translation (VAT) subsystem.
40 *
41 * Functionality provided by this file allows one to
42 * create address spaces and create, resize and share
43 * address space areas.
44 *
45 * @see page.c
46 *
47 */
48
49#include <mm/as.h>
50#include <arch/mm/as.h>
51#include <mm/page.h>
52#include <mm/frame.h>
53#include <mm/slab.h>
54#include <mm/tlb.h>
55#include <arch/mm/page.h>
56#include <genarch/mm/page_pt.h>
57#include <genarch/mm/page_ht.h>
58#include <mm/asid.h>
59#include <arch/mm/asid.h>
60#include <preemption.h>
61#include <synch/spinlock.h>
62#include <synch/mutex.h>
63#include <adt/list.h>
64#include <adt/btree.h>
65#include <proc/task.h>
66#include <proc/thread.h>
67#include <arch/asm.h>
68#include <panic.h>
69#include <debug.h>
70#include <print.h>
71#include <memstr.h>
72#include <macros.h>
73#include <arch.h>
74#include <errno.h>
75#include <config.h>
76#include <align.h>
77#include <arch/types.h>
78#include <syscall/copy.h>
79#include <arch/interrupt.h>
80
81#ifdef CONFIG_VIRT_IDX_DCACHE
82#include <arch/mm/cache.h>
83#endif /* CONFIG_VIRT_IDX_DCACHE */
84
85#ifndef __OBJC__
86/**
87 * Each architecture decides what functions will be used to carry out
88 * address space operations such as creating or locking page tables.
89 */
90as_operations_t *as_operations = NULL;
91
92/**
93 * Slab for as_t objects.
94 */
95static slab_cache_t *as_slab;
96#endif
97
98/**
99 * This lock serializes access to the ASID subsystem.
100 * It protects:
101 * - inactive_as_with_asid_head list
102 * - as->asid for each as of the as_t type
103 * - asids_allocated counter
104 */
105SPINLOCK_INITIALIZE(asidlock);
106
107/**
108 * This list contains address spaces that are not active on any
109 * processor and that have valid ASID.
110 */
111LIST_INITIALIZE(inactive_as_with_asid_head);
112
113/** Kernel address space. */
114as_t *AS_KERNEL = NULL;
115
116static int area_flags_to_page_flags(int aflags);
117static as_area_t *find_area_and_lock(as_t *as, uintptr_t va);
118static bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
119 as_area_t *avoid_area);
120static void sh_info_remove_reference(share_info_t *sh_info);
121
122#ifndef __OBJC__
123static int as_constructor(void *obj, int flags)
124{
125 as_t *as = (as_t *) obj;
126 int rc;
127
128 link_initialize(&as->inactive_as_with_asid_link);
129 mutex_initialize(&as->lock);
130
131 rc = as_constructor_arch(as, flags);
132
133 return rc;
134}
135
136static int as_destructor(void *obj)
137{
138 as_t *as = (as_t *) obj;
139
140 return as_destructor_arch(as);
141}
142#endif
143
144/** Initialize address space subsystem. */
145void as_init(void)
146{
147 as_arch_init();
148
149#ifndef __OBJC__
150 as_slab = slab_cache_create("as_slab", sizeof(as_t), 0,
151 as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);
152#endif
153
154 AS_KERNEL = as_create(FLAG_AS_KERNEL);
155 if (!AS_KERNEL)
156 panic("can't create kernel address space\n");
157
158}
159
160/** Create address space.
161 *
162 * @param flags Flags that influence way in wich the address space is created.
163 */
164as_t *as_create(int flags)
165{
166 as_t *as;
167
168#ifdef __OBJC__
169 as = [as_t new];
170 link_initialize(&as->inactive_as_with_asid_link);
171 mutex_initialize(&as->lock);
172 (void) as_constructor_arch(as, flags);
173#else
174 as = (as_t *) slab_alloc(as_slab, 0);
175#endif
176 (void) as_create_arch(as, 0);
177
178 btree_create(&as->as_area_btree);
179
180 if (flags & FLAG_AS_KERNEL)
181 as->asid = ASID_KERNEL;
182 else
183 as->asid = ASID_INVALID;
184
185 atomic_set(&as->refcount, 0);
186 as->cpu_refcount = 0;
187#ifdef AS_PAGE_TABLE
188 as->genarch.page_table = page_table_create(flags);
189#else
190 page_table_create(flags);
191#endif
192
193 return as;
194}
195
196/** Destroy adress space.
197 *
198 * When there are no tasks referencing this address space (i.e. its refcount is
199 * zero), the address space can be destroyed.
200 *
201 * We know that we don't hold any spinlock.
202 */
203void as_destroy(as_t *as)
204{
205 ipl_t ipl;
206 bool cond;
207 DEADLOCK_PROBE_INIT(p_asidlock);
208
209 ASSERT(atomic_get(&as->refcount) == 0);
210
211 /*
212 * Since there is no reference to this area,
213 * it is safe not to lock its mutex.
214 */
215
216 /*
217 * We need to avoid deadlock between TLB shootdown and asidlock.
218 * We therefore try to take asid conditionally and if we don't succeed,
219 * we enable interrupts and try again. This is done while preemption is
220 * disabled to prevent nested context switches. We also depend on the
221 * fact that so far no spinlocks are held.
222 */
223 preemption_disable();
224 ipl = interrupts_read();
225retry:
226 interrupts_disable();
227 if (!spinlock_trylock(&asidlock)) {
228 interrupts_enable();
229 DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
230 goto retry;
231 }
232 preemption_enable(); /* Interrupts disabled, enable preemption */
233 if (as->asid != ASID_INVALID && as != AS_KERNEL) {
234 if (as != AS && as->cpu_refcount == 0)
235 list_remove(&as->inactive_as_with_asid_link);
236 asid_put(as->asid);
237 }
238 spinlock_unlock(&asidlock);
239
240 /*
241 * Destroy address space areas of the address space.
242 * The B+tree must be walked carefully because it is
243 * also being destroyed.
244 */
245 for (cond = true; cond; ) {
246 btree_node_t *node;
247
248 ASSERT(!list_empty(&as->as_area_btree.leaf_head));
249 node = list_get_instance(as->as_area_btree.leaf_head.next,
250 btree_node_t, leaf_link);
251
252 if ((cond = node->keys)) {
253 as_area_destroy(as, node->key[0]);
254 }
255 }
256
257 btree_destroy(&as->as_area_btree);
258#ifdef AS_PAGE_TABLE
259 page_table_destroy(as->genarch.page_table);
260#else
261 page_table_destroy(NULL);
262#endif
263
264 interrupts_restore(ipl);
265
266#ifdef __OBJC__
267 [as free];
268#else
269 slab_free(as_slab, as);
270#endif
271}
272
273/** Create address space area of common attributes.
