source: mainline/kernel/generic/src/mm/as.c@ ba4a63b8

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since ba4a63b8 was c964521, checked in by Jakub Jermar <jakub@…>, 15 years ago

Lock the page tables before initiating the TLB shootdown, avoiding thus possible
blocking while holding a spinlock.

  • Property mode set to 100644
File size: 51.1 KB
Line 
1/*
2 * Copyright (c) 2010 Jakub Jermar
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/** @addtogroup genericmm
30 * @{
31 */
32
33/**
34 * @file
35 * @brief Address space related functions.
36 *
37 * This file contains address space manipulation functions.
38 * Roughly speaking, this is a higher-level client of
39 * Virtual Address Translation (VAT) subsystem.
40 *
41 * Functionality provided by this file allows one to
42 * create address spaces and create, resize and share
43 * address space areas.
44 *
45 * @see page.c
46 *
47 */
48
49#include <mm/as.h>
50#include <arch/mm/as.h>
51#include <mm/page.h>
52#include <mm/frame.h>
53#include <mm/slab.h>
54#include <mm/tlb.h>
55#include <arch/mm/page.h>
56#include <genarch/mm/page_pt.h>
57#include <genarch/mm/page_ht.h>
58#include <mm/asid.h>
59#include <arch/mm/asid.h>
60#include <preemption.h>
61#include <synch/spinlock.h>
62#include <synch/mutex.h>
63#include <adt/list.h>
64#include <adt/btree.h>
65#include <proc/task.h>
66#include <proc/thread.h>
67#include <arch/asm.h>
68#include <panic.h>
69#include <debug.h>
70#include <print.h>
71#include <memstr.h>
72#include <macros.h>
73#include <arch.h>
74#include <errno.h>
75#include <config.h>
76#include <align.h>
77#include <typedefs.h>
78#include <syscall/copy.h>
79#include <arch/interrupt.h>
80
81#ifdef CONFIG_VIRT_IDX_DCACHE
82#include <arch/mm/cache.h>
83#endif /* CONFIG_VIRT_IDX_DCACHE */
84
85/**
86 * Each architecture decides what functions will be used to carry out
87 * address space operations such as creating or locking page tables.
88 */
89as_operations_t *as_operations = NULL;
90
91/**
92 * Slab for as_t objects.
93 */
94static slab_cache_t *as_slab;
95
96/**
97 * This lock serializes access to the ASID subsystem.
98 * It protects:
99 * - inactive_as_with_asid_head list
100 * - as->asid for each as of the as_t type
101 * - asids_allocated counter
102 */
103SPINLOCK_INITIALIZE(asidlock);
104
105/**
106 * This list contains address spaces that are not active on any
107 * processor and that have valid ASID.
108 */
109LIST_INITIALIZE(inactive_as_with_asid_head);
110
111/** Kernel address space. */
112as_t *AS_KERNEL = NULL;
113
114static int area_flags_to_page_flags(int);
115static as_area_t *find_area_and_lock(as_t *, uintptr_t);
116static bool check_area_conflicts(as_t *, uintptr_t, size_t, as_area_t *);
117static void sh_info_remove_reference(share_info_t *);
118
119static int as_constructor(void *obj, int flags)
120{
121 as_t *as = (as_t *) obj;
122 int rc;
123
124 link_initialize(&as->inactive_as_with_asid_link);
125 mutex_initialize(&as->lock, MUTEX_PASSIVE);
126
127 rc = as_constructor_arch(as, flags);
128
129 return rc;
130}
131
132static int as_destructor(void *obj)
133{
134 as_t *as = (as_t *) obj;
135
136 return as_destructor_arch(as);
137}
138
139/** Initialize address space subsystem. */
140void as_init(void)
141{
142 as_arch_init();
143
144 as_slab = slab_cache_create("as_slab", sizeof(as_t), 0,
145 as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);
146
147 AS_KERNEL = as_create(FLAG_AS_KERNEL);
148 if (!AS_KERNEL)
149 panic("Cannot create kernel address space.");
150
151 /* Make sure the kernel address space
152 * reference count never drops to zero.
153 */
154 as_hold(AS_KERNEL);
155}
156
157/** Create address space.
158 *
159 * @param flags Flags that influence the way in wich the address space
160 * is created.
161 */
162as_t *as_create(int flags)
163{
164 as_t *as;
165
166 as = (as_t *) slab_alloc(as_slab, 0);
167 (void) as_create_arch(as, 0);
168
169 btree_create(&as->as_area_btree);
170
171 if (flags & FLAG_AS_KERNEL)
172 as->asid = ASID_KERNEL;
173 else
174 as->asid = ASID_INVALID;
175
176 atomic_set(&as->refcount, 0);
177 as->cpu_refcount = 0;
178#ifdef AS_PAGE_TABLE
179 as->genarch.page_table = page_table_create(flags);
180#else
181 page_table_create(flags);
182#endif
183
184 return as;
185}
186
187/** Destroy adress space.
188 *
189 * When there are no tasks referencing this address space (i.e. its refcount is
190 * zero), the address space can be destroyed.
191 *
192 * We know that we don't hold any spinlock.
193 *
194 * @param as Address space to be destroyed.
195 */
196void as_destroy(as_t *as)
197{
198 ipl_t ipl;
199 bool cond;
200 DEADLOCK_PROBE_INIT(p_asidlock);
201
202 ASSERT(as != AS);
203 ASSERT(atomic_get(&as->refcount) == 0);
204
205 /*
206 * Since there is no reference to this address space, it is safe not to
207 * lock its mutex.
208 */
209
210 /*
211 * We need to avoid deadlock between TLB shootdown and asidlock.
212 * We therefore try to take asid conditionally and if we don't succeed,
213 * we enable interrupts and try again. This is done while preemption is
214 * disabled to prevent nested context switches. We also depend on the
215 * fact that so far no spinlocks are held.
216 */
217 preemption_disable();
218 ipl = interrupts_read();
219retry:
220 interrupts_disable();
221 if (!spinlock_trylock(&asidlock)) {
222 interrupts_enable();
223 DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
224 goto retry;
225 }
226 preemption_enable(); /* Interrupts disabled, enable preemption */
227 if (as->asid != ASID_INVALID && as != AS_KERNEL) {
228 if (as->cpu_refcount == 0)
229 list_remove(&as->inactive_as_with_asid_link);
230 asid_put(as->asid);
231 }
232 spinlock_unlock(&asidlock);
233
234 /*
235 * Destroy address space areas of the address space.
236 * The B+tree must be walked carefully because it is
237 * also being destroyed.
238 */
239 for (cond = true; cond; ) {
240 btree_node_t *node;
241
242 ASSERT(!list_empty(&as->as_area_btree.leaf_head));
243 node = list_get_instance(as->as_area_btree.leaf_head.next,
244 btree_node_t, leaf_link);
245
246 if ((cond = node->keys)) {
247 as_area_destroy(as, node->key[0]);
248 }
249 }
250
251 btree_destroy(&as->as_area_btree);
252#ifdef AS_PAGE_TABLE
253 page_table_destroy(as->genarch.page_table);
254#else
255 page_table_destroy(NULL);
256#endif
257
258 interrupts_restore(ipl);
259
260 slab_free(as_slab, as);
261}
262
263/** Hold a reference to an address space.
264 *
265 * Holding a reference to an address space prevents destruction of that address
266 * space.
267 *
268 * @param a Address space to be held.
269 */
270void as_hold(as_t *as)
271{
272 atomic_inc(&as->refcount);
273}
274
275/** Release a reference to an address space.
276 *
277 * The last one to release a reference to an address space destroys the address
278 * space.
279 *
280 * @param a Address space to be released.
281 */
282void as_release(as_t *as)
283{
284 if (atomic_predec(&as->refcount) == 0)
285 as_destroy(as);
286}
287
288/** Create address space area of common attributes.
