source: mainline/kernel/generic/src/mm/as.c@ 93a3348

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since 93a3348 was 2b8b0ca, checked in by Martin Decky <martin@…>, 18 years ago

proper printf formatting

  • Property mode set to 100644
File size: 45.6 KB
Line 
1/*
2 * Copyright (c) 2001-2006 Jakub Jermar
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/** @addtogroup genericmm
30 * @{
31 */
32
33/**
34 * @file
35 * @brief Address space related functions.
36 *
37 * This file contains address space manipulation functions.
38 * Roughly speaking, this is a higher-level client of
39 * Virtual Address Translation (VAT) subsystem.
40 *
41 * Functionality provided by this file allows one to
42 * create address spaces and create, resize and share
43 * address space areas.
44 *
45 * @see page.c
46 *
47 */
48
49#include <mm/as.h>
50#include <arch/mm/as.h>
51#include <mm/page.h>
52#include <mm/frame.h>
53#include <mm/slab.h>
54#include <mm/tlb.h>
55#include <arch/mm/page.h>
56#include <genarch/mm/page_pt.h>
57#include <genarch/mm/page_ht.h>
58#include <mm/asid.h>
59#include <arch/mm/asid.h>
60#include <preemption.h>
61#include <synch/spinlock.h>
62#include <synch/mutex.h>
63#include <adt/list.h>
64#include <adt/btree.h>
65#include <proc/task.h>
66#include <proc/thread.h>
67#include <arch/asm.h>
68#include <panic.h>
69#include <debug.h>
70#include <print.h>
71#include <memstr.h>
72#include <macros.h>
73#include <arch.h>
74#include <errno.h>
75#include <config.h>
76#include <align.h>
77#include <arch/types.h>
78#include <syscall/copy.h>
79#include <arch/interrupt.h>
80
81#ifdef CONFIG_VIRT_IDX_DCACHE
82#include <arch/mm/cache.h>
83#endif /* CONFIG_VIRT_IDX_DCACHE */
84
85#ifndef __OBJC__
86/**
87 * Each architecture decides what functions will be used to carry out
88 * address space operations such as creating or locking page tables.
89 */
90as_operations_t *as_operations = NULL;
91
92/**
93 * Slab for as_t objects.
94 */
95static slab_cache_t *as_slab;
96#endif
97
98/**
99 * This lock serializes access to the ASID subsystem.
100 * It protects:
101 * - inactive_as_with_asid_head list
102 * - as->asid for each as of the as_t type
103 * - asids_allocated counter
104 */
105SPINLOCK_INITIALIZE(asidlock);
106
107/**
108 * This list contains address spaces that are not active on any
109 * processor and that have valid ASID.
110 */
111LIST_INITIALIZE(inactive_as_with_asid_head);
112
113/** Kernel address space. */
114as_t *AS_KERNEL = NULL;
115
116static int area_flags_to_page_flags(int aflags);
117static as_area_t *find_area_and_lock(as_t *as, uintptr_t va);
118static bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
119 as_area_t *avoid_area);
120static void sh_info_remove_reference(share_info_t *sh_info);
121
122#ifndef __OBJC__
123static int as_constructor(void *obj, int flags)
124{
125 as_t *as = (as_t *) obj;
126 int rc;
127
128 link_initialize(&as->inactive_as_with_asid_link);
129 mutex_initialize(&as->lock);
130
131 rc = as_constructor_arch(as, flags);
132
133 return rc;
134}
135
136static int as_destructor(void *obj)
137{
138 as_t *as = (as_t *) obj;
139
140 return as_destructor_arch(as);
141}
142#endif
143
144/** Initialize address space subsystem. */
145void as_init(void)
146{
147 as_arch_init();
148
149#ifndef __OBJC__
150 as_slab = slab_cache_create("as_slab", sizeof(as_t), 0,
151 as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);
152#endif
153
154 AS_KERNEL = as_create(FLAG_AS_KERNEL);
155 if (!AS_KERNEL)
156 panic("can't create kernel address space\n");
157
158}
159
160/** Create address space.
161 *
162 * @param flags Flags that influence way in wich the address space is created.
163 */
164as_t *as_create(int flags)
165{
166 as_t *as;
167
168#ifdef __OBJC__
169 as = [as_t new];
170 link_initialize(&as->inactive_as_with_asid_link);
171 mutex_initialize(&as->lock);
172 (void) as_constructor_arch(as, flags);
173#else
174 as = (as_t *) slab_alloc(as_slab, 0);
175#endif
176 (void) as_create_arch(as, 0);
177
178 btree_create(&as->as_area_btree);
179
180 if (flags & FLAG_AS_KERNEL)
181 as->asid = ASID_KERNEL;
182 else
183 as->asid = ASID_INVALID;
184
185 atomic_set(&as->refcount, 0);
186 as->cpu_refcount = 0;
187#ifdef AS_PAGE_TABLE
188 as->genarch.page_table = page_table_create(flags);
189#else
190 page_table_create(flags);
191#endif
192
193 return as;
194}
195
196/** Destroy adress space.
197 *
198 * When there are no tasks referencing this address space (i.e. its refcount is
199 * zero), the address space can be destroyed.
200 *
201 * We know that we don't hold any spinlock.
202 */
203void as_destroy(as_t *as)
204{
205 ipl_t ipl;
206 bool cond;
207 DEADLOCK_PROBE_INIT(p_asidlock);
208
209 ASSERT(atomic_get(&as->refcount) == 0);
210
211 /*
212 * Since there is no reference to this area,
213 * it is safe not to lock its mutex.
214 */
215
216 /*
217 * We need to avoid deadlock between TLB shootdown and asidlock.
218 * We therefore try to take asid conditionally and if we don't succeed,
219 * we enable interrupts and try again. This is done while preemption is
220 * disabled to prevent nested context switches. We also depend on the
221 * fact that so far no spinlocks are held.
222 */
223 preemption_disable();
224 ipl = interrupts_read();
225retry:
226 interrupts_disable();
227 if (!spinlock_trylock(&asidlock)) {
228 interrupts_enable();
229 DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
230 goto retry;
231 }
232 preemption_enable(); /* Interrupts disabled, enable preemption */
233 if (as->asid != ASID_INVALID && as != AS_KERNEL) {
234 if (as != AS && as->cpu_refcount == 0)
235 list_remove(&as->inactive_as_with_asid_link);
236 asid_put(as->asid);
237 }
238 spinlock_unlock(&asidlock);
239
240 /*
241 * Destroy address space areas of the address space.
242 * The B+tree must be walked carefully because it is
243 * also being destroyed.