274 *
275 * The created address space area is added to the target address space.
276 *
277 * @param as Target address space.
278 * @param flags Flags of the area memory.
279 * @param size Size of area.
280 * @param base Base address of area.
281 * @param attrs Attributes of the area.
282 * @param backend Address space area backend. NULL if no backend is used.
283 * @param backend_data NULL or a pointer to an array holding two void *.
284 *
285 * @return Address space area on success or NULL on failure.
286 */
287as_area_t *
288as_area_create(as_t *as, int flags, size_t size, uintptr_t base, int attrs,
289 mem_backend_t *backend, mem_backend_data_t *backend_data)
290{
291 ipl_t ipl;
292 as_area_t *a;
293
294 if (base % PAGE_SIZE)
295 return NULL;
296
297 if (!size)
298 return NULL;
299
300 /* Writeable executable areas are not supported. */
301 if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
302 return NULL;
303
304 ipl = interrupts_disable();
305 mutex_lock(&as->lock);
306
307 if (!check_area_conflicts(as, base, size, NULL)) {
308 mutex_unlock(&as->lock);
309 interrupts_restore(ipl);
310 return NULL;
311 }
312
313 a = (as_area_t *) malloc(sizeof(as_area_t), 0);
314
315 mutex_initialize(&a->lock);
316
317 a->as = as;
318 a->flags = flags;
319 a->attributes = attrs;
320 a->pages = SIZE2FRAMES(size);
321 a->base = base;
322 a->sh_info = NULL;
323 a->backend = backend;
324 if (backend_data)
325 a->backend_data = *backend_data;
326 else
327 memsetb((uintptr_t) &a->backend_data, sizeof(a->backend_data),
328 0);
329
330 btree_create(&a->used_space);
331
332 btree_insert(&as->as_area_btree, base, (void *) a, NULL);
333
334 mutex_unlock(&as->lock);
335 interrupts_restore(ipl);
336
337 return a;
338}
339
340/** Find address space area and change it.
341 *
342 * @param as Address space.
343 * @param address Virtual address belonging to the area to be changed. Must be
344 * page-aligned.
345 * @param size New size of the virtual memory block starting at address.
346 * @param flags Flags influencing the remap operation. Currently unused.
347 *
348 * @return Zero on success or a value from @ref errno.h otherwise.
349 */
350int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags)
351{
352 as_area_t *area;
353 ipl_t ipl;
354 size_t pages;
355
356 ipl = interrupts_disable();
357 mutex_lock(&as->lock);
358
359 /*
360 * Locate the area.
361 */
362 area = find_area_and_lock(as, address);
363 if (!area) {
364 mutex_unlock(&as->lock);
365 interrupts_restore(ipl);
366 return ENOENT;
367 }
368
369 if (area->backend == &phys_backend) {
370 /*
371 * Remapping of address space areas associated
372 * with memory mapped devices is not supported.
373 */
374 mutex_unlock(&area->lock);
375 mutex_unlock(&as->lock);
376 interrupts_restore(ipl);
377 return ENOTSUP;
378 }
379 if (area->sh_info) {
380 /*
381 * Remapping of shared address space areas
382 * is not supported.
383 */
384 mutex_unlock(&area->lock);
385 mutex_unlock(&as->lock);
386 interrupts_restore(ipl);
387 return ENOTSUP;
388 }
389
390 pages = SIZE2FRAMES((address - area->base) + size);
391 if (!pages) {
392 /*
393 * Zero size address space areas are not allowed.
394 */
395 mutex_unlock(&area->lock);
396 mutex_unlock(&as->lock);
397 interrupts_restore(ipl);
398 return EPERM;
399 }
400
401 if (pages < area->pages) {
402 bool cond;
403 uintptr_t start_free = area->base + pages*PAGE_SIZE;
404
405 /*
406 * Shrinking the area.
407 * No need to check for overlaps.
408 */
409
410 /*
411 * Start TLB shootdown sequence.
412 */
413 tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base +
414 pages * PAGE_SIZE, area->pages - pages);
415
416 /*
417 * Remove frames belonging to used space starting from
418 * the highest addresses downwards until an overlap with
419 * the resized address space area is found. Note that this
420 * is also the right way to remove part of the used_space
421 * B+tree leaf list.
422 */
423 for (cond = true; cond;) {
424 btree_node_t *node;
425
426 ASSERT(!list_empty(&area->used_space.leaf_head));
427 node =
428 list_get_instance(area->used_space.leaf_head.prev,
429 btree_node_t, leaf_link);
430 if ((cond = (bool) node->keys)) {
431 uintptr_t b = node->key[node->keys - 1];
432 count_t c =
433 (count_t) node->value[node->keys - 1];
434 int i = 0;
435
436 if (overlaps(b, c * PAGE_SIZE, area->base,
437 pages * PAGE_SIZE)) {
438
439 if (b + c * PAGE_SIZE <= start_free) {
440 /*
441 * The whole interval fits
442 * completely in the resized
443 * address space area.
444 */
445 break;
446 }
447
448 /*
449 * Part of the interval corresponding
450 * to b and c overlaps with the resized
451 * address space area.
452 */
453
454 cond = false; /* we are almost done */
455 i = (start_free - b) >> PAGE_WIDTH;
456 if (!used_space_remove(area, start_free,
457 c - i))
458 panic("Could not remove used "
459 "space.\n");
460 } else {
461 /*
462 * The interval of used space can be
463 * completely removed.
464 */
465 if (!used_space_remove(area, b, c))
466 panic("Could not remove used "
467 "space.\n");
468 }
469
470 for (; i < c; i++) {
471 pte_t *pte;
472
473 page_table_lock(as, false);
474 pte = page_mapping_find(as, b +
475 i * PAGE_SIZE);
476 ASSERT(pte && PTE_VALID(pte) &&
477 PTE_PRESENT(pte));
478 if (area->backend &&
479 area->backend->frame_free) {
480 area->backend->frame_free(area,
481 b + i * PAGE_SIZE,
482 PTE_GET_FRAME(pte));
483 }
484 page_mapping_remove(as, b +
485 i * PAGE_SIZE);
486 page_table_unlock(as, false);
487 }
488 }
489 }
490
491 /*
492 * Finish TLB shootdown sequence.
493 */
494
495 tlb_invalidate_pages(as->asid, area->base + pages * PAGE_SIZE,
496 area->pages - pages);
497 /*
498 * Invalidate software translation caches (e.g. TSB on sparc64).
499 */
500 as_invalidate_translation_cache(as, area->base +
501 pages * PAGE_SIZE, area->pages - pages);
502 tlb_shootdown_finalize();
503
504 } else {
505 /*
506 * Growing the area.