289 *
290 * The created address space area is added to the target address space.
291 *
292 * @param as Target address space.
293 * @param flags Flags of the area memory.
294 * @param size Size of area.
295 * @param base Base address of area.
296 * @param attrs Attributes of the area.
297 * @param backend Address space area backend. NULL if no backend is used.
298 * @param backend_data NULL or a pointer to an array holding two void *.
299 *
300 * @return Address space area on success or NULL on failure.
301 */
302as_area_t *
303as_area_create(as_t *as, int flags, size_t size, uintptr_t base, int attrs,
304 mem_backend_t *backend, mem_backend_data_t *backend_data)
305{
306 ipl_t ipl;
307 as_area_t *a;
308
309 if (base % PAGE_SIZE)
310 return NULL;
311
312 if (!size)
313 return NULL;
314
315 /* Writeable executable areas are not supported. */
316 if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
317 return NULL;
318
319 ipl = interrupts_disable();
320 mutex_lock(&as->lock);
321
322 if (!check_area_conflicts(as, base, size, NULL)) {
323 mutex_unlock(&as->lock);
324 interrupts_restore(ipl);
325 return NULL;
326 }
327
328 a = (as_area_t *) malloc(sizeof(as_area_t), 0);
329
330 mutex_initialize(&a->lock, MUTEX_PASSIVE);
331
332 a->as = as;
333 a->flags = flags;
334 a->attributes = attrs;
335 a->pages = SIZE2FRAMES(size);
336 a->base = base;
337 a->sh_info = NULL;
338 a->backend = backend;
339 if (backend_data)
340 a->backend_data = *backend_data;
341 else
342 memsetb(&a->backend_data, sizeof(a->backend_data), 0);
343
344 btree_create(&a->used_space);
345
346 btree_insert(&as->as_area_btree, base, (void *) a, NULL);
347
348 mutex_unlock(&as->lock);
349 interrupts_restore(ipl);
350
351 return a;
352}
353
354/** Find address space area and change it.
355 *
356 * @param as Address space.
357 * @param address Virtual address belonging to the area to be changed.
358 * Must be page-aligned.
359 * @param size New size of the virtual memory block starting at
360 * address.
361 * @param flags Flags influencing the remap operation. Currently unused.
362 *
363 * @return Zero on success or a value from @ref errno.h otherwise.
364 */
365int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags)
366{
367 as_area_t *area;
368 ipl_t ipl;
369 size_t pages;
370
371 ipl = interrupts_disable();
372 mutex_lock(&as->lock);
373
374 /*
375 * Locate the area.
376 */
377 area = find_area_and_lock(as, address);
378 if (!area) {
379 mutex_unlock(&as->lock);
380 interrupts_restore(ipl);
381 return ENOENT;
382 }
383
384 if (area->backend == &phys_backend) {
385 /*
386 * Remapping of address space areas associated
387 * with memory mapped devices is not supported.
388 */
389 mutex_unlock(&area->lock);
390 mutex_unlock(&as->lock);
391 interrupts_restore(ipl);
392 return ENOTSUP;
393 }
394 if (area->sh_info) {
395 /*
396 * Remapping of shared address space areas
397 * is not supported.
398 */
399 mutex_unlock(&area->lock);
400 mutex_unlock(&as->lock);
401 interrupts_restore(ipl);
402 return ENOTSUP;
403 }
404
405 pages = SIZE2FRAMES((address - area->base) + size);
406 if (!pages) {
407 /*
408 * Zero size address space areas are not allowed.
409 */
410 mutex_unlock(&area->lock);
411 mutex_unlock(&as->lock);
412 interrupts_restore(ipl);
413 return EPERM;
414 }
415
416 if (pages < area->pages) {
417 bool cond;
418 uintptr_t start_free = area->base + pages * PAGE_SIZE;
419
420 /*
421 * Shrinking the area.
422 * No need to check for overlaps.
423 */
424
425 page_table_lock(as, false);
426
427 /*
428 * Start TLB shootdown sequence.
429 */
430 tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base +
431 pages * PAGE_SIZE, area->pages - pages);
432
433 /*
434 * Remove frames belonging to used space starting from
435 * the highest addresses downwards until an overlap with
436 * the resized address space area is found. Note that this
437 * is also the right way to remove part of the used_space
438 * B+tree leaf list.
439 */
440 for (cond = true; cond;) {
441 btree_node_t *node;
442
443 ASSERT(!list_empty(&area->used_space.leaf_head));
444 node =
445 list_get_instance(area->used_space.leaf_head.prev,
446 btree_node_t, leaf_link);
447 if ((cond = (bool) node->keys)) {
448 uintptr_t b = node->key[node->keys - 1];
449 size_t c =
450 (size_t) node->value[node->keys - 1];
451 unsigned int i = 0;
452
453 if (overlaps(b, c * PAGE_SIZE, area->base,
454 pages * PAGE_SIZE)) {
455
456 if (b + c * PAGE_SIZE <= start_free) {
457 /*
458 * The whole interval fits
459 * completely in the resized
460 * address space area.
461 */
462 break;
463 }
464
465 /*
466 * Part of the interval corresponding
467 * to b and c overlaps with the resized
468 * address space area.
469 */
470
471 cond = false; /* we are almost done */
472 i = (start_free - b) >> PAGE_WIDTH;
473 if (!used_space_remove(area, start_free,
474 c - i))
475 panic("Cannot remove used "
476 "space.");
477 } else {
478 /*
479 * The interval of used space can be
480 * completely removed.
481 */
482 if (!used_space_remove(area, b, c))
483 panic("Cannot remove used "
484 "space.");
485 }
486
487 for (; i < c; i++) {
488 pte_t *pte;
489
490 pte = page_mapping_find(as, b +
491 i * PAGE_SIZE);
492 ASSERT(pte && PTE_VALID(pte) &&
493 PTE_PRESENT(pte));
494 if (area->backend &&
495 area->backend->frame_free) {
496 area->backend->frame_free(area,
497 b + i * PAGE_SIZE,
498 PTE_GET_FRAME(pte));
499 }
500 page_mapping_remove(as, b +
501 i * PAGE_SIZE);
502 }
503 }
504 }
505
506 /*
507 * Finish TLB shootdown sequence.
508 */
509
510 tlb_invalidate_pages(as->asid, area->base + pages * PAGE_SIZE,
511 area->pages - pages);
512
513 /*
514 * Invalidate software translation caches (e.g. TSB on sparc64).
515 */
516 as_invalidate_translation_cache(as, area->base +
517 pages * PAGE_SIZE, area->pages - pages);
518 tlb_shootdown_finalize();
519
520 page_table_unlock(as, false);
521
522 } else {
523 /*
524 * Growing the area.
525 * Check for overlaps with other address space areas.
526 */
527 if (!check_area_conflicts(as, address, pages * PAGE_SIZE,
528 area)) {
529 mutex_unlock(&area->lock);
530 mutex_unlock(&as->lock);
531 interrupts_restore(ipl);
532 return EADDRNOTAVAIL;
533 }
534 }
535
536 area->pages = pages;
537
538 mutex_unlock(&area->lock);
539 mutex_unlock(&as->lock);
540 interrupts_restore(ipl);
541
542 return 0;
543}
544
545/** Destroy address space area.
546 *
547 * @param as Address space.
548 * @param address Address within the area to be deleted.
549 *
550 * @return Zero on success or a value from @ref errno.h on failure.
551 */
552int as_area_destroy(as_t *as, uintptr_t address)
553{
554 as_area_t *area;
555 uintptr_t base;
556 link_t *cur;
557 ipl_t ipl;
558
559 ipl = interrupts_disable();
560 mutex_lock(&as->lock);
561
562 area = find_area_and_lock(as, address);
563 if (!area) {
564 mutex_unlock(&as->lock);
565 interrupts_restore(ipl);
566 return ENOENT;
567 }
568
569 base = area->base;
570
571 page_table_lock(as, false);
572
573 /*
574 * Start TLB shootdown sequence.
