source: mainline/kernel/generic/src/mm/as.c@ 76fca31

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since 76fca31 was 76fca31, checked in by Martin Decky <martin@…>, 17 years ago

kconsole is optional
kernel & uspace framebuffer rewrite with speedups (some things are slightly broken yet)

  • Property mode set to 100644
File size: 49.3 KB
Line 
1/*
2 * Copyright (c) 2001-2006 Jakub Jermar
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/** @addtogroup genericmm
30 * @{
31 */
32
33/**
34 * @file
35 * @brief Address space related functions.
36 *
37 * This file contains address space manipulation functions.
38 * Roughly speaking, this is a higher-level client of
39 * Virtual Address Translation (VAT) subsystem.
40 *
41 * Functionality provided by this file allows one to
42 * create address spaces and create, resize and share
43 * address space areas.
44 *
45 * @see page.c
46 *
47 */
48
49#include <mm/as.h>
50#include <arch/mm/as.h>
51#include <mm/page.h>
52#include <mm/frame.h>
53#include <mm/slab.h>
54#include <mm/tlb.h>
55#include <arch/mm/page.h>
56#include <genarch/mm/page_pt.h>
57#include <genarch/mm/page_ht.h>
58#include <mm/asid.h>
59#include <arch/mm/asid.h>
60#include <preemption.h>
61#include <synch/spinlock.h>
62#include <synch/mutex.h>
63#include <adt/list.h>
64#include <adt/btree.h>
65#include <proc/task.h>
66#include <proc/thread.h>
67#include <arch/asm.h>
68#include <panic.h>
69#include <debug.h>
70#include <print.h>
71#include <memstr.h>
72#include <macros.h>
73#include <arch.h>
74#include <errno.h>
75#include <config.h>
76#include <align.h>
77#include <arch/types.h>
78#include <syscall/copy.h>
79#include <arch/interrupt.h>
80
81#ifdef CONFIG_VIRT_IDX_DCACHE
82#include <arch/mm/cache.h>
83#endif /* CONFIG_VIRT_IDX_DCACHE */
84
85/**
86 * Each architecture decides what functions will be used to carry out
87 * address space operations such as creating or locking page tables.
88 */
89as_operations_t *as_operations = NULL;
90
91/**
92 * Slab for as_t objects.
93 */
94static slab_cache_t *as_slab;
95
96/**
97 * This lock serializes access to the ASID subsystem.
98 * It protects:
99 * - inactive_as_with_asid_head list
100 * - as->asid for each as of the as_t type
101 * - asids_allocated counter
102 */
103SPINLOCK_INITIALIZE(asidlock);
104
105/**
106 * This list contains address spaces that are not active on any
107 * processor and that have valid ASID.
108 */
109LIST_INITIALIZE(inactive_as_with_asid_head);
110
111/** Kernel address space. */
112as_t *AS_KERNEL = NULL;
113
114static int area_flags_to_page_flags(int);
115static as_area_t *find_area_and_lock(as_t *, uintptr_t);
116static bool check_area_conflicts(as_t *, uintptr_t, size_t, as_area_t *);
117static void sh_info_remove_reference(share_info_t *);
118
119static int as_constructor(void *obj, int flags)
120{
121 as_t *as = (as_t *) obj;
122 int rc;
123
124 link_initialize(&as->inactive_as_with_asid_link);
125 mutex_initialize(&as->lock, MUTEX_PASSIVE);
126
127 rc = as_constructor_arch(as, flags);
128
129 return rc;
130}
131
132static int as_destructor(void *obj)
133{
134 as_t *as = (as_t *) obj;
135
136 return as_destructor_arch(as);
137}
138
139/** Initialize address space subsystem. */
140void as_init(void)
141{
142 as_arch_init();
143
144 as_slab = slab_cache_create("as_slab", sizeof(as_t), 0,
145 as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);
146
147 AS_KERNEL = as_create(FLAG_AS_KERNEL);
148 if (!AS_KERNEL)
149 panic("Cannot create kernel address space\n");
150
151 /* Make sure the kernel address space
152 * reference count never drops to zero.
153 */
154 atomic_set(&AS_KERNEL->refcount, 1);
155}
156
157/** Create address space.
158 *
159 * @param flags Flags that influence the way in wich the address space
160 * is created.
161 */
162as_t *as_create(int flags)
163{
164 as_t *as;
165
166 as = (as_t *) slab_alloc(as_slab, 0);
167 (void) as_create_arch(as, 0);
168
169 btree_create(&as->as_area_btree);
170
171 if (flags & FLAG_AS_KERNEL)
172 as->asid = ASID_KERNEL;
173 else
174 as->asid = ASID_INVALID;
175
176 atomic_set(&as->refcount, 0);
177 as->cpu_refcount = 0;
178#ifdef AS_PAGE_TABLE
179 as->genarch.page_table = page_table_create(flags);
180#else
181 page_table_create(flags);
182#endif
183
184 return as;
185}
186
187/** Destroy adress space.
188 *
189 * When there are no tasks referencing this address space (i.e. its refcount is
190 * zero), the address space can be destroyed.
191 *
192 * We know that we don't hold any spinlock.
193 *
194 * @param as Address space to be destroyed.
195 */
196void as_destroy(as_t *as)
197{
198 ipl_t ipl;
199 bool cond;
200 DEADLOCK_PROBE_INIT(p_asidlock);
201
202 ASSERT(atomic_get(&as->refcount) == 0);
203
204 /*
205 * Since there is no reference to this area,
206 * it is safe not to lock its mutex.
207 */
208
209 /*
210 * We need to avoid deadlock between TLB shootdown and asidlock.
211 * We therefore try to take asid conditionally and if we don't succeed,
212 * we enable interrupts and try again. This is done while preemption is
213 * disabled to prevent nested context switches. We also depend on the
214 * fact that so far no spinlocks are held.
215 */
216 preemption_disable();
217 ipl = interrupts_read();
218retry:
219 interrupts_disable();
220 if (!spinlock_trylock(&asidlock)) {
221 interrupts_enable();
222 DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
223 goto retry;
224 }
225 preemption_enable(); /* Interrupts disabled, enable preemption */
226 if (as->asid != ASID_INVALID && as != AS_KERNEL) {
227 if (as != AS && as->cpu_refcount == 0)
228 list_remove(&as->inactive_as_with_asid_link);
229 asid_put(as->asid);
230 }
231 spinlock_unlock(&asidlock);
232
233 /*
234 * Destroy address space areas of the address space.
235 * The B+tree must be walked carefully because it is
236 * also being destroyed.
237 */
238 for (cond = true; cond; ) {
239 btree_node_t *node;
240
241 ASSERT(!list_empty(&as->as_area_btree.leaf_head));
242 node = list_get_instance(as->as_area_btree.leaf_head.next,
243 btree_node_t, leaf_link);
244
245 if ((cond = node->keys)) {
246 as_area_destroy(as, node->key[0]);
247 }
248 }
249
250 btree_destroy(&as->as_area_btree);
251#ifdef AS_PAGE_TABLE
252 page_table_destroy(as->genarch.page_table);
253#else
254 page_table_destroy(NULL);
255#endif
256
257 interrupts_restore(ipl);
258
259 slab_free(as_slab, as);
260}
261
262/** Create address space area of common attributes.
263 *
264 * The created address space area is added to the target address space.
265 *
266 * @param as Target address space.
267 * @param flags Flags of the area memory.