507 * Check for overlaps with other address space areas.
508 */
509 if (!check_area_conflicts(as, address, pages * PAGE_SIZE,
510 area)) {
511 mutex_unlock(&area->lock);
512 mutex_unlock(&as->lock);
513 interrupts_restore(ipl);
514 return EADDRNOTAVAIL;
515 }
516 }
517
518 area->pages = pages;
519
520 mutex_unlock(&area->lock);
521 mutex_unlock(&as->lock);
522 interrupts_restore(ipl);
523
524 return 0;
525}
526
527/** Destroy address space area.
528 *
529 * @param as Address space.
530 * @param address Address withing the area to be deleted.
531 *
532 * @return Zero on success or a value from @ref errno.h on failure.
533 */
534int as_area_destroy(as_t *as, uintptr_t address)
535{
536 as_area_t *area;
537 uintptr_t base;
538 link_t *cur;
539 ipl_t ipl;
540
541 ipl = interrupts_disable();
542 mutex_lock(&as->lock);
543
544 area = find_area_and_lock(as, address);
545 if (!area) {
546 mutex_unlock(&as->lock);
547 interrupts_restore(ipl);
548 return ENOENT;
549 }
550
551 base = area->base;
552
553 /*
554 * Start TLB shootdown sequence.
555 */
556 tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
557
558 /*
559 * Visit only the pages mapped by used_space B+tree.
560 */
561 for (cur = area->used_space.leaf_head.next;
562 cur != &area->used_space.leaf_head; cur = cur->next) {
563 btree_node_t *node;
564 int i;
565
566 node = list_get_instance(cur, btree_node_t, leaf_link);
567 for (i = 0; i < node->keys; i++) {
568 uintptr_t b = node->key[i];
569 count_t j;
570 pte_t *pte;
571
572 for (j = 0; j < (count_t) node->value[i]; j++) {
573 page_table_lock(as, false);
574 pte = page_mapping_find(as, b + j * PAGE_SIZE);
575 ASSERT(pte && PTE_VALID(pte) &&
576 PTE_PRESENT(pte));
577 if (area->backend &&
578 area->backend->frame_free) {
579 area->backend->frame_free(area, b +
580 j * PAGE_SIZE, PTE_GET_FRAME(pte));
581 }
582 page_mapping_remove(as, b + j * PAGE_SIZE);
583 page_table_unlock(as, false);
584 }
585 }
586 }
587
588 /*
589 * Finish TLB shootdown sequence.
590 */
591
592 tlb_invalidate_pages(as->asid, area->base, area->pages);
593 /*
594 * Invalidate potential software translation caches (e.g. TSB on
595 * sparc64).
596 */
597 as_invalidate_translation_cache(as, area->base, area->pages);
598 tlb_shootdown_finalize();
599
600 btree_destroy(&area->used_space);
601
602 area->attributes |= AS_AREA_ATTR_PARTIAL;
603
604 if (area->sh_info)
605 sh_info_remove_reference(area->sh_info);
606
607 mutex_unlock(&area->lock);
608
609 /*
610 * Remove the empty area from address space.
611 */
612 btree_remove(&as->as_area_btree, base, NULL);
613
614 free(area);
615
616 mutex_unlock(&as->lock);
617 interrupts_restore(ipl);
618 return 0;
619}
620
621/** Share address space area with another or the same address space.
622 *
623 * Address space area mapping is shared with a new address space area.
624 * If the source address space area has not been shared so far,
625 * a new sh_info is created. The new address space area simply gets the
626 * sh_info of the source area. The process of duplicating the
627 * mapping is done through the backend share function.
628 *
629 * @param src_as Pointer to source address space.
630 * @param src_base Base address of the source address space area.
631 * @param acc_size Expected size of the source area.
632 * @param dst_as Pointer to destination address space.
633 * @param dst_base Target base address.
634 * @param dst_flags_mask Destination address space area flags mask.
635 *
636 * @return Zero on success or ENOENT if there is no such task or if there is no
637 * such address space area, EPERM if there was a problem in accepting the area
638 * or ENOMEM if there was a problem in allocating destination address space
639 * area. ENOTSUP is returned if the address space area backend does not support
640 * sharing.
641 */
642int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
643 as_t *dst_as, uintptr_t dst_base, int dst_flags_mask)
644{
645 ipl_t ipl;
646 int src_flags;
647 size_t src_size;
648 as_area_t *src_area, *dst_area;
649 share_info_t *sh_info;
650 mem_backend_t *src_backend;
651 mem_backend_data_t src_backend_data;
652
653 ipl = interrupts_disable();
654 mutex_lock(&src_as->lock);
655 src_area = find_area_and_lock(src_as, src_base);
656 if (!src_area) {
657 /*
658 * Could not find the source address space area.
659 */
660 mutex_unlock(&src_as->lock);
661 interrupts_restore(ipl);
662 return ENOENT;
663 }
664
665 if (!src_area->backend || !src_area->backend->share) {
666 /*
667 * There is no backend or the backend does not
668 * know how to share the area.
669 */
670 mutex_unlock(&src_area->lock);
671 mutex_unlock(&src_as->lock);
672 interrupts_restore(ipl);
673 return ENOTSUP;
674 }
675
676 src_size = src_area->pages * PAGE_SIZE;
677 src_flags = src_area->flags;
678 src_backend = src_area->backend;
679 src_backend_data = src_area->backend_data;
680
681 /* Share the cacheable flag from the original mapping */
682 if (src_flags & AS_AREA_CACHEABLE)
683 dst_flags_mask |= AS_AREA_CACHEABLE;
684
685 if (src_size != acc_size ||
686 (src_flags & dst_flags_mask) != dst_flags_mask) {
687 mutex_unlock(&src_area->lock);
688 mutex_unlock(&src_as->lock);
689 interrupts_restore(ipl);
690 return EPERM;
691 }
692
693 /*
694 * Now we are committed to sharing the area.
695 * First, prepare the area for sharing.
696 * Then it will be safe to unlock it.
697 */
698 sh_info = src_area->sh_info;
699 if (!sh_info) {
700 sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
701 mutex_initialize(&sh_info->lock);
702 sh_info->refcount = 2;
703 btree_create(&sh_info->pagemap);
704 src_area->sh_info = sh_info;
705 } else {
706 mutex_lock(&sh_info->lock);
707 sh_info->refcount++;
708 mutex_unlock(&sh_info->lock);
709 }
710
711 src_area->backend->share(src_area);
712
713 mutex_unlock(&src_area->lock);
714 mutex_unlock(&src_as->lock);
715
716 /*
717 * Create copy of the source address space area.