575 */
576 tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
577
578 /*
579 * Visit only the pages mapped by used_space B+tree.
580 */
581 for (cur = area->used_space.leaf_head.next;
582 cur != &area->used_space.leaf_head; cur = cur->next) {
583 btree_node_t *node;
584 unsigned int i;
585
586 node = list_get_instance(cur, btree_node_t, leaf_link);
587 for (i = 0; i < node->keys; i++) {
588 uintptr_t b = node->key[i];
589 size_t j;
590 pte_t *pte;
591
592 for (j = 0; j < (size_t) node->value[i]; j++) {
593 pte = page_mapping_find(as, b + j * PAGE_SIZE);
594 ASSERT(pte && PTE_VALID(pte) &&
595 PTE_PRESENT(pte));
596 if (area->backend &&
597 area->backend->frame_free) {
598 area->backend->frame_free(area, b +
599 j * PAGE_SIZE, PTE_GET_FRAME(pte));
600 }
601 page_mapping_remove(as, b + j * PAGE_SIZE);
602 }
603 }
604 }
605
606 /*
607 * Finish TLB shootdown sequence.
608 */
609
610 tlb_invalidate_pages(as->asid, area->base, area->pages);
611
612 /*
613 * Invalidate potential software translation caches (e.g. TSB on
614 * sparc64).
615 */
616 as_invalidate_translation_cache(as, area->base, area->pages);
617 tlb_shootdown_finalize();
618
619 page_table_unlock(as, false);
620
621 btree_destroy(&area->used_space);
622
623 area->attributes |= AS_AREA_ATTR_PARTIAL;
624
625 if (area->sh_info)
626 sh_info_remove_reference(area->sh_info);
627
628 mutex_unlock(&area->lock);
629
630 /*
631 * Remove the empty area from address space.
632 */
633 btree_remove(&as->as_area_btree, base, NULL);
634
635 free(area);
636
637 mutex_unlock(&as->lock);
638 interrupts_restore(ipl);
639 return 0;
640}
641
642/** Share address space area with another or the same address space.
643 *
644 * Address space area mapping is shared with a new address space area.
645 * If the source address space area has not been shared so far,
646 * a new sh_info is created. The new address space area simply gets the
647 * sh_info of the source area. The process of duplicating the
648 * mapping is done through the backend share function.
649 *
650 * @param src_as Pointer to source address space.
651 * @param src_base Base address of the source address space area.
652 * @param acc_size Expected size of the source area.
653 * @param dst_as Pointer to destination address space.
654 * @param dst_base Target base address.
655 * @param dst_flags_mask Destination address space area flags mask.
656 *
657 * @return Zero on success or ENOENT if there is no such task or if
658 * there is no such address space area, EPERM if there was
659 * a problem in accepting the area or ENOMEM if there was a
660 * problem in allocating destination address space area.
661 * ENOTSUP is returned if the address space area backend
662 * does not support sharing.
663 */
664int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
665 as_t *dst_as, uintptr_t dst_base, int dst_flags_mask)
666{
667 ipl_t ipl;
668 int src_flags;
669 size_t src_size;
670 as_area_t *src_area, *dst_area;
671 share_info_t *sh_info;
672 mem_backend_t *src_backend;
673 mem_backend_data_t src_backend_data;
674
675 ipl = interrupts_disable();
676 mutex_lock(&src_as->lock);
677 src_area = find_area_and_lock(src_as, src_base);
678 if (!src_area) {
679 /*
680 * Could not find the source address space area.
681 */
682 mutex_unlock(&src_as->lock);
683 interrupts_restore(ipl);
684 return ENOENT;
685 }
686
687 if (!src_area->backend || !src_area->backend->share) {
688 /*
689 * There is no backend or the backend does not
690 * know how to share the area.
691 */
692 mutex_unlock(&src_area->lock);
693 mutex_unlock(&src_as->lock);
694 interrupts_restore(ipl);
695 return ENOTSUP;
696 }
697
698 src_size = src_area->pages * PAGE_SIZE;
699 src_flags = src_area->flags;
700 src_backend = src_area->backend;
701 src_backend_data = src_area->backend_data;
702
703 /* Share the cacheable flag from the original mapping */
704 if (src_flags & AS_AREA_CACHEABLE)
705 dst_flags_mask |= AS_AREA_CACHEABLE;
706
707 if (src_size != acc_size ||
708 (src_flags & dst_flags_mask) != dst_flags_mask) {
709 mutex_unlock(&src_area->lock);
710 mutex_unlock(&src_as->lock);
711 interrupts_restore(ipl);
712 return EPERM;
713 }
714
715 /*
716 * Now we are committed to sharing the area.
717 * First, prepare the area for sharing.
718 * Then it will be safe to unlock it.
719 */
720 sh_info = src_area->sh_info;
721 if (!sh_info) {
722 sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
723 mutex_initialize(&sh_info->lock, MUTEX_PASSIVE);
724 sh_info->refcount = 2;
725 btree_create(&sh_info->pagemap);
726 src_area->sh_info = sh_info;
727 /*
728 * Call the backend to setup sharing.
729 */
730 src_area->backend->share(src_area);
731 } else {
732 mutex_lock(&sh_info->lock);
733 sh_info->refcount++;
734 mutex_unlock(&sh_info->lock);
735 }
736
737 mutex_unlock(&src_area->lock);
738 mutex_unlock(&src_as->lock);
739
740 /*
741 * Create copy of the source address space area.
742 * The destination area is created with AS_AREA_ATTR_PARTIAL
743 * attribute set which prevents race condition with
744 * preliminary as_page_fault() calls.
745 * The flags of the source area are masked against dst_flags_mask
746 * to support sharing in less privileged mode.
747 */
748 dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
749 AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
750 if (!dst_area) {
751 /*
752 * Destination address space area could not be created.
753 */
754 sh_info_remove_reference(sh_info);
755
756 interrupts_restore(ipl);
757 return ENOMEM;
758 }
759
760 /*
761 * Now the destination address space area has been
762 * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
763 * attribute and set the sh_info.
764 */
765 mutex_lock(&dst_as->lock);
766 mutex_lock(&dst_area->lock);
767 dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
768 dst_area->sh_info = sh_info;
769 mutex_unlock(&dst_area->lock);
770 mutex_unlock(&dst_as->lock);
771
772 interrupts_restore(ipl);
773
774 return 0;
775}
776
777/** Check access mode for address space area.
778 *
779 * The address space area must be locked prior to this call.
780 *
781 * @param area Address space area.
782 * @param access Access mode.
783 *
784 * @return False if access violates area's permissions, true
785 * otherwise.
786 */
787bool as_area_check_access(as_area_t *area, pf_access_t access)
788{
789 int flagmap[] = {
790 [PF_ACCESS_READ] = AS_AREA_READ,
791 [PF_ACCESS_WRITE] = AS_AREA_WRITE,
792 [PF_ACCESS_EXEC] = AS_AREA_EXEC
793 };
794
795 if (!(area->flags & flagmap[access]))
796 return false;
797
798 return true;
799}
800
801/** Change adress space area flags.
802 *
803 * The idea is to have the same data, but with a different access mode.
804 * This is needed e.g. for writing code into memory and then executing it.
805 * In order for this to work properly, this may copy the data
806 * into private anonymous memory (unless it's already there).
807 *
808 * @param as Address space.
809 * @param flags Flags of the area memory.
810 * @param address Address within the area to be changed.
811 *
812 * @return Zero on success or a value from @ref errno.h on failure.