268 * @param size Size of area.
269 * @param base Base address of area.
270 * @param attrs Attributes of the area.
271 * @param backend Address space area backend. NULL if no backend is used.
272 * @param backend_data NULL or a pointer to an array holding two void *.
273 *
274 * @return Address space area on success or NULL on failure.
275 */
276as_area_t *
277as_area_create(as_t *as, int flags, size_t size, uintptr_t base, int attrs,
278 mem_backend_t *backend, mem_backend_data_t *backend_data)
279{
280 ipl_t ipl;
281 as_area_t *a;
282
283 if (base % PAGE_SIZE)
284 return NULL;
285
286 if (!size)
287 return NULL;
288
289 /* Writeable executable areas are not supported. */
290 if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
291 return NULL;
292
293 ipl = interrupts_disable();
294 mutex_lock(&as->lock);
295
296 if (!check_area_conflicts(as, base, size, NULL)) {
297 mutex_unlock(&as->lock);
298 interrupts_restore(ipl);
299 return NULL;
300 }
301
302 a = (as_area_t *) malloc(sizeof(as_area_t), 0);
303
304 mutex_initialize(&a->lock, MUTEX_PASSIVE);
305
306 a->as = as;
307 a->flags = flags;
308 a->attributes = attrs;
309 a->pages = SIZE2FRAMES(size);
310 a->base = base;
311 a->sh_info = NULL;
312 a->backend = backend;
313 if (backend_data)
314 a->backend_data = *backend_data;
315 else
316 memsetb(&a->backend_data, sizeof(a->backend_data), 0);
317
318 btree_create(&a->used_space);
319
320 btree_insert(&as->as_area_btree, base, (void *) a, NULL);
321
322 mutex_unlock(&as->lock);
323 interrupts_restore(ipl);
324
325 return a;
326}
327
328/** Find address space area and change it.
329 *
330 * @param as Address space.
331 * @param address Virtual address belonging to the area to be changed.
332 * Must be page-aligned.
333 * @param size New size of the virtual memory block starting at
334 * address.
335 * @param flags Flags influencing the remap operation. Currently unused.
336 *
337 * @return Zero on success or a value from @ref errno.h otherwise.
338 */
339int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags)
340{
341 as_area_t *area;
342 ipl_t ipl;
343 size_t pages;
344
345 ipl = interrupts_disable();
346 mutex_lock(&as->lock);
347
348 /*
349 * Locate the area.
350 */
351 area = find_area_and_lock(as, address);
352 if (!area) {
353 mutex_unlock(&as->lock);
354 interrupts_restore(ipl);
355 return ENOENT;
356 }
357
358 if (area->backend == &phys_backend) {
359 /*
360 * Remapping of address space areas associated
361 * with memory mapped devices is not supported.
362 */
363 mutex_unlock(&area->lock);
364 mutex_unlock(&as->lock);
365 interrupts_restore(ipl);
366 return ENOTSUP;
367 }
368 if (area->sh_info) {
369 /*
370 * Remapping of shared address space areas
371 * is not supported.
372 */
373 mutex_unlock(&area->lock);
374 mutex_unlock(&as->lock);
375 interrupts_restore(ipl);
376 return ENOTSUP;
377 }
378
379 pages = SIZE2FRAMES((address - area->base) + size);
380 if (!pages) {
381 /*
382 * Zero size address space areas are not allowed.
383 */
384 mutex_unlock(&area->lock);
385 mutex_unlock(&as->lock);
386 interrupts_restore(ipl);
387 return EPERM;
388 }
389
390 if (pages < area->pages) {
391 bool cond;
392 uintptr_t start_free = area->base + pages * PAGE_SIZE;
393
394 /*
395 * Shrinking the area.
396 * No need to check for overlaps.
397 */
398
399 /*
400 * Start TLB shootdown sequence.
401 */
402 tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base +
403 pages * PAGE_SIZE, area->pages - pages);
404
405 /*
406 * Remove frames belonging to used space starting from
407 * the highest addresses downwards until an overlap with
408 * the resized address space area is found. Note that this
409 * is also the right way to remove part of the used_space
410 * B+tree leaf list.
411 */
412 for (cond = true; cond;) {
413 btree_node_t *node;
414
415 ASSERT(!list_empty(&area->used_space.leaf_head));
416 node =
417 list_get_instance(area->used_space.leaf_head.prev,
418 btree_node_t, leaf_link);
419 if ((cond = (bool) node->keys)) {
420 uintptr_t b = node->key[node->keys - 1];
421 count_t c =
422 (count_t) node->value[node->keys - 1];
423 unsigned int i = 0;
424
425 if (overlaps(b, c * PAGE_SIZE, area->base,
426 pages * PAGE_SIZE)) {
427
428 if (b + c * PAGE_SIZE <= start_free) {
429 /*
430 * The whole interval fits
431 * completely in the resized
432 * address space area.
433 */
434 break;
435 }
436
437 /*
438 * Part of the interval corresponding
439 * to b and c overlaps with the resized
440 * address space area.
441 */
442
443 cond = false; /* we are almost done */
444 i = (start_free - b) >> PAGE_WIDTH;
445 if (!used_space_remove(area, start_free,
446 c - i))
447 panic("Could not remove used "
448 "space.\n");
449 } else {
450 /*
451 * The interval of used space can be
452 * completely removed.
453 */
454 if (!used_space_remove(area, b, c))
455 panic("Could not remove used "
456 "space.\n");
457 }
458
459 for (; i < c; i++) {
460 pte_t *pte;
461
462 page_table_lock(as, false);
463 pte = page_mapping_find(as, b +
464 i * PAGE_SIZE);
465 ASSERT(pte && PTE_VALID(pte) &&
466 PTE_PRESENT(pte));
467 if (area->backend &&
468 area->backend->frame_free) {
469 area->backend->frame_free(area,
470 b + i * PAGE_SIZE,
471 PTE_GET_FRAME(pte));
472 }
473 page_mapping_remove(as, b +
474 i * PAGE_SIZE);
475 page_table_unlock(as, false);
476 }
477 }
478 }
479
480 /*
481 * Finish TLB shootdown sequence.
482 */
483
484 tlb_invalidate_pages(as->asid, area->base + pages * PAGE_SIZE,
485 area->pages - pages);
486 /*
487 * Invalidate software translation caches (e.g. TSB on sparc64).
488 */
489 as_invalidate_translation_cache(as, area->base +
490 pages * PAGE_SIZE, area->pages - pages);
491 tlb_shootdown_finalize();
492
493 } else {
494 /*
495 * Growing the area.
496 * Check for overlaps with other address space areas.
497 */
498 if (!check_area_conflicts(as, address, pages * PAGE_SIZE,
499 area)) {
500 mutex_unlock(&area->lock);
501 mutex_unlock(&as->lock);
502 interrupts_restore(ipl);
503 return EADDRNOTAVAIL;
504 }
505 }
506
507 area->pages = pages;
508
509 mutex_unlock(&area->lock);
510 mutex_unlock(&as->lock);
511 interrupts_restore(ipl);
512
513 return 0;
514}
515
516/** Destroy address space area.
517 *
518 * @param as Address space.
519 * @param address Address within the area to be deleted.
520 *
521 * @return Zero on success or a value from @ref errno.h on failure.