718 * The destination area is created with AS_AREA_ATTR_PARTIAL
719 * attribute set which prevents race condition with
720 * preliminary as_page_fault() calls.
721 * The flags of the source area are masked against dst_flags_mask
722 * to support sharing in less privileged mode.
723 */
724 dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
725 AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
726 if (!dst_area) {
727 /*
728 * Destination address space area could not be created.
729 */
730 sh_info_remove_reference(sh_info);
731
732 interrupts_restore(ipl);
733 return ENOMEM;
734 }
735
736 /*
737 * Now the destination address space area has been
738 * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
739 * attribute and set the sh_info.
740 */
741 mutex_lock(&dst_as->lock);
742 mutex_lock(&dst_area->lock);
743 dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
744 dst_area->sh_info = sh_info;
745 mutex_unlock(&dst_area->lock);
746 mutex_unlock(&dst_as->lock);
747
748 interrupts_restore(ipl);
749
750 return 0;
751}
752
753/** Check access mode for address space area.
754 *
755 * The address space area must be locked prior to this call.
756 *
757 * @param area Address space area.
758 * @param access Access mode.
759 *
760 * @return False if access violates area's permissions, true otherwise.
761 */
762bool as_area_check_access(as_area_t *area, pf_access_t access)
763{
764 int flagmap[] = {
765 [PF_ACCESS_READ] = AS_AREA_READ,
766 [PF_ACCESS_WRITE] = AS_AREA_WRITE,
767 [PF_ACCESS_EXEC] = AS_AREA_EXEC
768 };
769
770 if (!(area->flags & flagmap[access]))
771 return false;
772
773 return true;
774}
775
776/** Handle page fault within the current address space.
777 *
778 * This is the high-level page fault handler. It decides
779 * whether the page fault can be resolved by any backend
780 * and if so, it invokes the backend to resolve the page
781 * fault.
782 *
783 * Interrupts are assumed disabled.
784 *
785 * @param page Faulting page.
786 * @param access Access mode that caused the fault (i.e. read/write/exec).
787 * @param istate Pointer to interrupted state.
788 *
789 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
790 * fault was caused by copy_to_uspace() or copy_from_uspace().
791 */
792int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
793{
794 pte_t *pte;
795 as_area_t *area;
796
797 if (!THREAD)
798 return AS_PF_FAULT;
799
800 ASSERT(AS);
801
802 mutex_lock(&AS->lock);
803 area = find_area_and_lock(AS, page);
804 if (!area) {
805 /*
806 * No area contained mapping for 'page'.
807 * Signal page fault to low-level handler.
808 */
809 mutex_unlock(&AS->lock);
810 goto page_fault;
811 }
812
813 if (area->attributes & AS_AREA_ATTR_PARTIAL) {
814 /*
815 * The address space area is not fully initialized.
816 * Avoid possible race by returning error.
817 */
818 mutex_unlock(&area->lock);
819 mutex_unlock(&AS->lock);
820 goto page_fault;
821 }
822
823 if (!area->backend || !area->backend->page_fault) {
824 /*
825 * The address space area is not backed by any backend
826 * or the backend cannot handle page faults.
827 */
828 mutex_unlock(&area->lock);
829 mutex_unlock(&AS->lock);
830 goto page_fault;
831 }
832
833 page_table_lock(AS, false);
834
835 /*
836 * To avoid race condition between two page faults
837 * on the same address, we need to make sure
838 * the mapping has not been already inserted.
839 */
840 if ((pte = page_mapping_find(AS, page))) {
841 if (PTE_PRESENT(pte)) {
842 if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
843 (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
844 (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
845 page_table_unlock(AS, false);
846 mutex_unlock(&area->lock);
847 mutex_unlock(&AS->lock);
848 return AS_PF_OK;
849 }
850 }
851 }
852
853 /*
854 * Resort to the backend page fault handler.
855 */
856 if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
857 page_table_unlock(AS, false);
858 mutex_unlock(&area->lock);
859 mutex_unlock(&AS->lock);
860 goto page_fault;
861 }
862
863 page_table_unlock(AS, false);
864 mutex_unlock(&area->lock);
865 mutex_unlock(&AS->lock);
866 return AS_PF_OK;
867
868page_fault:
869 if (THREAD->in_copy_from_uspace) {
870 THREAD->in_copy_from_uspace = false;
871 istate_set_retaddr(istate,
872 (uintptr_t) &memcpy_from_uspace_failover_address);
873 } else if (THREAD->in_copy_to_uspace) {
874 THREAD->in_copy_to_uspace = false;
875 istate_set_retaddr(istate,
876 (uintptr_t) &memcpy_to_uspace_failover_address);
877 } else {
878 return AS_PF_FAULT;
879 }
880
881 return AS_PF_DEFER;
882}
883
884/** Switch address spaces.
885 *
886 * Note that this function cannot sleep as it is essentially a part of
887 * scheduling. Sleeping here would lead to deadlock on wakeup. Another
888 * thing which is forbidden in this context is locking the address space.
889 *
890 * When this function is enetered, no spinlocks may be held.
891 *
892 * @param old Old address space or NULL.
893 * @param new New address space.
894 */
895void as_switch(as_t *old_as, as_t *new_as)
896{
897 DEADLOCK_PROBE_INIT(p_asidlock);
898 preemption_disable();
899retry:
900 (void) interrupts_disable();
901 if (!spinlock_trylock(&asidlock)) {
902 /*
903 * Avoid deadlock with TLB shootdown.
904 * We can enable interrupts here because
905 * preemption is disabled. We should not be
906 * holding any other lock.
907 */
908 (void) interrupts_enable();
909 DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
910 goto retry;
911 }
912 preemption_enable();
913
914 /*
915 * First, take care of the old address space.
916 */
917 if (old_as) {
918 ASSERT(old_as->cpu_refcount);
919 if((--old_as->cpu_refcount == 0) && (old_as != AS_KERNEL)) {
920 /*
921 * The old address space is no longer active on
922 * any processor. It can be appended to the
923 * list of inactive address spaces with assigned
924 * ASID.
925 */
926 ASSERT(old_as->asid != ASID_INVALID);
927 list_append(&old_as->inactive_as_with_asid_link,
928 &inactive_as_with_asid_head);
929 }
930
931 /*
932 * Perform architecture-specific tasks when the address space
933 * is being removed from the CPU.
934 */
935 as_deinstall_arch(old_as);
936 }
937
938 /*
939 * Second, prepare the new address space.
940 */
941 if ((new_as->cpu_refcount++ == 0) && (new_as != AS_KERNEL)) {
942 if (new_as->asid != ASID_INVALID)
943 list_remove(&new_as->inactive_as_with_asid_link);
944 else
945 new_as->asid = asid_get();
946 }
947#ifdef AS_PAGE_TABLE
948 SET_PTL0_ADDRESS(new_as->genarch.page_table);
949#endif
950
951 /*
952 * Perform architecture-specific steps.