244 */
245 for (cond = true; cond; ) {
246 btree_node_t *node;
247
248 ASSERT(!list_empty(&as->as_area_btree.leaf_head));
249 node = list_get_instance(as->as_area_btree.leaf_head.next,
250 btree_node_t, leaf_link);
251
252 if ((cond = node->keys)) {
253 as_area_destroy(as, node->key[0]);
254 }
255 }
256
257 btree_destroy(&as->as_area_btree);
258#ifdef AS_PAGE_TABLE
259 page_table_destroy(as->genarch.page_table);
260#else
261 page_table_destroy(NULL);
262#endif
263
264 interrupts_restore(ipl);
265
266#ifdef __OBJC__
267 [as free];
268#else
269 slab_free(as_slab, as);
270#endif
271}
272
273/** Create address space area of common attributes.
274 *
275 * The created address space area is added to the target address space.
276 *
277 * @param as Target address space.
278 * @param flags Flags of the area memory.
279 * @param size Size of area.
280 * @param base Base address of area.
281 * @param attrs Attributes of the area.
282 * @param backend Address space area backend. NULL if no backend is used.
283 * @param backend_data NULL or a pointer to an array holding two void *.
284 *
285 * @return Address space area on success or NULL on failure.
286 */
287as_area_t *
288as_area_create(as_t *as, int flags, size_t size, uintptr_t base, int attrs,
289 mem_backend_t *backend, mem_backend_data_t *backend_data)
290{
291 ipl_t ipl;
292 as_area_t *a;
293
294 if (base % PAGE_SIZE)
295 return NULL;
296
297 if (!size)
298 return NULL;
299
300 /* Writeable executable areas are not supported. */
301 if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
302 return NULL;
303
304 ipl = interrupts_disable();
305 mutex_lock(&as->lock);
306
307 if (!check_area_conflicts(as, base, size, NULL)) {
308 mutex_unlock(&as->lock);
309 interrupts_restore(ipl);
310 return NULL;
311 }
312
313 a = (as_area_t *) malloc(sizeof(as_area_t), 0);
314
315 mutex_initialize(&a->lock);
316
317 a->as = as;
318 a->flags = flags;
319 a->attributes = attrs;
320 a->pages = SIZE2FRAMES(size);
321 a->base = base;
322 a->sh_info = NULL;
323 a->backend = backend;
324 if (backend_data)
325 a->backend_data = *backend_data;
326 else
327 memsetb((uintptr_t) &a->backend_data, sizeof(a->backend_data),
328 0);
329
330 btree_create(&a->used_space);
331
332 btree_insert(&as->as_area_btree, base, (void *) a, NULL);
333
334 mutex_unlock(&as->lock);
335 interrupts_restore(ipl);
336
337 return a;
338}
339
340/** Find address space area and change it.
341 *
342 * @param as Address space.
343 * @param address Virtual address belonging to the area to be changed. Must be
344 * page-aligned.
345 * @param size New size of the virtual memory block starting at address.
346 * @param flags Flags influencing the remap operation. Currently unused.
347 *
348 * @return Zero on success or a value from @ref errno.h otherwise.
349 */
350int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags)
351{
352 as_area_t *area;
353 ipl_t ipl;
354 size_t pages;
355
356 ipl = interrupts_disable();
357 mutex_lock(&as->lock);
358
359 /*
360 * Locate the area.
361 */
362 area = find_area_and_lock(as, address);
363 if (!area) {
364 mutex_unlock(&as->lock);
365 interrupts_restore(ipl);
366 return ENOENT;
367 }
368
369 if (area->backend == &phys_backend) {
370 /*
371 * Remapping of address space areas associated
372 * with memory mapped devices is not supported.
373 */
374 mutex_unlock(&area->lock);
375 mutex_unlock(&as->lock);
376 interrupts_restore(ipl);
377 return ENOTSUP;
378 }
379 if (area->sh_info) {
380 /*
381 * Remapping of shared address space areas
382 * is not supported.
383 */
384 mutex_unlock(&area->lock);
385 mutex_unlock(&as->lock);
386 interrupts_restore(ipl);
387 return ENOTSUP;
388 }
389
390 pages = SIZE2FRAMES((address - area->base) + size);
391 if (!pages) {
392 /*
393 * Zero size address space areas are not allowed.
394 */
395 mutex_unlock(&area->lock);
396 mutex_unlock(&as->lock);
397 interrupts_restore(ipl);
398 return EPERM;
399 }
400
401 if (pages < area->pages) {
402 bool cond;
403 uintptr_t start_free = area->base + pages*PAGE_SIZE;
404
405 /*
406 * Shrinking the area.
407 * No need to check for overlaps.
408 */
409
410 /*
411 * Start TLB shootdown sequence.
412 */
413 tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base +
414 pages * PAGE_SIZE, area->pages - pages);
415
416 /*
417 * Remove frames belonging to used space starting from
418 * the highest addresses downwards until an overlap with
419 * the resized address space area is found. Note that this
420 * is also the right way to remove part of the used_space
421 * B+tree leaf list.
422 */
423 for (cond = true; cond;) {
424 btree_node_t *node;
425
426 ASSERT(!list_empty(&area->used_space.leaf_head));
427 node =
428 list_get_instance(area->used_space.leaf_head.prev,
429 btree_node_t, leaf_link);
430 if ((cond = (bool) node->keys)) {
431 uintptr_t b = node->key[node->keys - 1];
432 count_t c =
433 (count_t) node->value[node->keys - 1];
434 unsigned int i = 0;
435
436 if (overlaps(b, c * PAGE_SIZE, area->base,
437 pages * PAGE_SIZE)) {
438
439 if (b + c * PAGE_SIZE <= start_free) {
440 /*
441 * The whole interval fits
442 * completely in the resized
443 * address space area.
444 */
445 break;
446 }
447
448 /*
449 * Part of the interval corresponding
450 * to b and c overlaps with the resized
451 * address space area.
452 */
453
454 cond = false; /* we are almost done */
455 i = (start_free - b) >> PAGE_WIDTH;
456 if (!used_space_remove(area, start_free, c - i))
457 panic("Could not remove used space.\n");
458 } else {
459 /*
460 * The interval of used space can be
461 * completely removed.
462 */
463 if (!used_space_remove(area, b, c))
464 panic("Could not remove used space.\n");
465 }
466
467 for (; i < c; i++) {
468 pte_t *pte;
469
470 page_table_lock(as, false);
471 pte = page_mapping_find(as, b +
472 i * PAGE_SIZE);
473 ASSERT(pte && PTE_VALID(pte) &&
474 PTE_PRESENT(pte));
475 if (area->backend &&
476 area->backend->frame_free) {
477 area->backend->frame_free(area,
478 b + i * PAGE_SIZE,
479 PTE_GET_FRAME(pte));
480 }
481 page_mapping_remove(as, b +
482 i * PAGE_SIZE);
483 page_table_unlock(as, false);
484 }
485 }
486 }
487
488 /*
489 * Finish TLB shootdown sequence.