522 */
523int as_area_destroy(as_t *as, uintptr_t address)
524{
525 as_area_t *area;
526 uintptr_t base;
527 link_t *cur;
528 ipl_t ipl;
529
530 ipl = interrupts_disable();
531 mutex_lock(&as->lock);
532
533 area = find_area_and_lock(as, address);
534 if (!area) {
535 mutex_unlock(&as->lock);
536 interrupts_restore(ipl);
537 return ENOENT;
538 }
539
540 base = area->base;
541
542 /*
543 * Start TLB shootdown sequence.
544 */
545 tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
546
547 /*
548 * Visit only the pages mapped by used_space B+tree.
549 */
550 for (cur = area->used_space.leaf_head.next;
551 cur != &area->used_space.leaf_head; cur = cur->next) {
552 btree_node_t *node;
553 unsigned int i;
554
555 node = list_get_instance(cur, btree_node_t, leaf_link);
556 for (i = 0; i < node->keys; i++) {
557 uintptr_t b = node->key[i];
558 count_t j;
559 pte_t *pte;
560
561 for (j = 0; j < (count_t) node->value[i]; j++) {
562 page_table_lock(as, false);
563 pte = page_mapping_find(as, b + j * PAGE_SIZE);
564 ASSERT(pte && PTE_VALID(pte) &&
565 PTE_PRESENT(pte));
566 if (area->backend &&
567 area->backend->frame_free) {
568 area->backend->frame_free(area, b +
569 j * PAGE_SIZE, PTE_GET_FRAME(pte));
570 }
571 page_mapping_remove(as, b + j * PAGE_SIZE);
572 page_table_unlock(as, false);
573 }
574 }
575 }
576
577 /*
578 * Finish TLB shootdown sequence.
579 */
580
581 tlb_invalidate_pages(as->asid, area->base, area->pages);
582 /*
583 * Invalidate potential software translation caches (e.g. TSB on
584 * sparc64).
585 */
586 as_invalidate_translation_cache(as, area->base, area->pages);
587 tlb_shootdown_finalize();
588
589 btree_destroy(&area->used_space);
590
591 area->attributes |= AS_AREA_ATTR_PARTIAL;
592
593 if (area->sh_info)
594 sh_info_remove_reference(area->sh_info);
595
596 mutex_unlock(&area->lock);
597
598 /*
599 * Remove the empty area from address space.
600 */
601 btree_remove(&as->as_area_btree, base, NULL);
602
603 free(area);
604
605 mutex_unlock(&as->lock);
606 interrupts_restore(ipl);
607 return 0;
608}
609
610/** Share address space area with another or the same address space.
611 *
612 * Address space area mapping is shared with a new address space area.
613 * If the source address space area has not been shared so far,
614 * a new sh_info is created. The new address space area simply gets the
615 * sh_info of the source area. The process of duplicating the
616 * mapping is done through the backend share function.
617 *
618 * @param src_as Pointer to source address space.
619 * @param src_base Base address of the source address space area.
620 * @param acc_size Expected size of the source area.
621 * @param dst_as Pointer to destination address space.
622 * @param dst_base Target base address.
623 * @param dst_flags_mask Destination address space area flags mask.
624 *
625 * @return Zero on success or ENOENT if there is no such task or if
626 * there is no such address space area, EPERM if there was
627 * a problem in accepting the area or ENOMEM if there was a
628 * problem in allocating destination address space area.
629 * ENOTSUP is returned if the address space area backend
630 * does not support sharing.
631 */
632int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
633 as_t *dst_as, uintptr_t dst_base, int dst_flags_mask)
634{
635 ipl_t ipl;
636 int src_flags;
637 size_t src_size;
638 as_area_t *src_area, *dst_area;
639 share_info_t *sh_info;
640 mem_backend_t *src_backend;
641 mem_backend_data_t src_backend_data;
642
643 ipl = interrupts_disable();
644 mutex_lock(&src_as->lock);
645 src_area = find_area_and_lock(src_as, src_base);
646 if (!src_area) {
647 /*
648 * Could not find the source address space area.
649 */
650 mutex_unlock(&src_as->lock);
651 interrupts_restore(ipl);
652 return ENOENT;
653 }
654
655 if (!src_area->backend || !src_area->backend->share) {
656 /*
657 * There is no backend or the backend does not
658 * know how to share the area.
659 */
660 mutex_unlock(&src_area->lock);
661 mutex_unlock(&src_as->lock);
662 interrupts_restore(ipl);
663 return ENOTSUP;
664 }
665
666 src_size = src_area->pages * PAGE_SIZE;
667 src_flags = src_area->flags;
668 src_backend = src_area->backend;
669 src_backend_data = src_area->backend_data;
670
671 /* Share the cacheable flag from the original mapping */
672 if (src_flags & AS_AREA_CACHEABLE)
673 dst_flags_mask |= AS_AREA_CACHEABLE;
674
675 if (src_size != acc_size ||
676 (src_flags & dst_flags_mask) != dst_flags_mask) {
677 mutex_unlock(&src_area->lock);
678 mutex_unlock(&src_as->lock);
679 interrupts_restore(ipl);
680 return EPERM;
681 }
682
683 /*
684 * Now we are committed to sharing the area.
685 * First, prepare the area for sharing.
686 * Then it will be safe to unlock it.
687 */
688 sh_info = src_area->sh_info;
689 if (!sh_info) {
690 sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
691 mutex_initialize(&sh_info->lock, MUTEX_PASSIVE);
692 sh_info->refcount = 2;
693 btree_create(&sh_info->pagemap);
694 src_area->sh_info = sh_info;
695 /*
696 * Call the backend to setup sharing.
697 */
698 src_area->backend->share(src_area);
699 } else {
700 mutex_lock(&sh_info->lock);
701 sh_info->refcount++;
702 mutex_unlock(&sh_info->lock);
703 }
704
705 mutex_unlock(&src_area->lock);
706 mutex_unlock(&src_as->lock);
707
708 /*
709 * Create copy of the source address space area.
710 * The destination area is created with AS_AREA_ATTR_PARTIAL
711 * attribute set which prevents race condition with
712 * preliminary as_page_fault() calls.
713 * The flags of the source area are masked against dst_flags_mask
714 * to support sharing in less privileged mode.
715 */
716 dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
717 AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
718 if (!dst_area) {
719 /*
720 * Destination address space area could not be created.
721 */
722 sh_info_remove_reference(sh_info);
723
724 interrupts_restore(ipl);
725 return ENOMEM;
726 }
727
728 /*
729 * Now the destination address space area has been
730 * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
731 * attribute and set the sh_info.
732 */
733 mutex_lock(&dst_as->lock);
734 mutex_lock(&dst_area->lock);
735 dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
736 dst_area->sh_info = sh_info;
737 mutex_unlock(&dst_area->lock);
738 mutex_unlock(&dst_as->lock);
739
740 interrupts_restore(ipl);
741
742 return 0;
743}
744
745/** Check access mode for address space area.
746 *
747 * The address space area must be locked prior to this call.
748 *
749 * @param area Address space area.
750 * @param access Access mode.
751 *
752 * @return False if access violates area's permissions, true
753 * otherwise.
754 */
755bool as_area_check_access(as_area_t *area, pf_access_t access)
756{
757 int flagmap[] = {
758 [PF_ACCESS_READ] = AS_AREA_READ,
759 [PF_ACCESS_WRITE] = AS_AREA_WRITE,
760 [PF_ACCESS_EXEC] = AS_AREA_EXEC
761 };
762
763 if (!(area->flags & flagmap[access]))
764 return false;
765
766 return true;
767}
768
769/** Change adress space area flags.