953 * (e.g. write ASID to hardware register etc.)
954 */
955 as_install_arch(new_as);
956
957 spinlock_unlock(&asidlock);
958
959 AS = new_as;
960}
961
962/** Convert address space area flags to page flags.
963 *
964 * @param aflags Flags of some address space area.
965 *
966 * @return Flags to be passed to page_mapping_insert().
967 */
968int area_flags_to_page_flags(int aflags)
969{
970 int flags;
971
972 flags = PAGE_USER | PAGE_PRESENT;
973
974 if (aflags & AS_AREA_READ)
975 flags |= PAGE_READ;
976
977 if (aflags & AS_AREA_WRITE)
978 flags |= PAGE_WRITE;
979
980 if (aflags & AS_AREA_EXEC)
981 flags |= PAGE_EXEC;
982
983 if (aflags & AS_AREA_CACHEABLE)
984 flags |= PAGE_CACHEABLE;
985
986 return flags;
987}
988
989/** Compute flags for virtual address translation subsytem.
990 *
991 * The address space area must be locked.
992 * Interrupts must be disabled.
993 *
994 * @param a Address space area.
995 *
996 * @return Flags to be used in page_mapping_insert().
997 */
998int as_area_get_flags(as_area_t *a)
999{
1000 return area_flags_to_page_flags(a->flags);
1001}
1002
1003/** Create page table.
1004 *
1005 * Depending on architecture, create either address space
1006 * private or global page table.
1007 *
1008 * @param flags Flags saying whether the page table is for kernel address space.
1009 *
1010 * @return First entry of the page table.
1011 */
1012pte_t *page_table_create(int flags)
1013{
1014#ifdef __OBJC__
1015 return [as_t page_table_create: flags];
1016#else
1017 ASSERT(as_operations);
1018 ASSERT(as_operations->page_table_create);
1019
1020 return as_operations->page_table_create(flags);
1021#endif
1022}
1023
1024/** Destroy page table.
1025 *
1026 * Destroy page table in architecture specific way.
1027 *
1028 * @param page_table Physical address of PTL0.
1029 */
1030void page_table_destroy(pte_t *page_table)
1031{
1032#ifdef __OBJC__
1033 return [as_t page_table_destroy: page_table];
1034#else
1035 ASSERT(as_operations);
1036 ASSERT(as_operations->page_table_destroy);
1037
1038 as_operations->page_table_destroy(page_table);
1039#endif
1040}
1041
1042/** Lock page table.
1043 *
1044 * This function should be called before any page_mapping_insert(),
1045 * page_mapping_remove() and page_mapping_find().
1046 *
1047 * Locking order is such that address space areas must be locked
1048 * prior to this call. Address space can be locked prior to this
1049 * call in which case the lock argument is false.
1050 *
1051 * @param as Address space.
1052 * @param lock If false, do not attempt to lock as->lock.
1053 */
1054void page_table_lock(as_t *as, bool lock)
1055{
1056#ifdef __OBJC__
1057 [as page_table_lock: lock];
1058#else
1059 ASSERT(as_operations);
1060 ASSERT(as_operations->page_table_lock);
1061
1062 as_operations->page_table_lock(as, lock);
1063#endif
1064}
1065
1066/** Unlock page table.
1067 *
1068 * @param as Address space.
1069 * @param unlock If false, do not attempt to unlock as->lock.
1070 */
1071void page_table_unlock(as_t *as, bool unlock)
1072{
1073#ifdef __OBJC__
1074 [as page_table_unlock: unlock];
1075#else
1076 ASSERT(as_operations);
1077 ASSERT(as_operations->page_table_unlock);
1078
1079 as_operations->page_table_unlock(as, unlock);
1080#endif
1081}
1082
1083
1084/** Find address space area and lock it.
1085 *
1086 * The address space must be locked and interrupts must be disabled.
1087 *
1088 * @param as Address space.
1089 * @param va Virtual address.
1090 *
1091 * @return Locked address space area containing va on success or NULL on
1092 * failure.
1093 */
1094as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
1095{
1096 as_area_t *a;
1097 btree_node_t *leaf, *lnode;
1098 int i;
1099
1100 a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
1101 if (a) {
1102 /* va is the base address of an address space area */
1103 mutex_lock(&a->lock);
1104 return a;
1105 }
1106
1107 /*
1108 * Search the leaf node and the righmost record of its left neighbour
1109 * to find out whether this is a miss or va belongs to an address
1110 * space area found there.
1111 */
1112
1113 /* First, search the leaf node itself. */
1114 for (i = 0; i < leaf->keys; i++) {
1115 a = (as_area_t *) leaf->value[i];
1116 mutex_lock(&a->lock);
1117 if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
1118 return a;
1119 }
1120 mutex_unlock(&a->lock);
1121 }
1122
1123 /*
1124 * Second, locate the left neighbour and test its last record.
1125 * Because of its position in the B+tree, it must have base < va.
1126 */
1127 lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf);
1128 if (lnode) {
1129 a = (as_area_t *) lnode->value[lnode->keys - 1];
1130 mutex_lock(&a->lock);
1131 if (va < a->base + a->pages * PAGE_SIZE) {
1132 return a;
1133 }
1134 mutex_unlock(&a->lock);
1135 }
1136
1137 return NULL;
1138}
1139
1140/** Check area conflicts with other areas.
1141 *
1142 * The address space must be locked and interrupts must be disabled.
1143 *
1144 * @param as Address space.
1145 * @param va Starting virtual address of the area being tested.
1146 * @param size Size of the area being tested.
1147 * @param avoid_area Do not touch this area.
1148 *
1149 * @return True if there is no conflict, false otherwise.
1150 */
1151bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
1152 as_area_t *avoid_area)
1153{
1154 as_area_t *a;
1155 btree_node_t *leaf, *node;
1156 int i;
1157
1158 /*
1159 * We don't want any area to have conflicts with NULL page.
1160 */
1161 if (overlaps(va, size, NULL, PAGE_SIZE))
1162 return false;
1163
1164 /*
1165 * The leaf node is found in O(log n), where n is proportional to
1166 * the number of address space areas belonging to as.
1167 * The check for conflicts is then attempted on the rightmost
1168 * record in the left neighbour, the leftmost record in the right
1169 * neighbour and all records in the leaf node itself.