490 */
491
492 tlb_invalidate_pages(as->asid, area->base + pages * PAGE_SIZE,
493 area->pages - pages);
494 /*
495 * Invalidate software translation caches (e.g. TSB on sparc64).
496 */
497 as_invalidate_translation_cache(as, area->base +
498 pages * PAGE_SIZE, area->pages - pages);
499 tlb_shootdown_finalize();
500
501 } else {
502 /*
503 * Growing the area.
504 * Check for overlaps with other address space areas.
505 */
506 if (!check_area_conflicts(as, address, pages * PAGE_SIZE,
507 area)) {
508 mutex_unlock(&area->lock);
509 mutex_unlock(&as->lock);
510 interrupts_restore(ipl);
511 return EADDRNOTAVAIL;
512 }
513 }
514
515 area->pages = pages;
516
517 mutex_unlock(&area->lock);
518 mutex_unlock(&as->lock);
519 interrupts_restore(ipl);
520
521 return 0;
522}
523
524/** Destroy address space area.
525 *
526 * @param as Address space.
527 * @param address Address withing the area to be deleted.
528 *
529 * @return Zero on success or a value from @ref errno.h on failure.
530 */
531int as_area_destroy(as_t *as, uintptr_t address)
532{
533 as_area_t *area;
534 uintptr_t base;
535 link_t *cur;
536 ipl_t ipl;
537
538 ipl = interrupts_disable();
539 mutex_lock(&as->lock);
540
541 area = find_area_and_lock(as, address);
542 if (!area) {
543 mutex_unlock(&as->lock);
544 interrupts_restore(ipl);
545 return ENOENT;
546 }
547
548 base = area->base;
549
550 /*
551 * Start TLB shootdown sequence.
552 */
553 tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
554
555 /*
556 * Visit only the pages mapped by used_space B+tree.
557 */
558 for (cur = area->used_space.leaf_head.next;
559 cur != &area->used_space.leaf_head; cur = cur->next) {
560 btree_node_t *node;
561 unsigned int i;
562
563 node = list_get_instance(cur, btree_node_t, leaf_link);
564 for (i = 0; i < node->keys; i++) {
565 uintptr_t b = node->key[i];
566 count_t j;
567 pte_t *pte;
568
569 for (j = 0; j < (count_t) node->value[i]; j++) {
570 page_table_lock(as, false);
571 pte = page_mapping_find(as, b + j * PAGE_SIZE);
572 ASSERT(pte && PTE_VALID(pte) &&
573 PTE_PRESENT(pte));
574 if (area->backend &&
575 area->backend->frame_free) {
576 area->backend->frame_free(area, b +
577 j * PAGE_SIZE, PTE_GET_FRAME(pte));
578 }
579 page_mapping_remove(as, b + j * PAGE_SIZE);
580 page_table_unlock(as, false);
581 }
582 }
583 }
584
585 /*
586 * Finish TLB shootdown sequence.
587 */
588
589 tlb_invalidate_pages(as->asid, area->base, area->pages);
590 /*
591 * Invalidate potential software translation caches (e.g. TSB on
592 * sparc64).
593 */
594 as_invalidate_translation_cache(as, area->base, area->pages);
595 tlb_shootdown_finalize();
596
597 btree_destroy(&area->used_space);
598
599 area->attributes |= AS_AREA_ATTR_PARTIAL;
600
601 if (area->sh_info)
602 sh_info_remove_reference(area->sh_info);
603
604 mutex_unlock(&area->lock);
605
606 /*
607 * Remove the empty area from address space.
608 */
609 btree_remove(&as->as_area_btree, base, NULL);
610
611 free(area);
612
613 mutex_unlock(&as->lock);
614 interrupts_restore(ipl);
615 return 0;
616}
617
618/** Share address space area with another or the same address space.
619 *
620 * Address space area mapping is shared with a new address space area.
621 * If the source address space area has not been shared so far,
622 * a new sh_info is created. The new address space area simply gets the
623 * sh_info of the source area. The process of duplicating the
624 * mapping is done through the backend share function.
625 *
626 * @param src_as Pointer to source address space.
627 * @param src_base Base address of the source address space area.
628 * @param acc_size Expected size of the source area.
629 * @param dst_as Pointer to destination address space.
630 * @param dst_base Target base address.
631 * @param dst_flags_mask Destination address space area flags mask.
632 *
633 * @return Zero on success or ENOENT if there is no such task or if there is no
634 * such address space area, EPERM if there was a problem in accepting the area
635 * or ENOMEM if there was a problem in allocating destination address space
636 * area. ENOTSUP is returned if the address space area backend does not support
637 * sharing.
638 */
639int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
640 as_t *dst_as, uintptr_t dst_base, int dst_flags_mask)
641{
642 ipl_t ipl;
643 int src_flags;
644 size_t src_size;
645 as_area_t *src_area, *dst_area;
646 share_info_t *sh_info;
647 mem_backend_t *src_backend;
648 mem_backend_data_t src_backend_data;
649
650 ipl = interrupts_disable();
651 mutex_lock(&src_as->lock);
652 src_area = find_area_and_lock(src_as, src_base);
653 if (!src_area) {
654 /*
655 * Could not find the source address space area.
656 */
657 mutex_unlock(&src_as->lock);
658 interrupts_restore(ipl);
659 return ENOENT;
660 }
661
662 if (!src_area->backend || !src_area->backend->share) {
663 /*
664 * There is no backend or the backend does not
665 * know how to share the area.
666 */
667 mutex_unlock(&src_area->lock);
668 mutex_unlock(&src_as->lock);
669 interrupts_restore(ipl);
670 return ENOTSUP;
671 }
672
673 src_size = src_area->pages * PAGE_SIZE;
674 src_flags = src_area->flags;
675 src_backend = src_area->backend;
676 src_backend_data = src_area->backend_data;
677
678 /* Share the cacheable flag from the original mapping */
679 if (src_flags & AS_AREA_CACHEABLE)
680 dst_flags_mask |= AS_AREA_CACHEABLE;
681
682 if (src_size != acc_size ||
683 (src_flags & dst_flags_mask) != dst_flags_mask) {
684 mutex_unlock(&src_area->lock);
685 mutex_unlock(&src_as->lock);
686 interrupts_restore(ipl);
687 return EPERM;
688 }
689
690 /*
691 * Now we are committed to sharing the area.
692 * First, prepare the area for sharing.
693 * Then it will be safe to unlock it.
694 */
695 sh_info = src_area->sh_info;
696 if (!sh_info) {
697 sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
698 mutex_initialize(&sh_info->lock);
699 sh_info->refcount = 2;
700 btree_create(&sh_info->pagemap);
701 src_area->sh_info = sh_info;
702 /*
703 * Call the backend to setup sharing.