813 *
814 */
815int as_area_change_flags(as_t *as, int flags, uintptr_t address)
816{
817 as_area_t *area;
818 link_t *cur;
819 ipl_t ipl;
820 int page_flags;
821 uintptr_t *old_frame;
822 size_t frame_idx;
823 size_t used_pages;
824
825 /* Flags for the new memory mapping */
826 page_flags = area_flags_to_page_flags(flags);
827
828 ipl = interrupts_disable();
829 mutex_lock(&as->lock);
830
831 area = find_area_and_lock(as, address);
832 if (!area) {
833 mutex_unlock(&as->lock);
834 interrupts_restore(ipl);
835 return ENOENT;
836 }
837
838 if ((area->sh_info) || (area->backend != &anon_backend)) {
839 /* Copying shared areas not supported yet */
840 /* Copying non-anonymous memory not supported yet */
841 mutex_unlock(&area->lock);
842 mutex_unlock(&as->lock);
843 interrupts_restore(ipl);
844 return ENOTSUP;
845 }
846
847 /*
848 * Compute total number of used pages in the used_space B+tree
849 */
850 used_pages = 0;
851
852 for (cur = area->used_space.leaf_head.next;
853 cur != &area->used_space.leaf_head; cur = cur->next) {
854 btree_node_t *node;
855 unsigned int i;
856
857 node = list_get_instance(cur, btree_node_t, leaf_link);
858 for (i = 0; i < node->keys; i++) {
859 used_pages += (size_t) node->value[i];
860 }
861 }
862
863 /* An array for storing frame numbers */
864 old_frame = malloc(used_pages * sizeof(uintptr_t), 0);
865
866 page_table_lock(as, false);
867
868 /*
869 * Start TLB shootdown sequence.
870 */
871 tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
872
873 /*
874 * Remove used pages from page tables and remember their frame
875 * numbers.
876 */
877 frame_idx = 0;
878
879 for (cur = area->used_space.leaf_head.next;
880 cur != &area->used_space.leaf_head; cur = cur->next) {
881 btree_node_t *node;
882 unsigned int i;
883
884 node = list_get_instance(cur, btree_node_t, leaf_link);
885 for (i = 0; i < node->keys; i++) {
886 uintptr_t b = node->key[i];
887 size_t j;
888 pte_t *pte;
889
890 for (j = 0; j < (size_t) node->value[i]; j++) {
891 pte = page_mapping_find(as, b + j * PAGE_SIZE);
892 ASSERT(pte && PTE_VALID(pte) &&
893 PTE_PRESENT(pte));
894 old_frame[frame_idx++] = PTE_GET_FRAME(pte);
895
896 /* Remove old mapping */
897 page_mapping_remove(as, b + j * PAGE_SIZE);
898 }
899 }
900 }
901
902 /*
903 * Finish TLB shootdown sequence.
904 */
905
906 tlb_invalidate_pages(as->asid, area->base, area->pages);
907
908 /*
909 * Invalidate potential software translation caches (e.g. TSB on
910 * sparc64).
911 */
912 as_invalidate_translation_cache(as, area->base, area->pages);
913 tlb_shootdown_finalize();
914
915 page_table_unlock(as, false);
916
917 /*
918 * Set the new flags.
919 */
920 area->flags = flags;
921
922 /*
923 * Map pages back in with new flags. This step is kept separate
924 * so that the memory area could not be accesed with both the old and
925 * the new flags at once.
926 */
927 frame_idx = 0;
928
929 for (cur = area->used_space.leaf_head.next;
930 cur != &area->used_space.leaf_head; cur = cur->next) {
931 btree_node_t *node;
932 unsigned int i;
933
934 node = list_get_instance(cur, btree_node_t, leaf_link);
935 for (i = 0; i < node->keys; i++) {
936 uintptr_t b = node->key[i];
937 size_t j;
938
939 for (j = 0; j < (size_t) node->value[i]; j++) {
940 page_table_lock(as, false);
941
942 /* Insert the new mapping */
943 page_mapping_insert(as, b + j * PAGE_SIZE,
944 old_frame[frame_idx++], page_flags);
945
946 page_table_unlock(as, false);
947 }
948 }
949 }
950
951 free(old_frame);
952
953 mutex_unlock(&area->lock);
954 mutex_unlock(&as->lock);
955 interrupts_restore(ipl);
956
957 return 0;
958}
959
960
961/** Handle page fault within the current address space.
962 *
963 * This is the high-level page fault handler. It decides whether the page fault
964 * can be resolved by any backend and if so, it invokes the backend to resolve
965 * the page fault.
966 *
967 * Interrupts are assumed disabled.
968 *
969 * @param page Faulting page.
970 * @param access Access mode that caused the page fault (i.e.
971 * read/write/exec).
972 * @param istate Pointer to the interrupted state.
973 *
974 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or
975 * AS_PF_DEFER if the fault was caused by copy_to_uspace()
976 * or copy_from_uspace().
977 */
978int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
979{
980 pte_t *pte;
981 as_area_t *area;
982
983 if (!THREAD)
984 return AS_PF_FAULT;
985
986 if (!AS)
987 return AS_PF_FAULT;
988
989 mutex_lock(&AS->lock);
990 area = find_area_and_lock(AS, page);
991 if (!area) {
992 /*
993 * No area contained mapping for 'page'.
994 * Signal page fault to low-level handler.
995 */
996 mutex_unlock(&AS->lock);
997 goto page_fault;
998 }
999
1000 if (area->attributes & AS_AREA_ATTR_PARTIAL) {
1001 /*
1002 * The address space area is not fully initialized.
1003 * Avoid possible race by returning error.
1004 */
1005 mutex_unlock(&area->lock);
1006 mutex_unlock(&AS->lock);
1007 goto page_fault;
1008 }
1009
1010 if (!area->backend || !area->backend->page_fault) {
1011 /*
1012 * The address space area is not backed by any backend
1013 * or the backend cannot handle page faults.
1014 */
1015 mutex_unlock(&area->lock);
1016 mutex_unlock(&AS->lock);
1017 goto page_fault;
1018 }
1019
1020 page_table_lock(AS, false);
1021
1022 /*
1023 * To avoid race condition between two page faults on the same address,
1024 * we need to make sure the mapping has not been already inserted.
1025 */
1026 if ((pte = page_mapping_find(AS, page))) {
1027 if (PTE_PRESENT(pte)) {
1028 if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
1029 (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
1030 (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
1031 page_table_unlock(AS, false);
1032 mutex_unlock(&area->lock);
1033 mutex_unlock(&AS->lock);
1034 return AS_PF_OK;
1035 }
1036 }
1037 }
1038
1039 /*
1040 * Resort to the backend page fault handler.
1041 */
1042 if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
1043 page_table_unlock(AS, false);
1044 mutex_unlock(&area->lock);
1045 mutex_unlock(&AS->lock);
1046 goto page_fault;
1047 }
1048
1049 page_table_unlock(AS, false);
1050 mutex_unlock(&area->lock);
1051 mutex_unlock(&AS->lock);
1052 return AS_PF_OK;
1053
1054page_fault:
1055 if (THREAD->in_copy_from_uspace) {
1056 THREAD->in_copy_from_uspace = false;
1057 istate_set_retaddr(istate,
1058 (uintptr_t) &memcpy_from_uspace_failover_address);
1059 } else if (THREAD->in_copy_to_uspace) {
1060 THREAD->in_copy_to_uspace = false;
1061 istate_set_retaddr(istate,
1062 (uintptr_t) &memcpy_to_uspace_failover_address);
1063 } else {
1064 return AS_PF_FAULT;
1065 }
1066
1067 return AS_PF_DEFER;
1068}
1069
1070/** Switch address spaces.