770 *
771 * The idea is to have the same data, but with a different access mode.
772 * This is needed e.g. for writing code into memory and then executing it.
773 * In order for this to work properly, this may copy the data
774 * into private anonymous memory (unless it's already there).
775 *
776 * @param as Address space.
777 * @param flags Flags of the area memory.
778 * @param address Address within the area to be changed.
779 *
780 * @return Zero on success or a value from @ref errno.h on failure.
781 *
782 */
783int as_area_change_flags(as_t *as, int flags, uintptr_t address)
784{
785 as_area_t *area;
786 uintptr_t base;
787 link_t *cur;
788 ipl_t ipl;
789 int page_flags;
790 uintptr_t *old_frame;
791 index_t frame_idx;
792 count_t used_pages;
793
794 /* Flags for the new memory mapping */
795 page_flags = area_flags_to_page_flags(flags);
796
797 ipl = interrupts_disable();
798 mutex_lock(&as->lock);
799
800 area = find_area_and_lock(as, address);
801 if (!area) {
802 mutex_unlock(&as->lock);
803 interrupts_restore(ipl);
804 return ENOENT;
805 }
806
807 if ((area->sh_info) || (area->backend != &anon_backend)) {
808 /* Copying shared areas not supported yet */
809 /* Copying non-anonymous memory not supported yet */
810 mutex_unlock(&area->lock);
811 mutex_unlock(&as->lock);
812 interrupts_restore(ipl);
813 return ENOTSUP;
814 }
815
816 base = area->base;
817
818 /*
819 * Compute total number of used pages in the used_space B+tree
820 */
821 used_pages = 0;
822
823 for (cur = area->used_space.leaf_head.next;
824 cur != &area->used_space.leaf_head; cur = cur->next) {
825 btree_node_t *node;
826 unsigned int i;
827
828 node = list_get_instance(cur, btree_node_t, leaf_link);
829 for (i = 0; i < node->keys; i++) {
830 used_pages += (count_t) node->value[i];
831 }
832 }
833
834 /* An array for storing frame numbers */
835 old_frame = malloc(used_pages * sizeof(uintptr_t), 0);
836
837 /*
838 * Start TLB shootdown sequence.
839 */
840 tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
841
842 /*
843 * Remove used pages from page tables and remember their frame
844 * numbers.
845 */
846 frame_idx = 0;
847
848 for (cur = area->used_space.leaf_head.next;
849 cur != &area->used_space.leaf_head; cur = cur->next) {
850 btree_node_t *node;
851 unsigned int i;
852
853 node = list_get_instance(cur, btree_node_t, leaf_link);
854 for (i = 0; i < node->keys; i++) {
855 uintptr_t b = node->key[i];
856 count_t j;
857 pte_t *pte;
858
859 for (j = 0; j < (count_t) node->value[i]; j++) {
860 page_table_lock(as, false);
861 pte = page_mapping_find(as, b + j * PAGE_SIZE);
862 ASSERT(pte && PTE_VALID(pte) &&
863 PTE_PRESENT(pte));
864 old_frame[frame_idx++] = PTE_GET_FRAME(pte);
865
866 /* Remove old mapping */
867 page_mapping_remove(as, b + j * PAGE_SIZE);
868 page_table_unlock(as, false);
869 }
870 }
871 }
872
873 /*
874 * Finish TLB shootdown sequence.
875 */
876
877 tlb_invalidate_pages(as->asid, area->base, area->pages);
878
879 /*
880 * Invalidate potential software translation caches (e.g. TSB on
881 * sparc64).
882 */
883 as_invalidate_translation_cache(as, area->base, area->pages);
884 tlb_shootdown_finalize();
885
886 /*
887 * Set the new flags.
888 */
889 area->flags = flags;
890
891 /*
892 * Map pages back in with new flags. This step is kept separate
893 * so that the memory area could not be accesed with both the old and
894 * the new flags at once.
895 */
896 frame_idx = 0;
897
898 for (cur = area->used_space.leaf_head.next;
899 cur != &area->used_space.leaf_head; cur = cur->next) {
900 btree_node_t *node;
901 unsigned int i;
902
903 node = list_get_instance(cur, btree_node_t, leaf_link);
904 for (i = 0; i < node->keys; i++) {
905 uintptr_t b = node->key[i];
906 count_t j;
907
908 for (j = 0; j < (count_t) node->value[i]; j++) {
909 page_table_lock(as, false);
910
911 /* Insert the new mapping */
912 page_mapping_insert(as, b + j * PAGE_SIZE,
913 old_frame[frame_idx++], page_flags);
914
915 page_table_unlock(as, false);
916 }
917 }
918 }
919
920 free(old_frame);
921
922 mutex_unlock(&area->lock);
923 mutex_unlock(&as->lock);
924 interrupts_restore(ipl);
925
926 return 0;
927}
928
929
930/** Handle page fault within the current address space.
931 *
932 * This is the high-level page fault handler. It decides whether the page fault
933 * can be resolved by any backend and if so, it invokes the backend to resolve
934 * the page fault.
935 *
936 * Interrupts are assumed disabled.
937 *
938 * @param page Faulting page.
939 * @param access Access mode that caused the page fault (i.e.
940 * read/write/exec).
941 * @param istate Pointer to the interrupted state.
942 *
943 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or
944 * AS_PF_DEFER if the fault was caused by copy_to_uspace()
945 * or copy_from_uspace().
946 */
947int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
948{
949 pte_t *pte;
950 as_area_t *area;
951
952 if (!THREAD)
953 return AS_PF_FAULT;
954
955 ASSERT(AS);
956
957 mutex_lock(&AS->lock);
958 area = find_area_and_lock(AS, page);
959 if (!area) {
960 /*
961 * No area contained mapping for 'page'.
962 * Signal page fault to low-level handler.
963 */
964 mutex_unlock(&AS->lock);
965 goto page_fault;
966 }
967
968 if (area->attributes & AS_AREA_ATTR_PARTIAL) {
969 /*
970 * The address space area is not fully initialized.
971 * Avoid possible race by returning error.
972 */
973 mutex_unlock(&area->lock);
974 mutex_unlock(&AS->lock);
975 goto page_fault;
976 }
977
978 if (!area->backend || !area->backend->page_fault) {
979 /*
980 * The address space area is not backed by any backend
981 * or the backend cannot handle page faults.
982 */
983 mutex_unlock(&area->lock);
984 mutex_unlock(&AS->lock);
985 goto page_fault;
986 }
987
988 page_table_lock(AS, false);
989
990 /*
991 * To avoid race condition between two page faults on the same address,
992 * we need to make sure the mapping has not been already inserted.
993 */
994 if ((pte = page_mapping_find(AS, page))) {
995 if (PTE_PRESENT(pte)) {
996 if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
997 (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
998 (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
999 page_table_unlock(AS, false);
1000 mutex_unlock(&area->lock);
1001 mutex_unlock(&AS->lock);
1002 return AS_PF_OK;
1003 }
1004 }
1005 }
1006
1007 /*
1008 * Resort to the backend page fault handler.