1170 */
1171
1172 if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1173 if (a != avoid_area)
1174 return false;
1175 }
1176
1177 /* First, check the two border cases. */
1178 if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1179 a = (as_area_t *) node->value[node->keys - 1];
1180 mutex_lock(&a->lock);
1181 if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1182 mutex_unlock(&a->lock);
1183 return false;
1184 }
1185 mutex_unlock(&a->lock);
1186 }
1187 node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf);
1188 if (node) {
1189 a = (as_area_t *) node->value[0];
1190 mutex_lock(&a->lock);
1191 if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1192 mutex_unlock(&a->lock);
1193 return false;
1194 }
1195 mutex_unlock(&a->lock);
1196 }
1197
1198 /* Second, check the leaf node. */
1199 for (i = 0; i < leaf->keys; i++) {
1200 a = (as_area_t *) leaf->value[i];
1201
1202 if (a == avoid_area)
1203 continue;
1204
1205 mutex_lock(&a->lock);
1206 if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1207 mutex_unlock(&a->lock);
1208 return false;
1209 }
1210 mutex_unlock(&a->lock);
1211 }
1212
1213 /*
1214 * So far, the area does not conflict with other areas.
1215 * Check if it doesn't conflict with kernel address space.
1216 */
1217 if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1218 return !overlaps(va, size,
1219 KERNEL_ADDRESS_SPACE_START,
1220 KERNEL_ADDRESS_SPACE_END - KERNEL_ADDRESS_SPACE_START);
1221 }
1222
1223 return true;
1224}
1225
1226/** Return size of the address space area with given base.
1227 *
1228 * @param base Arbitrary address insede the address space area.
1229 *
1230 * @return Size of the address space area in bytes or zero if it
1231 * does not exist.
1232 */
1233size_t as_area_get_size(uintptr_t base)
1234{
1235 ipl_t ipl;
1236 as_area_t *src_area;
1237 size_t size;
1238
1239 ipl = interrupts_disable();
1240 src_area = find_area_and_lock(AS, base);
1241 if (src_area){
1242 size = src_area->pages * PAGE_SIZE;
1243 mutex_unlock(&src_area->lock);
1244 } else {
1245 size = 0;
1246 }
1247 interrupts_restore(ipl);
1248 return size;
1249}
1250
1251/** Mark portion of address space area as used.
1252 *
1253 * The address space area must be already locked.
1254 *
1255 * @param a Address space area.
1256 * @param page First page to be marked.
1257 * @param count Number of page to be marked.
1258 *
1259 * @return 0 on failure and 1 on success.
1260 */
1261int used_space_insert(as_area_t *a, uintptr_t page, count_t count)
1262{
1263 btree_node_t *leaf, *node;
1264 count_t pages;
1265 int i;
1266
1267 ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1268 ASSERT(count);
1269
1270 pages = (count_t) btree_search(&a->used_space, page, &leaf);
1271 if (pages) {
1272 /*
1273 * We hit the beginning of some used space.
1274 */
1275 return 0;
1276 }
1277
1278 if (!leaf->keys) {
1279 btree_insert(&a->used_space, page, (void *) count, leaf);
1280 return 1;
1281 }
1282
1283 node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1284 if (node) {
1285 uintptr_t left_pg = node->key[node->keys - 1];
1286 uintptr_t right_pg = leaf->key[0];
1287 count_t left_cnt = (count_t) node->value[node->keys - 1];
1288 count_t right_cnt = (count_t) leaf->value[0];
1289
1290 /*
1291 * Examine the possibility that the interval fits
1292 * somewhere between the rightmost interval of
1293 * the left neigbour and the first interval of the leaf.
1294 */
1295
1296 if (page >= right_pg) {
1297 /* Do nothing. */
1298 } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1299 left_cnt * PAGE_SIZE)) {
1300 /* The interval intersects with the left interval. */
1301 return 0;
1302 } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1303 right_cnt * PAGE_SIZE)) {
1304 /* The interval intersects with the right interval. */
1305 return 0;
1306 } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1307 (page + count * PAGE_SIZE == right_pg)) {
1308 /*
1309 * The interval can be added by merging the two already
1310 * present intervals.
1311 */
1312 node->value[node->keys - 1] += count + right_cnt;
1313 btree_remove(&a->used_space, right_pg, leaf);
1314 return 1;
1315 } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1316 /*
1317 * The interval can be added by simply growing the left
1318 * interval.
1319 */
1320 node->value[node->keys - 1] += count;
1321 return 1;
1322 } else if (page + count * PAGE_SIZE == right_pg) {
1323 /*
1324 * The interval can be addded by simply moving base of
1325 * the right interval down and increasing its size
1326 * accordingly.
1327 */
1328 leaf->value[0] += count;
1329 leaf->key[0] = page;
1330 return 1;
1331 } else {
1332 /*
1333 * The interval is between both neigbouring intervals,
1334 * but cannot be merged with any of them.
1335 */
1336 btree_insert(&a->used_space, page, (void *) count,
1337 leaf);
1338 return 1;
1339 }
1340 } else if (page < leaf->key[0]) {
1341 uintptr_t right_pg = leaf->key[0];
1342 count_t right_cnt = (count_t) leaf->value[0];
1343
1344 /*
1345 * Investigate the border case in which the left neighbour does
1346 * not exist but the interval fits from the left.
1347 */
1348
1349 if (overlaps(page, count * PAGE_SIZE, right_pg,
1350 right_cnt * PAGE_SIZE)) {
1351 /* The interval intersects with the right interval. */
1352 return 0;
1353 } else if (page + count * PAGE_SIZE == right_pg) {
1354 /*
1355 * The interval can be added by moving the base of the
1356 * right interval down and increasing its size
1357 * accordingly.
1358 */
1359 leaf->key[0] = page;
1360 leaf->value[0] += count;
1361 return 1;
1362 } else {
1363 /*
1364 * The interval doesn't adjoin with the right interval.
1365 * It must be added individually.
1366 */
1367 btree_insert(&a->used_space, page, (void *) count,
1368 leaf);
1369 return 1;
1370 }
1371 }
1372
1373 node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1374 if (node) {
1375 uintptr_t left_pg = leaf->key[leaf->keys - 1];
1376 uintptr_t right_pg = node->key[0];
1377 count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1378 count_t right_cnt = (count_t) node->value[0];
1379
1380 /*
1381 * Examine the possibility that the interval fits
1382 * somewhere between the leftmost interval of
1383 * the right neigbour and the last interval of the leaf.
1384 */
1385
1386 if (page < left_pg) {
1387 /* Do nothing. */
1388 } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1389 left_cnt * PAGE_SIZE)) {
1390 /* The interval intersects with the left interval. */
1391 return 0;
1392 } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1393 right_cnt * PAGE_SIZE)) {
1394 /* The interval intersects with the right interval. */
1395 return 0;
1396 } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1397 (page + count * PAGE_SIZE == right_pg)) {
1398 /*
1399 * The interval can be added by merging the two already
1400 * present intervals.