704 */
705 src_area->backend->share(src_area);
706 } else {
707 mutex_lock(&sh_info->lock);
708 sh_info->refcount++;
709 mutex_unlock(&sh_info->lock);
710 }
711
712 mutex_unlock(&src_area->lock);
713 mutex_unlock(&src_as->lock);
714
715 /*
716 * Create copy of the source address space area.
717 * The destination area is created with AS_AREA_ATTR_PARTIAL
718 * attribute set which prevents race condition with
719 * preliminary as_page_fault() calls.
720 * The flags of the source area are masked against dst_flags_mask
721 * to support sharing in less privileged mode.
722 */
723 dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
724 AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
725 if (!dst_area) {
726 /*
727 * Destination address space area could not be created.
728 */
729 sh_info_remove_reference(sh_info);
730
731 interrupts_restore(ipl);
732 return ENOMEM;
733 }
734
735 /*
736 * Now the destination address space area has been
737 * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
738 * attribute and set the sh_info.
739 */
740 mutex_lock(&dst_as->lock);
741 mutex_lock(&dst_area->lock);
742 dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
743 dst_area->sh_info = sh_info;
744 mutex_unlock(&dst_area->lock);
745 mutex_unlock(&dst_as->lock);
746
747 interrupts_restore(ipl);
748
749 return 0;
750}
751
752/** Check access mode for address space area.
753 *
754 * The address space area must be locked prior to this call.
755 *
756 * @param area Address space area.
757 * @param access Access mode.
758 *
759 * @return False if access violates area's permissions, true otherwise.
760 */
761bool as_area_check_access(as_area_t *area, pf_access_t access)
762{
763 int flagmap[] = {
764 [PF_ACCESS_READ] = AS_AREA_READ,
765 [PF_ACCESS_WRITE] = AS_AREA_WRITE,
766 [PF_ACCESS_EXEC] = AS_AREA_EXEC
767 };
768
769 if (!(area->flags & flagmap[access]))
770 return false;
771
772 return true;
773}
774
775/** Handle page fault within the current address space.
776 *
777 * This is the high-level page fault handler. It decides
778 * whether the page fault can be resolved by any backend
779 * and if so, it invokes the backend to resolve the page
780 * fault.
781 *
782 * Interrupts are assumed disabled.
783 *
784 * @param page Faulting page.
785 * @param access Access mode that caused the fault (i.e. read/write/exec).
786 * @param istate Pointer to interrupted state.
787 *
788 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
789 * fault was caused by copy_to_uspace() or copy_from_uspace().
790 */
791int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
792{
793 pte_t *pte;
794 as_area_t *area;
795
796 if (!THREAD)
797 return AS_PF_FAULT;
798
799 ASSERT(AS);
800
801 mutex_lock(&AS->lock);
802 area = find_area_and_lock(AS, page);
803 if (!area) {
804 /*
805 * No area contained mapping for 'page'.
806 * Signal page fault to low-level handler.
807 */
808 mutex_unlock(&AS->lock);
809 goto page_fault;
810 }
811
812 if (area->attributes & AS_AREA_ATTR_PARTIAL) {
813 /*
814 * The address space area is not fully initialized.
815 * Avoid possible race by returning error.
816 */
817 mutex_unlock(&area->lock);
818 mutex_unlock(&AS->lock);
819 goto page_fault;
820 }
821
822 if (!area->backend || !area->backend->page_fault) {
823 /*
824 * The address space area is not backed by any backend
825 * or the backend cannot handle page faults.
826 */
827 mutex_unlock(&area->lock);
828 mutex_unlock(&AS->lock);
829 goto page_fault;
830 }
831
832 page_table_lock(AS, false);
833
834 /*
835 * To avoid race condition between two page faults
836 * on the same address, we need to make sure
837 * the mapping has not been already inserted.
838 */
839 if ((pte = page_mapping_find(AS, page))) {
840 if (PTE_PRESENT(pte)) {
841 if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
842 (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
843 (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
844 page_table_unlock(AS, false);
845 mutex_unlock(&area->lock);
846 mutex_unlock(&AS->lock);
847 return AS_PF_OK;
848 }
849 }
850 }
851
852 /*
853 * Resort to the backend page fault handler.
854 */
855 if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
856 page_table_unlock(AS, false);
857 mutex_unlock(&area->lock);
858 mutex_unlock(&AS->lock);
859 goto page_fault;
860 }
861
862 page_table_unlock(AS, false);
863 mutex_unlock(&area->lock);
864 mutex_unlock(&AS->lock);
865 return AS_PF_OK;
866
867page_fault:
868 if (THREAD->in_copy_from_uspace) {
869 THREAD->in_copy_from_uspace = false;
870 istate_set_retaddr(istate,
871 (uintptr_t) &memcpy_from_uspace_failover_address);
872 } else if (THREAD->in_copy_to_uspace) {
873 THREAD->in_copy_to_uspace = false;
874 istate_set_retaddr(istate,
875 (uintptr_t) &memcpy_to_uspace_failover_address);
876 } else {
877 return AS_PF_FAULT;
878 }
879
880 return AS_PF_DEFER;
881}
882
883/** Switch address spaces.
884 *
885 * Note that this function cannot sleep as it is essentially a part of
886 * scheduling. Sleeping here would lead to deadlock on wakeup. Another
887 * thing which is forbidden in this context is locking the address space.
888 *
889 * When this function is enetered, no spinlocks may be held.
890 *
891 * @param old Old address space or NULL.
892 * @param new New address space.
893 */
894void as_switch(as_t *old_as, as_t *new_as)
895{
896 DEADLOCK_PROBE_INIT(p_asidlock);
897 preemption_disable();
898retry:
899 (void) interrupts_disable();
900 if (!spinlock_trylock(&asidlock)) {
901 /*
902 * Avoid deadlock with TLB shootdown.
903 * We can enable interrupts here because
904 * preemption is disabled. We should not be
905 * holding any other lock.
906 */
907 (void) interrupts_enable();
908 DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
909 goto retry;
910 }
911 preemption_enable();
912
913 /*
914 * First, take care of the old address space.
915 */
916 if (old_as) {
917 ASSERT(old_as->cpu_refcount);
918 if((--old_as->cpu_refcount == 0) && (old_as != AS_KERNEL)) {
919 /*
920 * The old address space is no longer active on
921 * any processor. It can be appended to the
922 * list of inactive address spaces with assigned
923 * ASID.
924 */
925 ASSERT(old_as->asid != ASID_INVALID);
926 list_append(&old_as->inactive_as_with_asid_link,
927 &inactive_as_with_asid_head);
928 }
929
930 /*
931 * Perform architecture-specific tasks when the address space
932 * is being removed from the CPU.
933 */
934 as_deinstall_arch(old_as);
935 }
936
937 /*
938 * Second, prepare the new address space.