1009 */
1010 if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
1011 page_table_unlock(AS, false);
1012 mutex_unlock(&area->lock);
1013 mutex_unlock(&AS->lock);
1014 goto page_fault;
1015 }
1016
1017 page_table_unlock(AS, false);
1018 mutex_unlock(&area->lock);
1019 mutex_unlock(&AS->lock);
1020 return AS_PF_OK;
1021
1022page_fault:
1023 if (THREAD->in_copy_from_uspace) {
1024 THREAD->in_copy_from_uspace = false;
1025 istate_set_retaddr(istate,
1026 (uintptr_t) &memcpy_from_uspace_failover_address);
1027 } else if (THREAD->in_copy_to_uspace) {
1028 THREAD->in_copy_to_uspace = false;
1029 istate_set_retaddr(istate,
1030 (uintptr_t) &memcpy_to_uspace_failover_address);
1031 } else {
1032 return AS_PF_FAULT;
1033 }
1034
1035 return AS_PF_DEFER;
1036}
1037
1038/** Switch address spaces.
1039 *
1040 * Note that this function cannot sleep as it is essentially a part of
1041 * scheduling. Sleeping here would lead to deadlock on wakeup. Another
1042 * thing which is forbidden in this context is locking the address space.
1043 *
1044 * When this function is enetered, no spinlocks may be held.
1045 *
1046 * @param old Old address space or NULL.
1047 * @param new New address space.
1048 */
1049void as_switch(as_t *old_as, as_t *new_as)
1050{
1051 DEADLOCK_PROBE_INIT(p_asidlock);
1052 preemption_disable();
1053retry:
1054 (void) interrupts_disable();
1055 if (!spinlock_trylock(&asidlock)) {
1056 /*
1057 * Avoid deadlock with TLB shootdown.
1058 * We can enable interrupts here because
1059 * preemption is disabled. We should not be
1060 * holding any other lock.
1061 */
1062 (void) interrupts_enable();
1063 DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
1064 goto retry;
1065 }
1066 preemption_enable();
1067
1068 /*
1069 * First, take care of the old address space.
1070 */
1071 if (old_as) {
1072 ASSERT(old_as->cpu_refcount);
1073 if((--old_as->cpu_refcount == 0) && (old_as != AS_KERNEL)) {
1074 /*
1075 * The old address space is no longer active on
1076 * any processor. It can be appended to the
1077 * list of inactive address spaces with assigned
1078 * ASID.
1079 */
1080 ASSERT(old_as->asid != ASID_INVALID);
1081 list_append(&old_as->inactive_as_with_asid_link,
1082 &inactive_as_with_asid_head);
1083 }
1084
1085 /*
1086 * Perform architecture-specific tasks when the address space
1087 * is being removed from the CPU.
1088 */
1089 as_deinstall_arch(old_as);
1090 }
1091
1092 /*
1093 * Second, prepare the new address space.
1094 */
1095 if ((new_as->cpu_refcount++ == 0) && (new_as != AS_KERNEL)) {
1096 if (new_as->asid != ASID_INVALID)
1097 list_remove(&new_as->inactive_as_with_asid_link);
1098 else
1099 new_as->asid = asid_get();
1100 }
1101#ifdef AS_PAGE_TABLE
1102 SET_PTL0_ADDRESS(new_as->genarch.page_table);
1103#endif
1104
1105 /*
1106 * Perform architecture-specific steps.
1107 * (e.g. write ASID to hardware register etc.)
1108 */
1109 as_install_arch(new_as);
1110
1111 spinlock_unlock(&asidlock);
1112
1113 AS = new_as;
1114}
1115
1116/** Convert address space area flags to page flags.
1117 *
1118 * @param aflags Flags of some address space area.
1119 *
1120 * @return Flags to be passed to page_mapping_insert().
1121 */
1122int area_flags_to_page_flags(int aflags)
1123{
1124 int flags;
1125
1126 flags = PAGE_USER | PAGE_PRESENT;
1127
1128 if (aflags & AS_AREA_READ)
1129 flags |= PAGE_READ;
1130
1131 if (aflags & AS_AREA_WRITE)
1132 flags |= PAGE_WRITE;
1133
1134 if (aflags & AS_AREA_EXEC)
1135 flags |= PAGE_EXEC;
1136
1137 if (aflags & AS_AREA_CACHEABLE)
1138 flags |= PAGE_CACHEABLE;
1139
1140 return flags;
1141}
1142
1143/** Compute flags for virtual address translation subsytem.
1144 *
1145 * The address space area must be locked.
1146 * Interrupts must be disabled.
1147 *
1148 * @param a Address space area.
1149 *
1150 * @return Flags to be used in page_mapping_insert().
1151 */
1152int as_area_get_flags(as_area_t *a)
1153{
1154 return area_flags_to_page_flags(a->flags);
1155}
1156
1157/** Create page table.
1158 *
1159 * Depending on architecture, create either address space private or global page
1160 * table.
1161 *
1162 * @param flags Flags saying whether the page table is for the kernel
1163 * address space.
1164 *
1165 * @return First entry of the page table.
1166 */
1167pte_t *page_table_create(int flags)
1168{
1169 ASSERT(as_operations);
1170 ASSERT(as_operations->page_table_create);
1171
1172 return as_operations->page_table_create(flags);
1173}
1174
1175/** Destroy page table.
1176 *
1177 * Destroy page table in architecture specific way.
1178 *
1179 * @param page_table Physical address of PTL0.
1180 */
1181void page_table_destroy(pte_t *page_table)
1182{
1183 ASSERT(as_operations);
1184 ASSERT(as_operations->page_table_destroy);
1185
1186 as_operations->page_table_destroy(page_table);
1187}
1188
1189/** Lock page table.
1190 *
1191 * This function should be called before any page_mapping_insert(),
1192 * page_mapping_remove() and page_mapping_find().
1193 *
1194 * Locking order is such that address space areas must be locked
1195 * prior to this call. Address space can be locked prior to this
1196 * call in which case the lock argument is false.
1197 *
1198 * @param as Address space.
1199 * @param lock If false, do not attempt to lock as->lock.
1200 */
1201void page_table_lock(as_t *as, bool lock)
1202{
1203 ASSERT(as_operations);
1204 ASSERT(as_operations->page_table_lock);
1205
1206 as_operations->page_table_lock(as, lock);
1207}
1208
1209/** Unlock page table.
1210 *
1211 * @param as Address space.
1212 * @param unlock If false, do not attempt to unlock as->lock.
1213 */
1214void page_table_unlock(as_t *as, bool unlock)
1215{
1216 ASSERT(as_operations);
1217 ASSERT(as_operations->page_table_unlock);
1218
1219 as_operations->page_table_unlock(as, unlock);
1220}
1221
1222
1223/** Find address space area and lock it.
1224 *
1225 * The address space must be locked and interrupts must be disabled.
1226 *
1227 * @param as Address space.
1228 * @param va Virtual address.
1229 *
1230 * @return Locked address space area containing va on success or
1231 * NULL on failure.
1232 */
1233as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
1234{
1235 as_area_t *a;
1236 btree_node_t *leaf, *lnode;
1237 unsigned int i;
1238
1239 a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
1240 if (a) {
1241 /* va is the base address of an address space area */
1242 mutex_lock(&a->lock);
1243 return a;
1244 }
1245
1246 /*
1247 * Search the leaf node and the righmost record of its left neighbour
1248 * to find out whether this is a miss or va belongs to an address
1249 * space area found there.
1250 */
1251
1252 /* First, search the leaf node itself. */
1253 for (i = 0; i < leaf->keys; i++) {
1254 a = (as_area_t *) leaf->value[i];
1255 mutex_lock(&a->lock);
1256 if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
1257 return a;
1258 }
1259 mutex_unlock(&a->lock);
1260 }
1261
1262 /*
1263 * Second, locate the left neighbour and test its last record.