1071 *
1072 * Note that this function cannot sleep as it is essentially a part of
1073 * scheduling. Sleeping here would lead to deadlock on wakeup. Another
1074 * thing which is forbidden in this context is locking the address space.
1075 *
1076 * When this function is enetered, no spinlocks may be held.
1077 *
1078 * @param old Old address space or NULL.
1079 * @param new New address space.
1080 */
1081void as_switch(as_t *old_as, as_t *new_as)
1082{
1083 DEADLOCK_PROBE_INIT(p_asidlock);
1084 preemption_disable();
1085retry:
1086 (void) interrupts_disable();
1087 if (!spinlock_trylock(&asidlock)) {
1088 /*
1089 * Avoid deadlock with TLB shootdown.
1090 * We can enable interrupts here because
1091 * preemption is disabled. We should not be
1092 * holding any other lock.
1093 */
1094 (void) interrupts_enable();
1095 DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
1096 goto retry;
1097 }
1098 preemption_enable();
1099
1100 /*
1101 * First, take care of the old address space.
1102 */
1103 if (old_as) {
1104 ASSERT(old_as->cpu_refcount);
1105 if((--old_as->cpu_refcount == 0) && (old_as != AS_KERNEL)) {
1106 /*
1107 * The old address space is no longer active on
1108 * any processor. It can be appended to the
1109 * list of inactive address spaces with assigned
1110 * ASID.
1111 */
1112 ASSERT(old_as->asid != ASID_INVALID);
1113 list_append(&old_as->inactive_as_with_asid_link,
1114 &inactive_as_with_asid_head);
1115 }
1116
1117 /*
1118 * Perform architecture-specific tasks when the address space
1119 * is being removed from the CPU.
1120 */
1121 as_deinstall_arch(old_as);
1122 }
1123
1124 /*
1125 * Second, prepare the new address space.
1126 */
1127 if ((new_as->cpu_refcount++ == 0) && (new_as != AS_KERNEL)) {
1128 if (new_as->asid != ASID_INVALID)
1129 list_remove(&new_as->inactive_as_with_asid_link);
1130 else
1131 new_as->asid = asid_get();
1132 }
1133#ifdef AS_PAGE_TABLE
1134 SET_PTL0_ADDRESS(new_as->genarch.page_table);
1135#endif
1136
1137 /*
1138 * Perform architecture-specific steps.
1139 * (e.g. write ASID to hardware register etc.)
1140 */
1141 as_install_arch(new_as);
1142
1143 spinlock_unlock(&asidlock);
1144
1145 AS = new_as;
1146}
1147
1148/** Convert address space area flags to page flags.
1149 *
1150 * @param aflags Flags of some address space area.
1151 *
1152 * @return Flags to be passed to page_mapping_insert().
1153 */
1154int area_flags_to_page_flags(int aflags)
1155{
1156 int flags;
1157
1158 flags = PAGE_USER | PAGE_PRESENT;
1159
1160 if (aflags & AS_AREA_READ)
1161 flags |= PAGE_READ;
1162
1163 if (aflags & AS_AREA_WRITE)
1164 flags |= PAGE_WRITE;
1165
1166 if (aflags & AS_AREA_EXEC)
1167 flags |= PAGE_EXEC;
1168
1169 if (aflags & AS_AREA_CACHEABLE)
1170 flags |= PAGE_CACHEABLE;
1171
1172 return flags;
1173}
1174
1175/** Compute flags for virtual address translation subsytem.
1176 *
1177 * The address space area must be locked.
1178 * Interrupts must be disabled.
1179 *
1180 * @param a Address space area.
1181 *
1182 * @return Flags to be used in page_mapping_insert().
1183 */
1184int as_area_get_flags(as_area_t *a)
1185{
1186 return area_flags_to_page_flags(a->flags);
1187}
1188
1189/** Create page table.
1190 *
1191 * Depending on architecture, create either address space private or global page
1192 * table.
1193 *
1194 * @param flags Flags saying whether the page table is for the kernel
1195 * address space.
1196 *
1197 * @return First entry of the page table.
1198 */
1199pte_t *page_table_create(int flags)
1200{
1201 ASSERT(as_operations);
1202 ASSERT(as_operations->page_table_create);
1203
1204 return as_operations->page_table_create(flags);
1205}
1206
1207/** Destroy page table.
1208 *
1209 * Destroy page table in architecture specific way.
1210 *
1211 * @param page_table Physical address of PTL0.
1212 */
1213void page_table_destroy(pte_t *page_table)
1214{
1215 ASSERT(as_operations);
1216 ASSERT(as_operations->page_table_destroy);
1217
1218 as_operations->page_table_destroy(page_table);
1219}
1220
1221/** Lock page table.
1222 *
1223 * This function should be called before any page_mapping_insert(),
1224 * page_mapping_remove() and page_mapping_find().
1225 *
1226 * Locking order is such that address space areas must be locked
1227 * prior to this call. Address space can be locked prior to this
1228 * call in which case the lock argument is false.
1229 *
1230 * @param as Address space.
1231 * @param lock If false, do not attempt to lock as->lock.
1232 */
1233void page_table_lock(as_t *as, bool lock)
1234{
1235 ASSERT(as_operations);
1236 ASSERT(as_operations->page_table_lock);
1237
1238 as_operations->page_table_lock(as, lock);
1239}
1240
1241/** Unlock page table.
1242 *
1243 * @param as Address space.
1244 * @param unlock If false, do not attempt to unlock as->lock.
1245 */
1246void page_table_unlock(as_t *as, bool unlock)
1247{
1248 ASSERT(as_operations);
1249 ASSERT(as_operations->page_table_unlock);
1250
1251 as_operations->page_table_unlock(as, unlock);
1252}
1253
1254
1255/** Find address space area and lock it.
1256 *
1257 * The address space must be locked and interrupts must be disabled.
1258 *
1259 * @param as Address space.
1260 * @param va Virtual address.
1261 *
1262 * @return Locked address space area containing va on success or
1263 * NULL on failure.
1264 */
1265as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
1266{
1267 as_area_t *a;
1268 btree_node_t *leaf, *lnode;
1269 unsigned int i;
1270
1271 a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
1272 if (a) {
1273 /* va is the base address of an address space area */
1274 mutex_lock(&a->lock);
1275 return a;
1276 }
1277
1278 /*
1279 * Search the leaf node and the righmost record of its left neighbour
1280 * to find out whether this is a miss or va belongs to an address
1281 * space area found there.
1282 */
1283
1284 /* First, search the leaf node itself. */
1285 for (i = 0; i < leaf->keys; i++) {
1286 a = (as_area_t *) leaf->value[i];
1287 mutex_lock(&a->lock);
1288 if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
1289 return a;
1290 }
1291 mutex_unlock(&a->lock);
1292 }
1293
1294 /*
1295 * Second, locate the left neighbour and test its last record.
1296 * Because of its position in the B+tree, it must have base < va.
1297 */
1298 lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf);
1299 if (lnode) {
1300 a = (as_area_t *) lnode->value[lnode->keys - 1];
1301 mutex_lock(&a->lock);
1302 if (va < a->base + a->pages * PAGE_SIZE) {
1303 return a;
1304 }
1305 mutex_unlock(&a->lock);
1306 }
1307
1308 return NULL;
1309}
1310
1311/** Check area conflicts with other areas.
1312 *
1313 * The address space must be locked and interrupts must be disabled.
1314 *
1315 * @param as Address space.
1316 * @param va Starting virtual address of the area being tested.
1317 * @param size Size of the area being tested.
1318 * @param avoid_area Do not touch this area.
1319 *
1320 * @return True if there is no conflict, false otherwise.
1321 */
1322bool
1323check_area_conflicts(as_t *as, uintptr_t va, size_t size, as_area_t *avoid_area)
1324{
1325 as_area_t *a;
1326 btree_node_t *leaf, *node;
1327 unsigned int i;
1328
1329 /*
1330 * We don't want any area to have conflicts with NULL page.