939 */
940 if ((new_as->cpu_refcount++ == 0) && (new_as != AS_KERNEL)) {
941 if (new_as->asid != ASID_INVALID)
942 list_remove(&new_as->inactive_as_with_asid_link);
943 else
944 new_as->asid = asid_get();
945 }
946#ifdef AS_PAGE_TABLE
947 SET_PTL0_ADDRESS(new_as->genarch.page_table);
948#endif
949
950 /*
951 * Perform architecture-specific steps.
952 * (e.g. write ASID to hardware register etc.)
953 */
954 as_install_arch(new_as);
955
956 spinlock_unlock(&asidlock);
957
958 AS = new_as;
959}
960
961/** Convert address space area flags to page flags.
962 *
963 * @param aflags Flags of some address space area.
964 *
965 * @return Flags to be passed to page_mapping_insert().
966 */
967int area_flags_to_page_flags(int aflags)
968{
969 int flags;
970
971 flags = PAGE_USER | PAGE_PRESENT;
972
973 if (aflags & AS_AREA_READ)
974 flags |= PAGE_READ;
975
976 if (aflags & AS_AREA_WRITE)
977 flags |= PAGE_WRITE;
978
979 if (aflags & AS_AREA_EXEC)
980 flags |= PAGE_EXEC;
981
982 if (aflags & AS_AREA_CACHEABLE)
983 flags |= PAGE_CACHEABLE;
984
985 return flags;
986}
987
988/** Compute flags for virtual address translation subsytem.
989 *
990 * The address space area must be locked.
991 * Interrupts must be disabled.
992 *
993 * @param a Address space area.
994 *
995 * @return Flags to be used in page_mapping_insert().
996 */
997int as_area_get_flags(as_area_t *a)
998{
999 return area_flags_to_page_flags(a->flags);
1000}
1001
1002/** Create page table.
1003 *
1004 * Depending on architecture, create either address space
1005 * private or global page table.
1006 *
1007 * @param flags Flags saying whether the page table is for kernel address space.
1008 *
1009 * @return First entry of the page table.
1010 */
1011pte_t *page_table_create(int flags)
1012{
1013#ifdef __OBJC__
1014 return [as_t page_table_create: flags];
1015#else
1016 ASSERT(as_operations);
1017 ASSERT(as_operations->page_table_create);
1018
1019 return as_operations->page_table_create(flags);
1020#endif
1021}
1022
1023/** Destroy page table.
1024 *
1025 * Destroy page table in architecture specific way.
1026 *
1027 * @param page_table Physical address of PTL0.
1028 */
1029void page_table_destroy(pte_t *page_table)
1030{
1031#ifdef __OBJC__
1032 return [as_t page_table_destroy: page_table];
1033#else
1034 ASSERT(as_operations);
1035 ASSERT(as_operations->page_table_destroy);
1036
1037 as_operations->page_table_destroy(page_table);
1038#endif
1039}
1040
1041/** Lock page table.
1042 *
1043 * This function should be called before any page_mapping_insert(),
1044 * page_mapping_remove() and page_mapping_find().
1045 *
1046 * Locking order is such that address space areas must be locked
1047 * prior to this call. Address space can be locked prior to this
1048 * call in which case the lock argument is false.
1049 *
1050 * @param as Address space.
1051 * @param lock If false, do not attempt to lock as->lock.
1052 */
1053void page_table_lock(as_t *as, bool lock)
1054{
1055#ifdef __OBJC__
1056 [as page_table_lock: lock];
1057#else
1058 ASSERT(as_operations);
1059 ASSERT(as_operations->page_table_lock);
1060
1061 as_operations->page_table_lock(as, lock);
1062#endif
1063}
1064
1065/** Unlock page table.
1066 *
1067 * @param as Address space.
1068 * @param unlock If false, do not attempt to unlock as->lock.
1069 */
1070void page_table_unlock(as_t *as, bool unlock)
1071{
1072#ifdef __OBJC__
1073 [as page_table_unlock: unlock];
1074#else
1075 ASSERT(as_operations);
1076 ASSERT(as_operations->page_table_unlock);
1077
1078 as_operations->page_table_unlock(as, unlock);
1079#endif
1080}
1081
1082
1083/** Find address space area and lock it.
1084 *
1085 * The address space must be locked and interrupts must be disabled.
1086 *
1087 * @param as Address space.
1088 * @param va Virtual address.
1089 *
1090 * @return Locked address space area containing va on success or NULL on
1091 * failure.
1092 */
1093as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
1094{
1095 as_area_t *a;
1096 btree_node_t *leaf, *lnode;
1097 unsigned int i;
1098
1099 a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
1100 if (a) {
1101 /* va is the base address of an address space area */
1102 mutex_lock(&a->lock);
1103 return a;
1104 }
1105
1106 /*
1107 * Search the leaf node and the righmost record of its left neighbour
1108 * to find out whether this is a miss or va belongs to an address
1109 * space area found there.
1110 */
1111
1112 /* First, search the leaf node itself. */
1113 for (i = 0; i < leaf->keys; i++) {
1114 a = (as_area_t *) leaf->value[i];
1115 mutex_lock(&a->lock);
1116 if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
1117 return a;
1118 }
1119 mutex_unlock(&a->lock);
1120 }
1121
1122 /*
1123 * Second, locate the left neighbour and test its last record.
1124 * Because of its position in the B+tree, it must have base < va.
1125 */
1126 lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf);
1127 if (lnode) {
1128 a = (as_area_t *) lnode->value[lnode->keys - 1];
1129 mutex_lock(&a->lock);
1130 if (va < a->base + a->pages * PAGE_SIZE) {
1131 return a;
1132 }
1133 mutex_unlock(&a->lock);
1134 }
1135
1136 return NULL;
1137}
1138
1139/** Check area conflicts with other areas.
1140 *
1141 * The address space must be locked and interrupts must be disabled.
1142 *
1143 * @param as Address space.
1144 * @param va Starting virtual address of the area being tested.
1145 * @param size Size of the area being tested.
1146 * @param avoid_area Do not touch this area.
1147 *
1148 * @return True if there is no conflict, false otherwise.
1149 */
1150bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
1151 as_area_t *avoid_area)
1152{
1153 as_area_t *a;
1154 btree_node_t *leaf, *node;
1155 unsigned int i;
1156
1157 /*
1158 * We don't want any area to have conflicts with NULL page.
1159 */
1160 if (overlaps(va, size, NULL, PAGE_SIZE))
1161 return false;
1162
1163 /*
1164 * The leaf node is found in O(log n), where n is proportional to
1165 * the number of address space areas belonging to as.
1166 * The check for conflicts is then attempted on the rightmost
1167 * record in the left neighbour, the leftmost record in the right
1168 * neighbour and all records in the leaf node itself.