1264 * Because of its position in the B+tree, it must have base < va.
1265 */
1266 lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf);
1267 if (lnode) {
1268 a = (as_area_t *) lnode->value[lnode->keys - 1];
1269 mutex_lock(&a->lock);
1270 if (va < a->base + a->pages * PAGE_SIZE) {
1271 return a;
1272 }
1273 mutex_unlock(&a->lock);
1274 }
1275
1276 return NULL;
1277}
1278
1279/** Check area conflicts with other areas.
1280 *
1281 * The address space must be locked and interrupts must be disabled.
1282 *
1283 * @param as Address space.
1284 * @param va Starting virtual address of the area being tested.
1285 * @param size Size of the area being tested.
1286 * @param avoid_area Do not touch this area.
1287 *
1288 * @return True if there is no conflict, false otherwise.
1289 */
1290bool
1291check_area_conflicts(as_t *as, uintptr_t va, size_t size, as_area_t *avoid_area)
1292{
1293 as_area_t *a;
1294 btree_node_t *leaf, *node;
1295 unsigned int i;
1296
1297 /*
1298 * We don't want any area to have conflicts with NULL page.
1299 */
1300 if (overlaps(va, size, NULL, PAGE_SIZE))
1301 return false;
1302
1303 /*
1304 * The leaf node is found in O(log n), where n is proportional to
1305 * the number of address space areas belonging to as.
1306 * The check for conflicts is then attempted on the rightmost
1307 * record in the left neighbour, the leftmost record in the right
1308 * neighbour and all records in the leaf node itself.
1309 */
1310
1311 if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1312 if (a != avoid_area)
1313 return false;
1314 }
1315
1316 /* First, check the two border cases. */
1317 if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1318 a = (as_area_t *) node->value[node->keys - 1];
1319 mutex_lock(&a->lock);
1320 if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1321 mutex_unlock(&a->lock);
1322 return false;
1323 }
1324 mutex_unlock(&a->lock);
1325 }
1326 node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf);
1327 if (node) {
1328 a = (as_area_t *) node->value[0];
1329 mutex_lock(&a->lock);
1330 if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1331 mutex_unlock(&a->lock);
1332 return false;
1333 }
1334 mutex_unlock(&a->lock);
1335 }
1336
1337 /* Second, check the leaf node. */
1338 for (i = 0; i < leaf->keys; i++) {
1339 a = (as_area_t *) leaf->value[i];
1340
1341 if (a == avoid_area)
1342 continue;
1343
1344 mutex_lock(&a->lock);
1345 if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1346 mutex_unlock(&a->lock);
1347 return false;
1348 }
1349 mutex_unlock(&a->lock);
1350 }
1351
1352 /*
1353 * So far, the area does not conflict with other areas.
1354 * Check if it doesn't conflict with kernel address space.
1355 */
1356 if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1357 return !overlaps(va, size,
1358 KERNEL_ADDRESS_SPACE_START,
1359 KERNEL_ADDRESS_SPACE_END - KERNEL_ADDRESS_SPACE_START);
1360 }
1361
1362 return true;
1363}
1364
1365/** Return size of the address space area with given base.
1366 *
1367 * @param base Arbitrary address insede the address space area.
1368 *
1369 * @return Size of the address space area in bytes or zero if it
1370 * does not exist.
1371 */
1372size_t as_area_get_size(uintptr_t base)
1373{
1374 ipl_t ipl;
1375 as_area_t *src_area;
1376 size_t size;
1377
1378 ipl = interrupts_disable();
1379 src_area = find_area_and_lock(AS, base);
1380 if (src_area) {
1381 size = src_area->pages * PAGE_SIZE;
1382 mutex_unlock(&src_area->lock);
1383 } else {
1384 size = 0;
1385 }
1386 interrupts_restore(ipl);
1387 return size;
1388}
1389
1390/** Mark portion of address space area as used.
1391 *
1392 * The address space area must be already locked.
1393 *
1394 * @param a Address space area.
1395 * @param page First page to be marked.
1396 * @param count Number of page to be marked.
1397 *
1398 * @return Zero on failure and non-zero on success.
1399 */
1400int used_space_insert(as_area_t *a, uintptr_t page, count_t count)
1401{
1402 btree_node_t *leaf, *node;
1403 count_t pages;
1404 unsigned int i;
1405
1406 ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1407 ASSERT(count);
1408
1409 pages = (count_t) btree_search(&a->used_space, page, &leaf);
1410 if (pages) {
1411 /*
1412 * We hit the beginning of some used space.
1413 */
1414 return 0;
1415 }
1416
1417 if (!leaf->keys) {
1418 btree_insert(&a->used_space, page, (void *) count, leaf);
1419 return 1;
1420 }
1421
1422 node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1423 if (node) {
1424 uintptr_t left_pg = node->key[node->keys - 1];
1425 uintptr_t right_pg = leaf->key[0];
1426 count_t left_cnt = (count_t) node->value[node->keys - 1];
1427 count_t right_cnt = (count_t) leaf->value[0];
1428
1429 /*
1430 * Examine the possibility that the interval fits
1431 * somewhere between the rightmost interval of
1432 * the left neigbour and the first interval of the leaf.
1433 */
1434
1435 if (page >= right_pg) {
1436 /* Do nothing. */
1437 } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1438 left_cnt * PAGE_SIZE)) {
1439 /* The interval intersects with the left interval. */
1440 return 0;
1441 } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1442 right_cnt * PAGE_SIZE)) {
1443 /* The interval intersects with the right interval. */
1444 return 0;
1445 } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1446 (page + count * PAGE_SIZE == right_pg)) {
1447 /*
1448 * The interval can be added by merging the two already
1449 * present intervals.
1450 */
1451 node->value[node->keys - 1] += count + right_cnt;
1452 btree_remove(&a->used_space, right_pg, leaf);
1453 return 1;
1454 } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1455 /*
1456 * The interval can be added by simply growing the left
1457 * interval.
1458 */
1459 node->value[node->keys - 1] += count;
1460 return 1;
1461 } else if (page + count * PAGE_SIZE == right_pg) {
1462 /*
1463 * The interval can be addded by simply moving base of
1464 * the right interval down and increasing its size
1465 * accordingly.
1466 */
1467 leaf->value[0] += count;
1468 leaf->key[0] = page;
1469 return 1;
1470 } else {
1471 /*
1472 * The interval is between both neigbouring intervals,
1473 * but cannot be merged with any of them.
1474 */
1475 btree_insert(&a->used_space, page, (void *) count,
1476 leaf);
1477 return 1;
1478 }
1479 } else if (page < leaf->key[0]) {
1480 uintptr_t right_pg = leaf->key[0];
1481 count_t right_cnt = (count_t) leaf->value[0];
1482
1483 /*
1484 * Investigate the border case in which the left neighbour does
1485 * not exist but the interval fits from the left.
1486 */
1487
1488 if (overlaps(page, count * PAGE_SIZE, right_pg,
1489 right_cnt * PAGE_SIZE)) {
1490 /* The interval intersects with the right interval. */
1491 return 0;
1492 } else if (page + count * PAGE_SIZE == right_pg) {
1493 /*
1494 * The interval can be added by moving the base of the
1495 * right interval down and increasing its size
1496 * accordingly.