1331 */
1332 if (overlaps(va, size, NULL, PAGE_SIZE))
1333 return false;
1334
1335 /*
1336 * The leaf node is found in O(log n), where n is proportional to
1337 * the number of address space areas belonging to as.
1338 * The check for conflicts is then attempted on the rightmost
1339 * record in the left neighbour, the leftmost record in the right
1340 * neighbour and all records in the leaf node itself.
1341 */
1342
1343 if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1344 if (a != avoid_area)
1345 return false;
1346 }
1347
1348 /* First, check the two border cases. */
1349 if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1350 a = (as_area_t *) node->value[node->keys - 1];
1351 mutex_lock(&a->lock);
1352 if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1353 mutex_unlock(&a->lock);
1354 return false;
1355 }
1356 mutex_unlock(&a->lock);
1357 }
1358 node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf);
1359 if (node) {
1360 a = (as_area_t *) node->value[0];
1361 mutex_lock(&a->lock);
1362 if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1363 mutex_unlock(&a->lock);
1364 return false;
1365 }
1366 mutex_unlock(&a->lock);
1367 }
1368
1369 /* Second, check the leaf node. */
1370 for (i = 0; i < leaf->keys; i++) {
1371 a = (as_area_t *) leaf->value[i];
1372
1373 if (a == avoid_area)
1374 continue;
1375
1376 mutex_lock(&a->lock);
1377 if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1378 mutex_unlock(&a->lock);
1379 return false;
1380 }
1381 mutex_unlock(&a->lock);
1382 }
1383
1384 /*
1385 * So far, the area does not conflict with other areas.
1386 * Check if it doesn't conflict with kernel address space.
1387 */
1388 if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1389 return !overlaps(va, size,
1390 KERNEL_ADDRESS_SPACE_START,
1391 KERNEL_ADDRESS_SPACE_END - KERNEL_ADDRESS_SPACE_START);
1392 }
1393
1394 return true;
1395}
1396
1397/** Return size of the address space area with given base.
1398 *
1399 * @param base Arbitrary address insede the address space area.
1400 *
1401 * @return Size of the address space area in bytes or zero if it
1402 * does not exist.
1403 */
1404size_t as_area_get_size(uintptr_t base)
1405{
1406 ipl_t ipl;
1407 as_area_t *src_area;
1408 size_t size;
1409
1410 ipl = interrupts_disable();
1411 src_area = find_area_and_lock(AS, base);
1412 if (src_area) {
1413 size = src_area->pages * PAGE_SIZE;
1414 mutex_unlock(&src_area->lock);
1415 } else {
1416 size = 0;
1417 }
1418 interrupts_restore(ipl);
1419 return size;
1420}
1421
1422/** Mark portion of address space area as used.
1423 *
1424 * The address space area must be already locked.
1425 *
1426 * @param a Address space area.
1427 * @param page First page to be marked.
1428 * @param count Number of page to be marked.
1429 *
1430 * @return Zero on failure and non-zero on success.
1431 */
1432int used_space_insert(as_area_t *a, uintptr_t page, size_t count)
1433{
1434 btree_node_t *leaf, *node;
1435 size_t pages;
1436 unsigned int i;
1437
1438 ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1439 ASSERT(count);
1440
1441 pages = (size_t) btree_search(&a->used_space, page, &leaf);
1442 if (pages) {
1443 /*
1444 * We hit the beginning of some used space.
1445 */
1446 return 0;
1447 }
1448
1449 if (!leaf->keys) {
1450 btree_insert(&a->used_space, page, (void *) count, leaf);
1451 return 1;
1452 }
1453
1454 node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1455 if (node) {
1456 uintptr_t left_pg = node->key[node->keys - 1];
1457 uintptr_t right_pg = leaf->key[0];
1458 size_t left_cnt = (size_t) node->value[node->keys - 1];
1459 size_t right_cnt = (size_t) leaf->value[0];
1460
1461 /*
1462 * Examine the possibility that the interval fits
1463 * somewhere between the rightmost interval of
1464 * the left neigbour and the first interval of the leaf.
1465 */
1466
1467 if (page >= right_pg) {
1468 /* Do nothing. */
1469 } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1470 left_cnt * PAGE_SIZE)) {
1471 /* The interval intersects with the left interval. */
1472 return 0;
1473 } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1474 right_cnt * PAGE_SIZE)) {
1475 /* The interval intersects with the right interval. */
1476 return 0;
1477 } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1478 (page + count * PAGE_SIZE == right_pg)) {
1479 /*
1480 * The interval can be added by merging the two already
1481 * present intervals.
1482 */
1483 node->value[node->keys - 1] += count + right_cnt;
1484 btree_remove(&a->used_space, right_pg, leaf);
1485 return 1;
1486 } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1487 /*
1488 * The interval can be added by simply growing the left
1489 * interval.
1490 */
1491 node->value[node->keys - 1] += count;
1492 return 1;
1493 } else if (page + count * PAGE_SIZE == right_pg) {
1494 /*
1495 * The interval can be addded by simply moving base of
1496 * the right interval down and increasing its size
1497 * accordingly.
1498 */
1499 leaf->value[0] += count;
1500 leaf->key[0] = page;
1501 return 1;
1502 } else {
1503 /*
1504 * The interval is between both neigbouring intervals,
1505 * but cannot be merged with any of them.
1506 */
1507 btree_insert(&a->used_space, page, (void *) count,
1508 leaf);
1509 return 1;
1510 }
1511 } else if (page < leaf->key[0]) {
1512 uintptr_t right_pg = leaf->key[0];
1513 size_t right_cnt = (size_t) leaf->value[0];
1514
1515 /*
1516 * Investigate the border case in which the left neighbour does
1517 * not exist but the interval fits from the left.
1518 */
1519
1520 if (overlaps(page, count * PAGE_SIZE, right_pg,
1521 right_cnt * PAGE_SIZE)) {
1522 /* The interval intersects with the right interval. */
1523 return 0;
1524 } else if (page + count * PAGE_SIZE == right_pg) {
1525 /*
1526 * The interval can be added by moving the base of the
1527 * right interval down and increasing its size
1528 * accordingly.
1529 */
1530 leaf->key[0] = page;
1531 leaf->value[0] += count;
1532 return 1;
1533 } else {
1534 /*
1535 * The interval doesn't adjoin with the right interval.
1536 * It must be added individually.
1537 */
1538 btree_insert(&a->used_space, page, (void *) count,
1539 leaf);
1540 return 1;
1541 }
1542 }
1543
1544 node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1545 if (node) {
1546 uintptr_t left_pg = leaf->key[leaf->keys - 1];
1547 uintptr_t right_pg = node->key[0];
1548 size_t left_cnt = (size_t) leaf->value[leaf->keys - 1];
1549 size_t right_cnt = (size_t) node->value[0];
1550
1551 /*
1552 * Examine the possibility that the interval fits
1553 * somewhere between the leftmost interval of
1554 * the right neigbour and the last interval of the leaf.
1555 */
1556
1557 if (page < left_pg) {
1558 /* Do nothing. */
1559 } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1560 left_cnt * PAGE_SIZE)) {
1561 /* The interval intersects with the left interval. */
1562 return 0;
1563 } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1564 right_cnt * PAGE_SIZE)) {
1565 /* The interval intersects with the right interval. */
1566 return 0;
1567 } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1568 (page + count * PAGE_SIZE == right_pg)) {
1569 /*
1570 * The interval can be added by merging the two already
1571 * present intervals.
1572 * */
1573 leaf->value[leaf->keys - 1] += count + right_cnt;
1574 btree_remove(&a->used_space, right_pg, node);
1575 return 1;
1576 } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1577 /*
1578 * The interval can be added by simply growing the left
1579 * interval.