1401 * */
1402 leaf->value[leaf->keys - 1] += count + right_cnt;
1403 btree_remove(&a->used_space, right_pg, node);
1404 return 1;
1405 } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1406 /*
1407 * The interval can be added by simply growing the left
1408 * interval.
1409 * */
1410 leaf->value[leaf->keys - 1] += count;
1411 return 1;
1412 } else if (page + count * PAGE_SIZE == right_pg) {
1413 /*
1414 * The interval can be addded by simply moving base of
1415 * the right interval down and increasing its size
1416 * accordingly.
1417 */
1418 node->value[0] += count;
1419 node->key[0] = page;
1420 return 1;
1421 } else {
1422 /*
1423 * The interval is between both neigbouring intervals,
1424 * but cannot be merged with any of them.
1425 */
1426 btree_insert(&a->used_space, page, (void *) count,
1427 leaf);
1428 return 1;
1429 }
1430 } else if (page >= leaf->key[leaf->keys - 1]) {
1431 uintptr_t left_pg = leaf->key[leaf->keys - 1];
1432 count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1433
1434 /*
1435 * Investigate the border case in which the right neighbour
1436 * does not exist but the interval fits from the right.
1437 */
1438
1439 if (overlaps(page, count * PAGE_SIZE, left_pg,
1440 left_cnt * PAGE_SIZE)) {
1441 /* The interval intersects with the left interval. */
1442 return 0;
1443 } else if (left_pg + left_cnt * PAGE_SIZE == page) {
1444 /*
1445 * The interval can be added by growing the left
1446 * interval.
1447 */
1448 leaf->value[leaf->keys - 1] += count;
1449 return 1;
1450 } else {
1451 /*
1452 * The interval doesn't adjoin with the left interval.
1453 * It must be added individually.
1454 */
1455 btree_insert(&a->used_space, page, (void *) count,
1456 leaf);
1457 return 1;
1458 }
1459 }
1460
1461 /*
1462 * Note that if the algorithm made it thus far, the interval can fit
1463 * only between two other intervals of the leaf. The two border cases
1464 * were already resolved.
1465 */
1466 for (i = 1; i < leaf->keys; i++) {
1467 if (page < leaf->key[i]) {
1468 uintptr_t left_pg = leaf->key[i - 1];
1469 uintptr_t right_pg = leaf->key[i];
1470 count_t left_cnt = (count_t) leaf->value[i - 1];
1471 count_t right_cnt = (count_t) leaf->value[i];
1472
1473 /*
1474 * The interval fits between left_pg and right_pg.
1475 */
1476
1477 if (overlaps(page, count * PAGE_SIZE, left_pg,
1478 left_cnt * PAGE_SIZE)) {
1479 /*
1480 * The interval intersects with the left
1481 * interval.
1482 */
1483 return 0;
1484 } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1485 right_cnt * PAGE_SIZE)) {
1486 /*
1487 * The interval intersects with the right
1488 * interval.
1489 */
1490 return 0;
1491 } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1492 (page + count * PAGE_SIZE == right_pg)) {
1493 /*
1494 * The interval can be added by merging the two
1495 * already present intervals.
1496 */
1497 leaf->value[i - 1] += count + right_cnt;
1498 btree_remove(&a->used_space, right_pg, leaf);
1499 return 1;
1500 } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1501 /*
1502 * The interval can be added by simply growing
1503 * the left interval.
1504 */
1505 leaf->value[i - 1] += count;
1506 return 1;
1507 } else if (page + count * PAGE_SIZE == right_pg) {
1508 /*
1509 * The interval can be addded by simply moving
1510 * base of the right interval down and
1511 * increasing its size accordingly.
1512 */
1513 leaf->value[i] += count;
1514 leaf->key[i] = page;
1515 return 1;
1516 } else {
1517 /*
1518 * The interval is between both neigbouring
1519 * intervals, but cannot be merged with any of
1520 * them.
1521 */
1522 btree_insert(&a->used_space, page,
1523 (void *) count, leaf);
1524 return 1;
1525 }
1526 }
1527 }
1528
1529 panic("Inconsistency detected while adding %d pages of used space at "
1530 "%p.\n", count, page);
1531}
1532
1533/** Mark portion of address space area as unused.
1534 *
1535 * The address space area must be already locked.
1536 *
1537 * @param a Address space area.
1538 * @param page First page to be marked.
1539 * @param count Number of page to be marked.
1540 *
1541 * @return 0 on failure and 1 on success.
1542 */
1543int used_space_remove(as_area_t *a, uintptr_t page, count_t count)
1544{
1545 btree_node_t *leaf, *node;
1546 count_t pages;
1547 int i;
1548
1549 ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1550 ASSERT(count);
1551
1552 pages = (count_t) btree_search(&a->used_space, page, &leaf);
1553 if (pages) {
1554 /*
1555 * We are lucky, page is the beginning of some interval.
1556 */
1557 if (count > pages) {
1558 return 0;
1559 } else if (count == pages) {
1560 btree_remove(&a->used_space, page, leaf);
1561 return 1;
1562 } else {
1563 /*
1564 * Find the respective interval.
1565 * Decrease its size and relocate its start address.
1566 */
1567 for (i = 0; i < leaf->keys; i++) {
1568 if (leaf->key[i] == page) {
1569 leaf->key[i] += count * PAGE_SIZE;
1570 leaf->value[i] -= count;
1571 return 1;
1572 }
1573 }
1574 goto error;
1575 }
1576 }
1577
1578 node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1579 if (node && page < leaf->key[0]) {
1580 uintptr_t left_pg = node->key[node->keys - 1];
1581 count_t left_cnt = (count_t) node->value[node->keys - 1];
1582
1583 if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1584 count * PAGE_SIZE)) {
1585 if (page + count * PAGE_SIZE ==
1586 left_pg + left_cnt * PAGE_SIZE) {
1587 /*
1588 * The interval is contained in the rightmost
1589 * interval of the left neighbour and can be
1590 * removed by updating the size of the bigger
1591 * interval.
1592 */
1593 node->value[node->keys - 1] -= count;
1594 return 1;
1595 } else if (page + count * PAGE_SIZE <
1596 left_pg + left_cnt*PAGE_SIZE) {
1597 count_t new_cnt;
1598
1599 /*
1600 * The interval is contained in the rightmost
1601 * interval of the left neighbour but its
1602 * removal requires both updating the size of
1603 * the original interval and also inserting a
1604 * new interval.