1169 */
1170
1171 if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1172 if (a != avoid_area)
1173 return false;
1174 }
1175
1176 /* First, check the two border cases. */
1177 if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1178 a = (as_area_t *) node->value[node->keys - 1];
1179 mutex_lock(&a->lock);
1180 if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1181 mutex_unlock(&a->lock);
1182 return false;
1183 }
1184 mutex_unlock(&a->lock);
1185 }
1186 node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf);
1187 if (node) {
1188 a = (as_area_t *) node->value[0];
1189 mutex_lock(&a->lock);
1190 if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1191 mutex_unlock(&a->lock);
1192 return false;
1193 }
1194 mutex_unlock(&a->lock);
1195 }
1196
1197 /* Second, check the leaf node. */
1198 for (i = 0; i < leaf->keys; i++) {
1199 a = (as_area_t *) leaf->value[i];
1200
1201 if (a == avoid_area)
1202 continue;
1203
1204 mutex_lock(&a->lock);
1205 if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1206 mutex_unlock(&a->lock);
1207 return false;
1208 }
1209 mutex_unlock(&a->lock);
1210 }
1211
1212 /*
1213 * So far, the area does not conflict with other areas.
1214 * Check if it doesn't conflict with kernel address space.
1215 */
1216 if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1217 return !overlaps(va, size,
1218 KERNEL_ADDRESS_SPACE_START,
1219 KERNEL_ADDRESS_SPACE_END - KERNEL_ADDRESS_SPACE_START);
1220 }
1221
1222 return true;
1223}
1224
1225/** Return size of the address space area with given base.
1226 *
1227 * @param base Arbitrary address insede the address space area.
1228 *
1229 * @return Size of the address space area in bytes or zero if it
1230 * does not exist.
1231 */
1232size_t as_area_get_size(uintptr_t base)
1233{
1234 ipl_t ipl;
1235 as_area_t *src_area;
1236 size_t size;
1237
1238 ipl = interrupts_disable();
1239 src_area = find_area_and_lock(AS, base);
1240 if (src_area){
1241 size = src_area->pages * PAGE_SIZE;
1242 mutex_unlock(&src_area->lock);
1243 } else {
1244 size = 0;
1245 }
1246 interrupts_restore(ipl);
1247 return size;
1248}
1249
1250/** Mark portion of address space area as used.
1251 *
1252 * The address space area must be already locked.
1253 *
1254 * @param a Address space area.
1255 * @param page First page to be marked.
1256 * @param count Number of page to be marked.
1257 *
1258 * @return 0 on failure and 1 on success.
1259 */
1260int used_space_insert(as_area_t *a, uintptr_t page, count_t count)
1261{
1262 btree_node_t *leaf, *node;
1263 count_t pages;
1264 unsigned int i;
1265
1266 ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1267 ASSERT(count);
1268
1269 pages = (count_t) btree_search(&a->used_space, page, &leaf);
1270 if (pages) {
1271 /*
1272 * We hit the beginning of some used space.
1273 */
1274 return 0;
1275 }
1276
1277 if (!leaf->keys) {
1278 btree_insert(&a->used_space, page, (void *) count, leaf);
1279 return 1;
1280 }
1281
1282 node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1283 if (node) {
1284 uintptr_t left_pg = node->key[node->keys - 1];
1285 uintptr_t right_pg = leaf->key[0];
1286 count_t left_cnt = (count_t) node->value[node->keys - 1];
1287 count_t right_cnt = (count_t) leaf->value[0];
1288
1289 /*
1290 * Examine the possibility that the interval fits
1291 * somewhere between the rightmost interval of
1292 * the left neigbour and the first interval of the leaf.
1293 */
1294
1295 if (page >= right_pg) {
1296 /* Do nothing. */
1297 } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1298 left_cnt * PAGE_SIZE)) {
1299 /* The interval intersects with the left interval. */
1300 return 0;
1301 } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1302 right_cnt * PAGE_SIZE)) {
1303 /* The interval intersects with the right interval. */
1304 return 0;
1305 } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1306 (page + count * PAGE_SIZE == right_pg)) {
1307 /*
1308 * The interval can be added by merging the two already
1309 * present intervals.
1310 */
1311 node->value[node->keys - 1] += count + right_cnt;
1312 btree_remove(&a->used_space, right_pg, leaf);
1313 return 1;
1314 } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1315 /*
1316 * The interval can be added by simply growing the left
1317 * interval.
1318 */
1319 node->value[node->keys - 1] += count;
1320 return 1;
1321 } else if (page + count * PAGE_SIZE == right_pg) {
1322 /*
1323 * The interval can be addded by simply moving base of
1324 * the right interval down and increasing its size
1325 * accordingly.
1326 */
1327 leaf->value[0] += count;
1328 leaf->key[0] = page;
1329 return 1;
1330 } else {
1331 /*
1332 * The interval is between both neigbouring intervals,
1333 * but cannot be merged with any of them.
1334 */
1335 btree_insert(&a->used_space, page, (void *) count,
1336 leaf);
1337 return 1;
1338 }
1339 } else if (page < leaf->key[0]) {
1340 uintptr_t right_pg = leaf->key[0];
1341 count_t right_cnt = (count_t) leaf->value[0];
1342
1343 /*
1344 * Investigate the border case in which the left neighbour does
1345 * not exist but the interval fits from the left.
1346 */
1347
1348 if (overlaps(page, count * PAGE_SIZE, right_pg,
1349 right_cnt * PAGE_SIZE)) {
1350 /* The interval intersects with the right interval. */
1351 return 0;
1352 } else if (page + count * PAGE_SIZE == right_pg) {
1353 /*
1354 * The interval can be added by moving the base of the
1355 * right interval down and increasing its size
1356 * accordingly.
1357 */
1358 leaf->key[0] = page;
1359 leaf->value[0] += count;
1360 return 1;
1361 } else {
1362 /*
1363 * The interval doesn't adjoin with the right interval.
1364 * It must be added individually.
1365 */
1366 btree_insert(&a->used_space, page, (void *) count,
1367 leaf);
1368 return 1;
1369 }
1370 }
1371
1372 node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1373 if (node) {
1374 uintptr_t left_pg = leaf->key[leaf->keys - 1];
1375 uintptr_t right_pg = node->key[0];
1376 count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1377 count_t right_cnt = (count_t) node->value[0];
1378
1379 /*
1380 * Examine the possibility that the interval fits
1381 * somewhere between the leftmost interval of
1382 * the right neigbour and the last interval of the leaf.
1383 */
1384
1385 if (page < left_pg) {
1386 /* Do nothing. */
1387 } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1388 left_cnt * PAGE_SIZE)) {
1389 /* The interval intersects with the left interval. */
1390 return 0;
1391 } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1392 right_cnt * PAGE_SIZE)) {
1393 /* The interval intersects with the right interval. */
1394 return 0;
1395 } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1396 (page + count * PAGE_SIZE == right_pg)) {
1397 /*
1398 * The interval can be added by merging the two already
1399 * present intervals.