1580 * */
1581 leaf->value[leaf->keys - 1] += count;
1582 return 1;
1583 } else if (page + count * PAGE_SIZE == right_pg) {
1584 /*
1585 * The interval can be addded by simply moving base of
1586 * the right interval down and increasing its size
1587 * accordingly.
1588 */
1589 node->value[0] += count;
1590 node->key[0] = page;
1591 return 1;
1592 } else {
1593 /*
1594 * The interval is between both neigbouring intervals,
1595 * but cannot be merged with any of them.
1596 */
1597 btree_insert(&a->used_space, page, (void *) count,
1598 leaf);
1599 return 1;
1600 }
1601 } else if (page >= leaf->key[leaf->keys - 1]) {
1602 uintptr_t left_pg = leaf->key[leaf->keys - 1];
1603 size_t left_cnt = (size_t) leaf->value[leaf->keys - 1];
1604
1605 /*
1606 * Investigate the border case in which the right neighbour
1607 * does not exist but the interval fits from the right.
1608 */
1609
1610 if (overlaps(page, count * PAGE_SIZE, left_pg,
1611 left_cnt * PAGE_SIZE)) {
1612 /* The interval intersects with the left interval. */
1613 return 0;
1614 } else if (left_pg + left_cnt * PAGE_SIZE == page) {
1615 /*
1616 * The interval can be added by growing the left
1617 * interval.
1618 */
1619 leaf->value[leaf->keys - 1] += count;
1620 return 1;
1621 } else {
1622 /*
1623 * The interval doesn't adjoin with the left interval.
1624 * It must be added individually.
1625 */
1626 btree_insert(&a->used_space, page, (void *) count,
1627 leaf);
1628 return 1;
1629 }
1630 }
1631
1632 /*
1633 * Note that if the algorithm made it thus far, the interval can fit
1634 * only between two other intervals of the leaf. The two border cases
1635 * were already resolved.
1636 */
1637 for (i = 1; i < leaf->keys; i++) {
1638 if (page < leaf->key[i]) {
1639 uintptr_t left_pg = leaf->key[i - 1];
1640 uintptr_t right_pg = leaf->key[i];
1641 size_t left_cnt = (size_t) leaf->value[i - 1];
1642 size_t right_cnt = (size_t) leaf->value[i];
1643
1644 /*
1645 * The interval fits between left_pg and right_pg.
1646 */
1647
1648 if (overlaps(page, count * PAGE_SIZE, left_pg,
1649 left_cnt * PAGE_SIZE)) {
1650 /*
1651 * The interval intersects with the left
1652 * interval.
1653 */
1654 return 0;
1655 } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1656 right_cnt * PAGE_SIZE)) {
1657 /*
1658 * The interval intersects with the right
1659 * interval.
1660 */
1661 return 0;
1662 } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1663 (page + count * PAGE_SIZE == right_pg)) {
1664 /*
1665 * The interval can be added by merging the two
1666 * already present intervals.
1667 */
1668 leaf->value[i - 1] += count + right_cnt;
1669 btree_remove(&a->used_space, right_pg, leaf);
1670 return 1;
1671 } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1672 /*
1673 * The interval can be added by simply growing
1674 * the left interval.
1675 */
1676 leaf->value[i - 1] += count;
1677 return 1;
1678 } else if (page + count * PAGE_SIZE == right_pg) {
1679 /*
1680 * The interval can be addded by simply moving
1681 * base of the right interval down and
1682 * increasing its size accordingly.
1683 */
1684 leaf->value[i] += count;
1685 leaf->key[i] = page;
1686 return 1;
1687 } else {
1688 /*
1689 * The interval is between both neigbouring
1690 * intervals, but cannot be merged with any of
1691 * them.
1692 */
1693 btree_insert(&a->used_space, page,
1694 (void *) count, leaf);
1695 return 1;
1696 }
1697 }
1698 }
1699
1700 panic("Inconsistency detected while adding %" PRIs " pages of used "
1701 "space at %p.", count, page);
1702}
1703
1704/** Mark portion of address space area as unused.
1705 *
1706 * The address space area must be already locked.
1707 *
1708 * @param a Address space area.
1709 * @param page First page to be marked.
1710 * @param count Number of page to be marked.
1711 *
1712 * @return Zero on failure and non-zero on success.
1713 */
1714int used_space_remove(as_area_t *a, uintptr_t page, size_t count)
1715{
1716 btree_node_t *leaf, *node;
1717 size_t pages;
1718 unsigned int i;
1719
1720 ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1721 ASSERT(count);
1722
1723 pages = (size_t) btree_search(&a->used_space, page, &leaf);
1724 if (pages) {
1725 /*
1726 * We are lucky, page is the beginning of some interval.
1727 */
1728 if (count > pages) {
1729 return 0;
1730 } else if (count == pages) {
1731 btree_remove(&a->used_space, page, leaf);
1732 return 1;
1733 } else {
1734 /*
1735 * Find the respective interval.
1736 * Decrease its size and relocate its start address.
1737 */
1738 for (i = 0; i < leaf->keys; i++) {
1739 if (leaf->key[i] == page) {
1740 leaf->key[i] += count * PAGE_SIZE;
1741 leaf->value[i] -= count;
1742 return 1;
1743 }
1744 }
1745 goto error;
1746 }
1747 }
1748
1749 node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1750 if (node && page < leaf->key[0]) {
1751 uintptr_t left_pg = node->key[node->keys - 1];
1752 size_t left_cnt = (size_t) node->value[node->keys - 1];
1753
1754 if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1755 count * PAGE_SIZE)) {
1756 if (page + count * PAGE_SIZE ==
1757 left_pg + left_cnt * PAGE_SIZE) {
1758 /*
1759 * The interval is contained in the rightmost
1760 * interval of the left neighbour and can be
1761 * removed by updating the size of the bigger
1762 * interval.
1763 */
1764 node->value[node->keys - 1] -= count;
1765 return 1;
1766 } else if (page + count * PAGE_SIZE <
1767 left_pg + left_cnt*PAGE_SIZE) {
1768 size_t new_cnt;
1769
1770 /*
1771 * The interval is contained in the rightmost
1772 * interval of the left neighbour but its
1773 * removal requires both updating the size of
1774 * the original interval and also inserting a
1775 * new interval.
1776 */
1777 new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1778 (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1779 node->value[node->keys - 1] -= count + new_cnt;
1780 btree_insert(&a->used_space, page +
1781 count * PAGE_SIZE, (void *) new_cnt, leaf);
1782 return 1;
1783 }
1784 }
1785 return 0;
1786 } else if (page < leaf->key[0]) {
1787 return 0;
1788 }
1789
1790 if (page > leaf->key[leaf->keys - 1]) {
1791 uintptr_t left_pg = leaf->key[leaf->keys - 1];
1792 size_t left_cnt = (size_t) leaf->value[leaf->keys - 1];
1793
1794 if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1795 count * PAGE_SIZE)) {
1796 if (page + count * PAGE_SIZE ==
1797 left_pg + left_cnt * PAGE_SIZE) {
1798 /*
1799 * The interval is contained in the rightmost
1800 * interval of the leaf and can be removed by
1801 * updating the size of the bigger interval.
1802 */
1803 leaf->value[leaf->keys - 1] -= count;
1804 return 1;
1805 } else if (page + count * PAGE_SIZE < left_pg +
1806 left_cnt * PAGE_SIZE) {
1807 size_t new_cnt;
1808
1809 /*
1810 * The interval is contained in the rightmost
1811 * interval of the leaf but its removal
1812 * requires both updating the size of the
1813 * original interval and also inserting a new
1814 * interval.