1605 */
1606 new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1607 (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1608 node->value[node->keys - 1] -= count + new_cnt;
1609 btree_insert(&a->used_space, page +
1610 count * PAGE_SIZE, (void *) new_cnt, leaf);
1611 return 1;
1612 }
1613 }
1614 return 0;
1615 } else if (page < leaf->key[0]) {
1616 return 0;
1617 }
1618
1619 if (page > leaf->key[leaf->keys - 1]) {
1620 uintptr_t left_pg = leaf->key[leaf->keys - 1];
1621 count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1622
1623 if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1624 count * PAGE_SIZE)) {
1625 if (page + count * PAGE_SIZE ==
1626 left_pg + left_cnt * PAGE_SIZE) {
1627 /*
1628 * The interval is contained in the rightmost
1629 * interval of the leaf and can be removed by
1630 * updating the size of the bigger interval.
1631 */
1632 leaf->value[leaf->keys - 1] -= count;
1633 return 1;
1634 } else if (page + count * PAGE_SIZE < left_pg +
1635 left_cnt * PAGE_SIZE) {
1636 count_t new_cnt;
1637
1638 /*
1639 * The interval is contained in the rightmost
1640 * interval of the leaf but its removal
1641 * requires both updating the size of the
1642 * original interval and also inserting a new
1643 * interval.
1644 */
1645 new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1646 (page + count * PAGE_SIZE)) >> PAGE_WIDTH;
1647 leaf->value[leaf->keys - 1] -= count + new_cnt;
1648 btree_insert(&a->used_space, page +
1649 count * PAGE_SIZE, (void *) new_cnt, leaf);
1650 return 1;
1651 }
1652 }
1653 return 0;
1654 }
1655
1656 /*
1657 * The border cases have been already resolved.
1658 * Now the interval can be only between intervals of the leaf.
1659 */
1660 for (i = 1; i < leaf->keys - 1; i++) {
1661 if (page < leaf->key[i]) {
1662 uintptr_t left_pg = leaf->key[i - 1];
1663 count_t left_cnt = (count_t) leaf->value[i - 1];
1664
1665 /*
1666 * Now the interval is between intervals corresponding
1667 * to (i - 1) and i.
1668 */
1669 if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1670 count * PAGE_SIZE)) {
1671 if (page + count * PAGE_SIZE ==
1672 left_pg + left_cnt*PAGE_SIZE) {
1673 /*
1674 * The interval is contained in the
1675 * interval (i - 1) of the leaf and can
1676 * be removed by updating the size of
1677 * the bigger interval.
1678 */
1679 leaf->value[i - 1] -= count;
1680 return 1;
1681 } else if (page + count * PAGE_SIZE <
1682 left_pg + left_cnt * PAGE_SIZE) {
1683 count_t new_cnt;
1684
1685 /*
1686 * The interval is contained in the
1687 * interval (i - 1) of the leaf but its
1688 * removal requires both updating the
1689 * size of the original interval and
1690 * also inserting a new interval.
1691 */
1692 new_cnt = ((left_pg +
1693 left_cnt * PAGE_SIZE) -
1694 (page + count * PAGE_SIZE)) >>
1695 PAGE_WIDTH;
1696 leaf->value[i - 1] -= count + new_cnt;
1697 btree_insert(&a->used_space, page +
1698 count * PAGE_SIZE, (void *) new_cnt,
1699 leaf);
1700 return 1;
1701 }
1702 }
1703 return 0;
1704 }
1705 }
1706
1707error:
1708 panic("Inconsistency detected while removing %d pages of used space "
1709 "from %p.\n", count, page);
1710}
1711
1712/** Remove reference to address space area share info.
1713 *
1714 * If the reference count drops to 0, the sh_info is deallocated.
1715 *
1716 * @param sh_info Pointer to address space area share info.
1717 */
1718void sh_info_remove_reference(share_info_t *sh_info)
1719{
1720 bool dealloc = false;
1721
1722 mutex_lock(&sh_info->lock);
1723 ASSERT(sh_info->refcount);
1724 if (--sh_info->refcount == 0) {
1725 dealloc = true;
1726 link_t *cur;
1727
1728 /*
1729 * Now walk carefully the pagemap B+tree and free/remove
1730 * reference from all frames found there.
1731 */
1732 for (cur = sh_info->pagemap.leaf_head.next;
1733 cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1734 btree_node_t *node;
1735 int i;
1736
1737 node = list_get_instance(cur, btree_node_t, leaf_link);
1738 for (i = 0; i < node->keys; i++)
1739 frame_free((uintptr_t) node->value[i]);
1740 }
1741
1742 }
1743 mutex_unlock(&sh_info->lock);
1744
1745 if (dealloc) {
1746 btree_destroy(&sh_info->pagemap);
1747 free(sh_info);
1748 }
1749}
1750
1751/*
1752 * Address space related syscalls.
1753 */
1754
1755/** Wrapper for as_area_create(). */
1756unative_t sys_as_area_create(uintptr_t address, size_t size, int flags)
1757{
1758 if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address,
1759 AS_AREA_ATTR_NONE, &anon_backend, NULL))
1760 return (unative_t) address;
1761 else
1762 return (unative_t) -1;
1763}
1764
1765/** Wrapper for as_area_resize(). */
1766unative_t sys_as_area_resize(uintptr_t address, size_t size, int flags)
1767{
1768 return (unative_t) as_area_resize(AS, address, size, 0);
1769}
1770
1771/** Wrapper for as_area_destroy(). */
1772unative_t sys_as_area_destroy(uintptr_t address)
1773{
1774 return (unative_t) as_area_destroy(AS, address);
1775}
1776
1777/** Print out information about address space.
1778 *
1779 * @param as Address space.
1780 */
1781void as_print(as_t *as)
1782{
1783 ipl_t ipl;
1784
1785 ipl = interrupts_disable();
1786 mutex_lock(&as->lock);
1787
1788 /* print out info about address space areas */
1789 link_t *cur;
1790 for (cur = as->as_area_btree.leaf_head.next;
1791 cur != &as->as_area_btree.leaf_head; cur = cur->next) {
1792 btree_node_t *node;
1793
1794 node = list_get_instance(cur, btree_node_t, leaf_link);
1795
1796 int i;
1797 for (i = 0; i < node->keys; i++) {
1798 as_area_t *area = node->value[i];
1799
1800 mutex_lock(&area->lock);
1801 printf("as_area: %p, base=%p, pages=%d (%p - %p)\n",
1802 area, area->base, area->pages, area->base,
1803 area->base + area->pages*PAGE_SIZE);
1804 mutex_unlock(&area->lock);
1805 }
1806 }
1807
1808 mutex_unlock(&as->lock);
1809 interrupts_restore(ipl);
1810}
1811
1812/** @}
1813 */
Note: See TracBrowser for help on using the repository browser.