source: mainline/kernel/generic/src/mm/as.c@ 8fe5980

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since 8fe5980 was eeb2bde2, checked in by Jakub Jermar <jakub@…>, 17 years ago

as_area_resize() should use as instead of AS.

  • Property mode set to 100644
File size: 49.2 KB
Line 
1/*
2 * Copyright (c) 2001-2006 Jakub Jermar
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/** @addtogroup genericmm
30 * @{
31 */
32
33/**
34 * @file
35 * @brief Address space related functions.
36 *
37 * This file contains address space manipulation functions.
38 * Roughly speaking, this is a higher-level client of
39 * Virtual Address Translation (VAT) subsystem.
40 *
41 * Functionality provided by this file allows one to
42 * create address spaces and create, resize and share
43 * address space areas.
44 *
45 * @see page.c
46 *
47 */
48
49#include <mm/as.h>
50#include <arch/mm/as.h>
51#include <mm/page.h>
52#include <mm/frame.h>
53#include <mm/slab.h>
54#include <mm/tlb.h>
55#include <arch/mm/page.h>
56#include <genarch/mm/page_pt.h>
57#include <genarch/mm/page_ht.h>
58#include <mm/asid.h>
59#include <arch/mm/asid.h>
60#include <preemption.h>
61#include <synch/spinlock.h>
62#include <synch/mutex.h>
63#include <adt/list.h>
64#include <adt/btree.h>
65#include <proc/task.h>
66#include <proc/thread.h>
67#include <arch/asm.h>
68#include <panic.h>
69#include <debug.h>
70#include <print.h>
71#include <memstr.h>
72#include <macros.h>
73#include <arch.h>
74#include <errno.h>
75#include <config.h>
76#include <align.h>
77#include <arch/types.h>
78#include <syscall/copy.h>
79#include <arch/interrupt.h>
80
81#ifdef CONFIG_VIRT_IDX_DCACHE
82#include <arch/mm/cache.h>
83#endif /* CONFIG_VIRT_IDX_DCACHE */
84
85/**
86 * Each architecture decides what functions will be used to carry out
87 * address space operations such as creating or locking page tables.
88 */
89as_operations_t *as_operations = NULL;
90
91/**
92 * Slab for as_t objects.
93 */
94static slab_cache_t *as_slab;
95
96/**
97 * This lock serializes access to the ASID subsystem.
98 * It protects:
99 * - inactive_as_with_asid_head list
100 * - as->asid for each as of the as_t type
101 * - asids_allocated counter
102 */
103SPINLOCK_INITIALIZE(asidlock);
104
105/**
106 * This list contains address spaces that are not active on any
107 * processor and that have valid ASID.
108 */
109LIST_INITIALIZE(inactive_as_with_asid_head);
110
111/** Kernel address space. */
112as_t *AS_KERNEL = NULL;
113
114static int area_flags_to_page_flags(int);
115static as_area_t *find_area_and_lock(as_t *, uintptr_t);
116static bool check_area_conflicts(as_t *, uintptr_t, size_t, as_area_t *);
117static void sh_info_remove_reference(share_info_t *);
118
119static int as_constructor(void *obj, int flags)
120{
121 as_t *as = (as_t *) obj;
122 int rc;
123
124 link_initialize(&as->inactive_as_with_asid_link);
125 mutex_initialize(&as->lock, MUTEX_PASSIVE);
126
127 rc = as_constructor_arch(as, flags);
128
129 return rc;
130}
131
132static int as_destructor(void *obj)
133{
134 as_t *as = (as_t *) obj;
135
136 return as_destructor_arch(as);
137}
138
139/** Initialize address space subsystem. */
140void as_init(void)
141{
142 as_arch_init();
143
144 as_slab = slab_cache_create("as_slab", sizeof(as_t), 0,
145 as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);
146
147 AS_KERNEL = as_create(FLAG_AS_KERNEL);
148 if (!AS_KERNEL)
149 panic("can't create kernel address space\n");
150
151}
152
153/** Create address space.
154 *
155 * @param flags Flags that influence the way in wich the address space
156 * is created.
157 */
158as_t *as_create(int flags)
159{
160 as_t *as;
161
162 as = (as_t *) slab_alloc(as_slab, 0);
163 (void) as_create_arch(as, 0);
164
165 btree_create(&as->as_area_btree);
166
167 if (flags & FLAG_AS_KERNEL)
168 as->asid = ASID_KERNEL;
169 else
170 as->asid = ASID_INVALID;
171
172 atomic_set(&as->refcount, 0);
173 as->cpu_refcount = 0;
174#ifdef AS_PAGE_TABLE
175 as->genarch.page_table = page_table_create(flags);
176#else
177 page_table_create(flags);
178#endif
179
180 return as;
181}
182
183/** Destroy adress space.
184 *
185 * When there are no tasks referencing this address space (i.e. its refcount is
186 * zero), the address space can be destroyed.
187 *
188 * We know that we don't hold any spinlock.
189 *
190 * @param as Address space to be destroyed.
191 */
192void as_destroy(as_t *as)
193{
194 ipl_t ipl;
195 bool cond;
196 DEADLOCK_PROBE_INIT(p_asidlock);
197
198 ASSERT(atomic_get(&as->refcount) == 0);
199
200 /*
201 * Since there is no reference to this area,
202 * it is safe not to lock its mutex.
203 */
204
205 /*
206 * We need to avoid deadlock between TLB shootdown and asidlock.