1815 */
1816 new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1817 (page + count * PAGE_SIZE)) >> PAGE_WIDTH;
1818 leaf->value[leaf->keys - 1] -= count + new_cnt;
1819 btree_insert(&a->used_space, page +
1820 count * PAGE_SIZE, (void *) new_cnt, leaf);
1821 return 1;
1822 }
1823 }
1824 return 0;
1825 }
1826
1827 /*
1828 * The border cases have been already resolved.
1829 * Now the interval can be only between intervals of the leaf.
1830 */
1831 for (i = 1; i < leaf->keys - 1; i++) {
1832 if (page < leaf->key[i]) {
1833 uintptr_t left_pg = leaf->key[i - 1];
1834 size_t left_cnt = (size_t) leaf->value[i - 1];
1835
1836 /*
1837 * Now the interval is between intervals corresponding
1838 * to (i - 1) and i.
1839 */
1840 if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1841 count * PAGE_SIZE)) {
1842 if (page + count * PAGE_SIZE ==
1843 left_pg + left_cnt*PAGE_SIZE) {
1844 /*
1845 * The interval is contained in the
1846 * interval (i - 1) of the leaf and can
1847 * be removed by updating the size of
1848 * the bigger interval.
1849 */
1850 leaf->value[i - 1] -= count;
1851 return 1;
1852 } else if (page + count * PAGE_SIZE <
1853 left_pg + left_cnt * PAGE_SIZE) {
1854 size_t new_cnt;
1855
1856 /*
1857 * The interval is contained in the
1858 * interval (i - 1) of the leaf but its
1859 * removal requires both updating the
1860 * size of the original interval and
1861 * also inserting a new interval.
1862 */
1863 new_cnt = ((left_pg +
1864 left_cnt * PAGE_SIZE) -
1865 (page + count * PAGE_SIZE)) >>
1866 PAGE_WIDTH;
1867 leaf->value[i - 1] -= count + new_cnt;
1868 btree_insert(&a->used_space, page +
1869 count * PAGE_SIZE, (void *) new_cnt,
1870 leaf);
1871 return 1;
1872 }
1873 }
1874 return 0;
1875 }
1876 }
1877
1878error:
1879 panic("Inconsistency detected while removing %" PRIs " pages of used "
1880 "space from %p.", count, page);
1881}
1882
1883/** Remove reference to address space area share info.
1884 *
1885 * If the reference count drops to 0, the sh_info is deallocated.
1886 *
1887 * @param sh_info Pointer to address space area share info.
1888 */
1889void sh_info_remove_reference(share_info_t *sh_info)
1890{
1891 bool dealloc = false;
1892
1893 mutex_lock(&sh_info->lock);
1894 ASSERT(sh_info->refcount);
1895 if (--sh_info->refcount == 0) {
1896 dealloc = true;
1897 link_t *cur;
1898
1899 /*
1900 * Now walk carefully the pagemap B+tree and free/remove
1901 * reference from all frames found there.
1902 */
1903 for (cur = sh_info->pagemap.leaf_head.next;
1904 cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1905 btree_node_t *node;
1906 unsigned int i;
1907
1908 node = list_get_instance(cur, btree_node_t, leaf_link);
1909 for (i = 0; i < node->keys; i++)
1910 frame_free((uintptr_t) node->value[i]);
1911 }
1912
1913 }
1914 mutex_unlock(&sh_info->lock);
1915
1916 if (dealloc) {
1917 btree_destroy(&sh_info->pagemap);
1918 free(sh_info);
1919 }
1920}
1921
1922/*
1923 * Address space related syscalls.
1924 */
1925
1926/** Wrapper for as_area_create(). */
1927unative_t sys_as_area_create(uintptr_t address, size_t size, int flags)
1928{
1929 if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address,
1930 AS_AREA_ATTR_NONE, &anon_backend, NULL))
1931 return (unative_t) address;
1932 else
1933 return (unative_t) -1;
1934}
1935
1936/** Wrapper for as_area_resize(). */
1937unative_t sys_as_area_resize(uintptr_t address, size_t size, int flags)
1938{
1939 return (unative_t) as_area_resize(AS, address, size, 0);
1940}
1941
1942/** Wrapper for as_area_change_flags(). */
1943unative_t sys_as_area_change_flags(uintptr_t address, int flags)
1944{
1945 return (unative_t) as_area_change_flags(AS, flags, address);
1946}
1947
1948/** Wrapper for as_area_destroy(). */
1949unative_t sys_as_area_destroy(uintptr_t address)
1950{
1951 return (unative_t) as_area_destroy(AS, address);
1952}
1953
1954/** Get list of adress space areas.
1955 *
1956 * @param as Address space.
1957 * @param obuf Place to save pointer to returned buffer.
1958 * @param osize Place to save size of returned buffer.
1959 */
1960void as_get_area_info(as_t *as, as_area_info_t **obuf, size_t *osize)
1961{
1962 ipl_t ipl;
1963 size_t area_cnt, area_idx, i;
1964 link_t *cur;
1965
1966 as_area_info_t *info;
1967 size_t isize;
1968
1969 ipl = interrupts_disable();
1970 mutex_lock(&as->lock);
1971
1972 /* First pass, count number of areas. */
1973
1974 area_cnt = 0;
1975
1976 for (cur = as->as_area_btree.leaf_head.next;
1977 cur != &as->as_area_btree.leaf_head; cur = cur->next) {
1978 btree_node_t *node;
1979
1980 node = list_get_instance(cur, btree_node_t, leaf_link);
1981 area_cnt += node->keys;
1982 }
1983
1984 isize = area_cnt * sizeof(as_area_info_t);
1985 info = malloc(isize, 0);
1986
1987 /* Second pass, record data. */
1988
1989 area_idx = 0;
1990
1991 for (cur = as->as_area_btree.leaf_head.next;
1992 cur != &as->as_area_btree.leaf_head; cur = cur->next) {
1993 btree_node_t *node;
1994
1995 node = list_get_instance(cur, btree_node_t, leaf_link);
1996
1997 for (i = 0; i < node->keys; i++) {
1998 as_area_t *area = node->value[i];
1999
2000 ASSERT(area_idx < area_cnt);
2001 mutex_lock(&area->lock);
2002
2003 info[area_idx].start_addr = area->base;
2004 info[area_idx].size = FRAMES2SIZE(area->pages);
2005 info[area_idx].flags = area->flags;
2006 ++area_idx;
2007
2008 mutex_unlock(&area->lock);
2009 }
2010 }
2011
2012 mutex_unlock(&as->lock);
2013 interrupts_restore(ipl);
2014
2015 *obuf = info;
2016 *osize = isize;
2017}
2018
2019
2020/** Print out information about address space.
2021 *
2022 * @param as Address space.
2023 */
2024void as_print(as_t *as)
2025{
2026 ipl_t ipl;
2027
2028 ipl = interrupts_disable();
2029 mutex_lock(&as->lock);
2030
2031 /* print out info about address space areas */
2032 link_t *cur;
2033 for (cur = as->as_area_btree.leaf_head.next;
2034 cur != &as->as_area_btree.leaf_head; cur = cur->next) {
2035 btree_node_t *node;
2036
2037 node = list_get_instance(cur, btree_node_t, leaf_link);
2038
2039 unsigned int i;
2040 for (i = 0; i < node->keys; i++) {
2041 as_area_t *area = node->value[i];
2042
2043 mutex_lock(&area->lock);
2044 printf("as_area: %p, base=%p, pages=%" PRIs
2045 " (%p - %p)\n", area, area->base, area->pages,
2046 area->base, area->base + FRAMES2SIZE(area->pages));
2047 mutex_unlock(&area->lock);
2048 }
2049 }
2050
2051 mutex_unlock(&as->lock);
2052 interrupts_restore(ipl);
2053}
2054
2055/** @}
2056 */
Note: See TracBrowser for help on using the repository browser.