1400 * */
1401 leaf->value[leaf->keys - 1] += count + right_cnt;
1402 btree_remove(&a->used_space, right_pg, node);
1403 return 1;
1404 } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1405 /*
1406 * The interval can be added by simply growing the left
1407 * interval.
1408 * */
1409 leaf->value[leaf->keys - 1] += count;
1410 return 1;
1411 } else if (page + count * PAGE_SIZE == right_pg) {
1412 /*
1413 * The interval can be addded by simply moving base of
1414 * the right interval down and increasing its size
1415 * accordingly.
1416 */
1417 node->value[0] += count;
1418 node->key[0] = page;
1419 return 1;
1420 } else {
1421 /*
1422 * The interval is between both neigbouring intervals,
1423 * but cannot be merged with any of them.
1424 */
1425 btree_insert(&a->used_space, page, (void *) count,
1426 leaf);
1427 return 1;
1428 }
1429 } else if (page >= leaf->key[leaf->keys - 1]) {
1430 uintptr_t left_pg = leaf->key[leaf->keys - 1];
1431 count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1432
1433 /*
1434 * Investigate the border case in which the right neighbour
1435 * does not exist but the interval fits from the right.
1436 */
1437
1438 if (overlaps(page, count * PAGE_SIZE, left_pg,
1439 left_cnt * PAGE_SIZE)) {
1440 /* The interval intersects with the left interval. */
1441 return 0;
1442 } else if (left_pg + left_cnt * PAGE_SIZE == page) {
1443 /*
1444 * The interval can be added by growing the left
1445 * interval.
1446 */
1447 leaf->value[leaf->keys - 1] += count;
1448 return 1;
1449 } else {
1450 /*
1451 * The interval doesn't adjoin with the left interval.
1452 * It must be added individually.
1453 */
1454 btree_insert(&a->used_space, page, (void *) count,
1455 leaf);
1456 return 1;
1457 }
1458 }
1459
1460 /*
1461 * Note that if the algorithm made it thus far, the interval can fit
1462 * only between two other intervals of the leaf. The two border cases
1463 * were already resolved.
1464 */
1465 for (i = 1; i < leaf->keys; i++) {
1466 if (page < leaf->key[i]) {
1467 uintptr_t left_pg = leaf->key[i - 1];
1468 uintptr_t right_pg = leaf->key[i];
1469 count_t left_cnt = (count_t) leaf->value[i - 1];
1470 count_t right_cnt = (count_t) leaf->value[i];
1471
1472 /*
1473 * The interval fits between left_pg and right_pg.
1474 */
1475
1476 if (overlaps(page, count * PAGE_SIZE, left_pg,
1477 left_cnt * PAGE_SIZE)) {
1478 /*
1479 * The interval intersects with the left
1480 * interval.
1481 */
1482 return 0;
1483 } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1484 right_cnt * PAGE_SIZE)) {
1485 /*
1486 * The interval intersects with the right
1487 * interval.
1488 */
1489 return 0;
1490 } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1491 (page + count * PAGE_SIZE == right_pg)) {
1492 /*
1493 * The interval can be added by merging the two
1494 * already present intervals.
1495 */
1496 leaf->value[i - 1] += count + right_cnt;
1497 btree_remove(&a->used_space, right_pg, leaf);
1498 return 1;
1499 } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1500 /*
1501 * The interval can be added by simply growing
1502 * the left interval.
1503 */
1504 leaf->value[i - 1] += count;
1505 return 1;
1506 } else if (page + count * PAGE_SIZE == right_pg) {
1507 /*
1508 * The interval can be addded by simply moving
1509 * base of the right interval down and
1510 * increasing its size accordingly.
1511 */
1512 leaf->value[i] += count;
1513 leaf->key[i] = page;
1514 return 1;
1515 } else {
1516 /*
1517 * The interval is between both neigbouring
1518 * intervals, but cannot be merged with any of
1519 * them.
1520 */
1521 btree_insert(&a->used_space, page,
1522 (void *) count, leaf);
1523 return 1;
1524 }
1525 }
1526 }
1527
1528 panic("Inconsistency detected while adding %" PRIc " pages of used space at "
1529 "%p.\n", count, page);
1530}
1531
1532/** Mark portion of address space area as unused.
1533 *
1534 * The address space area must be already locked.
1535 *
1536 * @param a Address space area.
1537 * @param page First page to be marked.
1538 * @param count Number of page to be marked.
1539 *
1540 * @return 0 on failure and 1 on success.
1541 */
1542int used_space_remove(as_area_t *a, uintptr_t page, count_t count)
1543{
1544 btree_node_t *leaf, *node;
1545 count_t pages;
1546 unsigned int i;
1547
1548 ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1549 ASSERT(count);
1550
1551 pages = (count_t) btree_search(&a->used_space, page, &leaf);
1552 if (pages) {
1553 /*
1554 * We are lucky, page is the beginning of some interval.
1555 */
1556 if (count > pages) {
1557 return 0;
1558 } else if (count == pages) {
1559 btree_remove(&a->used_space, page, leaf);
1560 return 1;
1561 } else {
1562 /*
1563 * Find the respective interval.
1564 * Decrease its size and relocate its start address.
1565 */
1566 for (i = 0; i < leaf->keys; i++) {
1567 if (leaf->key[i] == page) {
1568 leaf->key[i] += count * PAGE_SIZE;
1569 leaf->value[i] -= count;
1570 return 1;
1571 }
1572 }
1573 goto error;
1574 }
1575 }
1576
1577 node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1578 if (node && page < leaf->key[0]) {
1579 uintptr_t left_pg = node->key[node->keys - 1];
1580 count_t left_cnt = (count_t) node->value[node->keys - 1];
1581
1582 if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1583 count * PAGE_SIZE)) {
1584 if (page + count * PAGE_SIZE ==
1585 left_pg + left_cnt * PAGE_SIZE) {
1586 /*
1587 * The interval is contained in the rightmost
1588 * interval of the left neighbour and can be
1589 * removed by updating the size of the bigger
1590 * interval.
1591 */
1592 node->value[node->keys - 1] -= count;
1593 return 1;
1594 } else if (page + count * PAGE_SIZE <
1595 left_pg + left_cnt*PAGE_SIZE) {
1596 count_t new_cnt;
1597
1598 /*
1599 * The interval is contained in the rightmost
1600 * interval of the left neighbour but its
1601 * removal requires both updating the size of
1602 * the original interval and also inserting a
1603 * new interval.