1497 */
1498 leaf->key[0] = page;
1499 leaf->value[0] += count;
1500 return 1;
1501 } else {
1502 /*
1503 * The interval doesn't adjoin with the right interval.
1504 * It must be added individually.
1505 */
1506 btree_insert(&a->used_space, page, (void *) count,
1507 leaf);
1508 return 1;
1509 }
1510 }
1511
1512 node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1513 if (node) {
1514 uintptr_t left_pg = leaf->key[leaf->keys - 1];
1515 uintptr_t right_pg = node->key[0];
1516 count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1517 count_t right_cnt = (count_t) node->value[0];
1518
1519 /*
1520 * Examine the possibility that the interval fits
1521 * somewhere between the leftmost interval of
1522 * the right neigbour and the last interval of the leaf.
1523 */
1524
1525 if (page < left_pg) {
1526 /* Do nothing. */
1527 } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1528 left_cnt * PAGE_SIZE)) {
1529 /* The interval intersects with the left interval. */
1530 return 0;
1531 } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1532 right_cnt * PAGE_SIZE)) {
1533 /* The interval intersects with the right interval. */
1534 return 0;
1535 } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1536 (page + count * PAGE_SIZE == right_pg)) {
1537 /*
1538 * The interval can be added by merging the two already
1539 * present intervals.
1540 * */
1541 leaf->value[leaf->keys - 1] += count + right_cnt;
1542 btree_remove(&a->used_space, right_pg, node);
1543 return 1;
1544 } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1545 /*
1546 * The interval can be added by simply growing the left
1547 * interval.
1548 * */
1549 leaf->value[leaf->keys - 1] += count;
1550 return 1;
1551 } else if (page + count * PAGE_SIZE == right_pg) {
1552 /*
1553 * The interval can be addded by simply moving base of
1554 * the right interval down and increasing its size
1555 * accordingly.
1556 */
1557 node->value[0] += count;
1558 node->key[0] = page;
1559 return 1;
1560 } else {
1561 /*
1562 * The interval is between both neigbouring intervals,
1563 * but cannot be merged with any of them.
1564 */
1565 btree_insert(&a->used_space, page, (void *) count,
1566 leaf);
1567 return 1;
1568 }
1569 } else if (page >= leaf->key[leaf->keys - 1]) {
1570 uintptr_t left_pg = leaf->key[leaf->keys - 1];
1571 count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1572
1573 /*
1574 * Investigate the border case in which the right neighbour
1575 * does not exist but the interval fits from the right.
1576 */
1577
1578 if (overlaps(page, count * PAGE_SIZE, left_pg,
1579 left_cnt * PAGE_SIZE)) {
1580 /* The interval intersects with the left interval. */
1581 return 0;
1582 } else if (left_pg + left_cnt * PAGE_SIZE == page) {
1583 /*
1584 * The interval can be added by growing the left
1585 * interval.
1586 */
1587 leaf->value[leaf->keys - 1] += count;
1588 return 1;
1589 } else {
1590 /*
1591 * The interval doesn't adjoin with the left interval.
1592 * It must be added individually.
1593 */
1594 btree_insert(&a->used_space, page, (void *) count,
1595 leaf);
1596 return 1;
1597 }
1598 }
1599
1600 /*
1601 * Note that if the algorithm made it thus far, the interval can fit
1602 * only between two other intervals of the leaf. The two border cases
1603 * were already resolved.
1604 */
1605 for (i = 1; i < leaf->keys; i++) {
1606 if (page < leaf->key[i]) {
1607 uintptr_t left_pg = leaf->key[i - 1];
1608 uintptr_t right_pg = leaf->key[i];
1609 count_t left_cnt = (count_t) leaf->value[i - 1];
1610 count_t right_cnt = (count_t) leaf->value[i];
1611
1612 /*
1613 * The interval fits between left_pg and right_pg.
1614 */
1615
1616 if (overlaps(page, count * PAGE_SIZE, left_pg,
1617 left_cnt * PAGE_SIZE)) {
1618 /*
1619 * The interval intersects with the left
1620 * interval.
1621 */
1622 return 0;
1623 } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1624 right_cnt * PAGE_SIZE)) {
1625 /*
1626 * The interval intersects with the right
1627 * interval.
1628 */
1629 return 0;
1630 } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1631 (page + count * PAGE_SIZE == right_pg)) {
1632 /*
1633 * The interval can be added by merging the two
1634 * already present intervals.
1635 */
1636 leaf->value[i - 1] += count + right_cnt;
1637 btree_remove(&a->used_space, right_pg, leaf);
1638 return 1;
1639 } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1640 /*
1641 * The interval can be added by simply growing
1642 * the left interval.
1643 */
1644 leaf->value[i - 1] += count;
1645 return 1;
1646 } else if (page + count * PAGE_SIZE == right_pg) {
1647 /*
1648 * The interval can be addded by simply moving
1649 * base of the right interval down and
1650 * increasing its size accordingly.
1651 */
1652 leaf->value[i] += count;
1653 leaf->key[i] = page;
1654 return 1;
1655 } else {
1656 /*
1657 * The interval is between both neigbouring
1658 * intervals, but cannot be merged with any of
1659 * them.
1660 */
1661 btree_insert(&a->used_space, page,
1662 (void *) count, leaf);
1663 return 1;
1664 }
1665 }
1666 }
1667
1668 panic("Inconsistency detected while adding %" PRIc " pages of used "
1669 "space at %p.\n", count, page);
1670}
1671
1672/** Mark portion of address space area as unused.
1673 *
1674 * The address space area must be already locked.
1675 *
1676 * @param a Address space area.
1677 * @param page First page to be marked.
1678 * @param count Number of page to be marked.
1679 *
1680 * @return Zero on failure and non-zero on success.
1681 */
1682int used_space_remove(as_area_t *a, uintptr_t page, count_t count)
1683{
1684 btree_node_t *leaf, *node;
1685 count_t pages;
1686 unsigned int i;
1687
1688 ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1689 ASSERT(count);
1690
1691 pages = (count_t) btree_search(&a->used_space, page, &leaf);
1692 if (pages) {
1693 /*
1694 * We are lucky, page is the beginning of some interval.
1695 */
1696 if (count > pages) {
1697 return 0;
1698 } else if (count == pages) {
1699 btree_remove(&a->used_space, page, leaf);
1700 return 1;
1701 } else {
1702 /*
1703 * Find the respective interval.
1704 * Decrease its size and relocate its start address.
1705 */
1706 for (i = 0; i < leaf->keys; i++) {
1707 if (leaf->key[i] == page) {
1708 leaf->key[i] += count * PAGE_SIZE;
1709 leaf->value[i] -= count;
1710 return 1;
1711 }
1712 }
1713 goto error;
1714 }
1715 }
1716
1717 node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1718 if (node && page < leaf->key[0]) {
1719 uintptr_t left_pg = node->key[node->keys - 1];
1720 count_t left_cnt = (count_t) node->value[node->keys - 1];
1721
1722 if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1723 count * PAGE_SIZE)) {
1724 if (page + count * PAGE_SIZE ==
1725 left_pg + left_cnt * PAGE_SIZE) {
1726 /*
1727 * The interval is contained in the rightmost
1728 * interval of the left neighbour and can be
1729 * removed by updating the size of the bigger
1730 * interval.