1604 */
1605 new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1606 (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1607 node->value[node->keys - 1] -= count + new_cnt;
1608 btree_insert(&a->used_space, page +
1609 count * PAGE_SIZE, (void *) new_cnt, leaf);
1610 return 1;
1611 }
1612 }
1613 return 0;
1614 } else if (page < leaf->key[0]) {
1615 return 0;
1616 }
1617
1618 if (page > leaf->key[leaf->keys - 1]) {
1619 uintptr_t left_pg = leaf->key[leaf->keys - 1];
1620 count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1621
1622 if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1623 count * PAGE_SIZE)) {
1624 if (page + count * PAGE_SIZE ==
1625 left_pg + left_cnt * PAGE_SIZE) {
1626 /*
1627 * The interval is contained in the rightmost
1628 * interval of the leaf and can be removed by
1629 * updating the size of the bigger interval.
1630 */
1631 leaf->value[leaf->keys - 1] -= count;
1632 return 1;
1633 } else if (page + count * PAGE_SIZE < left_pg +
1634 left_cnt * PAGE_SIZE) {
1635 count_t new_cnt;
1636
1637 /*
1638 * The interval is contained in the rightmost
1639 * interval of the leaf but its removal
1640 * requires both updating the size of the
1641 * original interval and also inserting a new
1642 * interval.
1643 */
1644 new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1645 (page + count * PAGE_SIZE)) >> PAGE_WIDTH;
1646 leaf->value[leaf->keys - 1] -= count + new_cnt;
1647 btree_insert(&a->used_space, page +
1648 count * PAGE_SIZE, (void *) new_cnt, leaf);
1649 return 1;
1650 }
1651 }
1652 return 0;
1653 }
1654
1655 /*
1656 * The border cases have been already resolved.
1657 * Now the interval can be only between intervals of the leaf.
1658 */
1659 for (i = 1; i < leaf->keys - 1; i++) {
1660 if (page < leaf->key[i]) {
1661 uintptr_t left_pg = leaf->key[i - 1];
1662 count_t left_cnt = (count_t) leaf->value[i - 1];
1663
1664 /*
1665 * Now the interval is between intervals corresponding
1666 * to (i - 1) and i.
1667 */
1668 if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1669 count * PAGE_SIZE)) {
1670 if (page + count * PAGE_SIZE ==
1671 left_pg + left_cnt*PAGE_SIZE) {
1672 /*
1673 * The interval is contained in the
1674 * interval (i - 1) of the leaf and can
1675 * be removed by updating the size of
1676 * the bigger interval.
1677 */
1678 leaf->value[i - 1] -= count;
1679 return 1;
1680 } else if (page + count * PAGE_SIZE <
1681 left_pg + left_cnt * PAGE_SIZE) {
1682 count_t new_cnt;
1683
1684 /*
1685 * The interval is contained in the
1686 * interval (i - 1) of the leaf but its
1687 * removal requires both updating the
1688 * size of the original interval and
1689 * also inserting a new interval.
1690 */
1691 new_cnt = ((left_pg +
1692 left_cnt * PAGE_SIZE) -
1693 (page + count * PAGE_SIZE)) >>
1694 PAGE_WIDTH;
1695 leaf->value[i - 1] -= count + new_cnt;
1696 btree_insert(&a->used_space, page +
1697 count * PAGE_SIZE, (void *) new_cnt,
1698 leaf);
1699 return 1;
1700 }
1701 }
1702 return 0;
1703 }
1704 }
1705
1706error:
1707 panic("Inconsistency detected while removing %" PRIc " pages of used space "
1708 "from %p.\n", count, page);
1709}
1710
1711/** Remove reference to address space area share info.
1712 *
1713 * If the reference count drops to 0, the sh_info is deallocated.
1714 *
1715 * @param sh_info Pointer to address space area share info.
1716 */
1717void sh_info_remove_reference(share_info_t *sh_info)
1718{
1719 bool dealloc = false;
1720
1721 mutex_lock(&sh_info->lock);
1722 ASSERT(sh_info->refcount);
1723 if (--sh_info->refcount == 0) {
1724 dealloc = true;
1725 link_t *cur;
1726
1727 /*
1728 * Now walk carefully the pagemap B+tree and free/remove
1729 * reference from all frames found there.
1730 */
1731 for (cur = sh_info->pagemap.leaf_head.next;
1732 cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1733 btree_node_t *node;
1734 unsigned int i;
1735
1736 node = list_get_instance(cur, btree_node_t, leaf_link);
1737 for (i = 0; i < node->keys; i++)
1738 frame_free((uintptr_t) node->value[i]);
1739 }
1740
1741 }
1742 mutex_unlock(&sh_info->lock);
1743
1744 if (dealloc) {
1745 btree_destroy(&sh_info->pagemap);
1746 free(sh_info);
1747 }
1748}
1749
1750/*
1751 * Address space related syscalls.
1752 */
1753
1754/** Wrapper for as_area_create(). */
1755unative_t sys_as_area_create(uintptr_t address, size_t size, int flags)
1756{
1757 if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address,
1758 AS_AREA_ATTR_NONE, &anon_backend, NULL))
1759 return (unative_t) address;
1760 else
1761 return (unative_t) -1;
1762}
1763
1764/** Wrapper for as_area_resize(). */
1765unative_t sys_as_area_resize(uintptr_t address, size_t size, int flags)
1766{
1767 return (unative_t) as_area_resize(AS, address, size, 0);
1768}
1769
1770/** Wrapper for as_area_destroy(). */
1771unative_t sys_as_area_destroy(uintptr_t address)
1772{
1773 return (unative_t) as_area_destroy(AS, address);
1774}
1775
1776/** Print out information about address space.
1777 *
1778 * @param as Address space.
1779 */
1780void as_print(as_t *as)
1781{
1782 ipl_t ipl;
1783
1784 ipl = interrupts_disable();
1785 mutex_lock(&as->lock);
1786
1787 /* print out info about address space areas */
1788 link_t *cur;
1789 for (cur = as->as_area_btree.leaf_head.next;
1790 cur != &as->as_area_btree.leaf_head; cur = cur->next) {
1791 btree_node_t *node;
1792
1793 node = list_get_instance(cur, btree_node_t, leaf_link);
1794
1795 unsigned int i;
1796 for (i = 0; i < node->keys; i++) {
1797 as_area_t *area = node->value[i];
1798
1799 mutex_lock(&area->lock);
1800 printf("as_area: %p, base=%p, pages=%" PRIc " (%p - %p)\n",
1801 area, area->base, area->pages, area->base,
1802 area->base + FRAMES2SIZE(area->pages));
1803 mutex_unlock(&area->lock);
1804 }
1805 }
1806
1807 mutex_unlock(&as->lock);
1808 interrupts_restore(ipl);
1809}
1810
1811/** @}
1812 */
Note: See TracBrowser for help on using the repository browser.