1731 */
1732 node->value[node->keys - 1] -= count;
1733 return 1;
1734 } else if (page + count * PAGE_SIZE <
1735 left_pg + left_cnt*PAGE_SIZE) {
1736 count_t new_cnt;
1737
1738 /*
1739 * The interval is contained in the rightmost
1740 * interval of the left neighbour but its
1741 * removal requires both updating the size of
1742 * the original interval and also inserting a
1743 * new interval.
1744 */
1745 new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1746 (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1747 node->value[node->keys - 1] -= count + new_cnt;
1748 btree_insert(&a->used_space, page +
1749 count * PAGE_SIZE, (void *) new_cnt, leaf);
1750 return 1;
1751 }
1752 }
1753 return 0;
1754 } else if (page < leaf->key[0]) {
1755 return 0;
1756 }
1757
1758 if (page > leaf->key[leaf->keys - 1]) {
1759 uintptr_t left_pg = leaf->key[leaf->keys - 1];
1760 count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1761
1762 if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1763 count * PAGE_SIZE)) {
1764 if (page + count * PAGE_SIZE ==
1765 left_pg + left_cnt * PAGE_SIZE) {
1766 /*
1767 * The interval is contained in the rightmost
1768 * interval of the leaf and can be removed by
1769 * updating the size of the bigger interval.
1770 */
1771 leaf->value[leaf->keys - 1] -= count;
1772 return 1;
1773 } else if (page + count * PAGE_SIZE < left_pg +
1774 left_cnt * PAGE_SIZE) {
1775 count_t new_cnt;
1776
1777 /*
1778 * The interval is contained in the rightmost
1779 * interval of the leaf but its removal
1780 * requires both updating the size of the
1781 * original interval and also inserting a new
1782 * interval.
1783 */
1784 new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1785 (page + count * PAGE_SIZE)) >> PAGE_WIDTH;
1786 leaf->value[leaf->keys - 1] -= count + new_cnt;
1787 btree_insert(&a->used_space, page +
1788 count * PAGE_SIZE, (void *) new_cnt, leaf);
1789 return 1;
1790 }
1791 }
1792 return 0;
1793 }
1794
1795 /*
1796 * The border cases have been already resolved.
1797 * Now the interval can be only between intervals of the leaf.
1798 */
1799 for (i = 1; i < leaf->keys - 1; i++) {
1800 if (page < leaf->key[i]) {
1801 uintptr_t left_pg = leaf->key[i - 1];
1802 count_t left_cnt = (count_t) leaf->value[i - 1];
1803
1804 /*
1805 * Now the interval is between intervals corresponding
1806 * to (i - 1) and i.
1807 */
1808 if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1809 count * PAGE_SIZE)) {
1810 if (page + count * PAGE_SIZE ==
1811 left_pg + left_cnt*PAGE_SIZE) {
1812 /*
1813 * The interval is contained in the
1814 * interval (i - 1) of the leaf and can
1815 * be removed by updating the size of
1816 * the bigger interval.
1817 */
1818 leaf->value[i - 1] -= count;
1819 return 1;
1820 } else if (page + count * PAGE_SIZE <
1821 left_pg + left_cnt * PAGE_SIZE) {
1822 count_t new_cnt;
1823
1824 /*
1825 * The interval is contained in the
1826 * interval (i - 1) of the leaf but its
1827 * removal requires both updating the
1828 * size of the original interval and
1829 * also inserting a new interval.
1830 */
1831 new_cnt = ((left_pg +
1832 left_cnt * PAGE_SIZE) -
1833 (page + count * PAGE_SIZE)) >>
1834 PAGE_WIDTH;
1835 leaf->value[i - 1] -= count + new_cnt;
1836 btree_insert(&a->used_space, page +
1837 count * PAGE_SIZE, (void *) new_cnt,
1838 leaf);
1839 return 1;
1840 }
1841 }
1842 return 0;
1843 }
1844 }
1845
1846error:
1847 panic("Inconsistency detected while removing %" PRIc " pages of used "
1848 "space from %p.\n", count, page);
1849}
1850
1851/** Remove reference to address space area share info.
1852 *
1853 * If the reference count drops to 0, the sh_info is deallocated.
1854 *
1855 * @param sh_info Pointer to address space area share info.
1856 */
1857void sh_info_remove_reference(share_info_t *sh_info)
1858{
1859 bool dealloc = false;
1860
1861 mutex_lock(&sh_info->lock);
1862 ASSERT(sh_info->refcount);
1863 if (--sh_info->refcount == 0) {
1864 dealloc = true;
1865 link_t *cur;
1866
1867 /*
1868 * Now walk carefully the pagemap B+tree and free/remove
1869 * reference from all frames found there.
1870 */
1871 for (cur = sh_info->pagemap.leaf_head.next;
1872 cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1873 btree_node_t *node;
1874 unsigned int i;
1875
1876 node = list_get_instance(cur, btree_node_t, leaf_link);
1877 for (i = 0; i < node->keys; i++)
1878 frame_free((uintptr_t) node->value[i]);
1879 }
1880
1881 }
1882 mutex_unlock(&sh_info->lock);
1883
1884 if (dealloc) {
1885 btree_destroy(&sh_info->pagemap);
1886 free(sh_info);
1887 }
1888}
1889
1890/*
1891 * Address space related syscalls.
1892 */
1893
1894/** Wrapper for as_area_create(). */
1895unative_t sys_as_area_create(uintptr_t address, size_t size, int flags)
1896{
1897 if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address,
1898 AS_AREA_ATTR_NONE, &anon_backend, NULL))
1899 return (unative_t) address;
1900 else
1901 return (unative_t) -1;
1902}
1903
1904/** Wrapper for as_area_resize(). */
1905unative_t sys_as_area_resize(uintptr_t address, size_t size, int flags)
1906{
1907 return (unative_t) as_area_resize(AS, address, size, 0);
1908}
1909
1910/** Wrapper for as_area_change_flags(). */
1911unative_t sys_as_area_change_flags(uintptr_t address, int flags)
1912{
1913 return (unative_t) as_area_change_flags(AS, flags, address);
1914}
1915
1916/** Wrapper for as_area_destroy(). */
1917unative_t sys_as_area_destroy(uintptr_t address)
1918{
1919 return (unative_t) as_area_destroy(AS, address);
1920}
1921
1922/** Print out information about address space.
1923 *
1924 * @param as Address space.
1925 */
1926void as_print(as_t *as)
1927{
1928 ipl_t ipl;
1929
1930 ipl = interrupts_disable();
1931 mutex_lock(&as->lock);
1932
1933 /* print out info about address space areas */
1934 link_t *cur;
1935 for (cur = as->as_area_btree.leaf_head.next;
1936 cur != &as->as_area_btree.leaf_head; cur = cur->next) {
1937 btree_node_t *node;
1938
1939 node = list_get_instance(cur, btree_node_t, leaf_link);
1940
1941 unsigned int i;
1942 for (i = 0; i < node->keys; i++) {
1943 as_area_t *area = node->value[i];
1944
1945 mutex_lock(&area->lock);
1946 printf("as_area: %p, base=%p, pages=%" PRIc
1947 " (%p - %p)\n", area, area->base, area->pages,
1948 area->base, area->base + FRAMES2SIZE(area->pages));
1949 mutex_unlock(&area->lock);
1950 }
1951 }
1952
1953 mutex_unlock(&as->lock);
1954 interrupts_restore(ipl);
1955}
1956
1957/** @}
1958 */
Note: See TracBrowser for help on using the repository browser.