207 * We therefore try to take asid conditionally and if we don't succeed,
208 * we enable interrupts and try again. This is done while preemption is
209 * disabled to prevent nested context switches. We also depend on the
210 * fact that so far no spinlocks are held.
211 */
212 preemption_disable();
213 ipl = interrupts_read();
214retry:
215 interrupts_disable();
216 if (!spinlock_trylock(&asidlock)) {
217 interrupts_enable();
218 DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
219 goto retry;
220 }
221 preemption_enable(); /* Interrupts disabled, enable preemption */
222 if (as->asid != ASID_INVALID && as != AS_KERNEL) {
223 if (as != AS && as->cpu_refcount == 0)
224 list_remove(&as->inactive_as_with_asid_link);
225 asid_put(as->asid);
226 }
227 spinlock_unlock(&asidlock);
228
229 /*
230 * Destroy address space areas of the address space.
231 * The B+tree must be walked carefully because it is
232 * also being destroyed.
233 */
234 for (cond = true; cond; ) {
235 btree_node_t *node;
236
237 ASSERT(!list_empty(&as->as_area_btree.leaf_head));
238 node = list_get_instance(as->as_area_btree.leaf_head.next,
239 btree_node_t, leaf_link);
240
241 if ((cond = node->keys)) {
242 as_area_destroy(as, node->key[0]);
243 }
244 }
245
246 btree_destroy(&as->as_area_btree);
247#ifdef AS_PAGE_TABLE
248 page_table_destroy(as->genarch.page_table);
249#else
250 page_table_destroy(NULL);
251#endif
252
253 interrupts_restore(ipl);
254
255 slab_free(as_slab, as);
256}
257
258/** Create address space area of common attributes.
259 *
260 * The created address space area is added to the target address space.
261 *
262 * @param as Target address space.
263 * @param flags Flags of the area memory.
264 * @param size Size of area.
265 * @param base Base address of area.
266 * @param attrs Attributes of the area.
267 * @param backend Address space area backend. NULL if no backend is used.
268 * @param backend_data NULL or a pointer to an array holding two void *.
269 *
270 * @return Address space area on success or NULL on failure.
271 */
272as_area_t *
273as_area_create(as_t *as, int flags, size_t size, uintptr_t base, int attrs,
274 mem_backend_t *backend, mem_backend_data_t *backend_data)
275{
276 ipl_t ipl;
277 as_area_t *a;
278
279 if (base % PAGE_SIZE)
280 return NULL;
281
282 if (!size)
283 return NULL;
284
285 /* Writeable executable areas are not supported. */
286 if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
287 return NULL;
288
289 ipl = interrupts_disable();
290 mutex_lock(&as->lock);
291
292 if (!check_area_conflicts(as, base, size, NULL)) {
293 mutex_unlock(&as->lock);
294 interrupts_restore(ipl);
295 return NULL;
296 }
297
298 a = (as_area_t *) malloc(sizeof(as_area_t), 0);
299
300 mutex_initialize(&a->lock, MUTEX_PASSIVE);
301
302 a->as = as;
303 a->flags = flags;
304 a->attributes = attrs;
305 a->pages = SIZE2FRAMES(size);
306 a->base = base;
307 a->sh_info = NULL;
308 a->backend = backend;
309 if (backend_data)
310 a->backend_data = *backend_data;
311 else
312 memsetb(&a->backend_data, sizeof(a->backend_data), 0);
313
314 btree_create(&a->used_space);
315
316 btree_insert(&as->as_area_btree, base, (void *) a, NULL);
317
318 mutex_unlock(&as->lock);
319 interrupts_restore(ipl);
320
321 return a;
322}
323
324/** Find address space area and change it.
325 *
326 * @param as Address space.
327 * @param address Virtual address belonging to the area to be changed.
328 * Must be page-aligned.
329 * @param size New size of the virtual memory block starting at
330 * address.
331 * @param flags Flags influencing the remap operation. Currently unused.
332 *
333 * @return Zero on success or a value from @ref errno.h otherwise.
334 */
335int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags)
336{
337 as_area_t *area;
338 ipl_t ipl;
339 size_t pages;
340
341 ipl = interrupts_disable();
342 mutex_lock(&as->lock);
343
344 /*
345 * Locate the area.
346 */
347 area = find_area_and_lock(as, address);
348 if (!area) {
349 mutex_unlock(&as->lock);
350 interrupts_restore(ipl);
351 return ENOENT;
352 }
353
354 if (area->backend == &phys_backend) {
355 /*
356 * Remapping of address space areas associated
357 * with memory mapped devices is not supported.
358 */
359 mutex_unlock(&area->lock);
360 mutex_unlock(&as->lock);
361 interrupts_restore(ipl);
362 return ENOTSUP;
363 }
364 if (area->sh_info) {
365 /*
366 * Remapping of shared address space areas
367 * is not supported.
368 */
369 mutex_unlock(&area->lock);
370 mutex_unlock(&as->lock);
371 interrupts_restore(ipl);
372 return ENOTSUP;
373 }
374
375 pages = SIZE2FRAMES((address - area->base) + size);
376 if (!pages) {
377 /*
378 * Zero size address space areas are not allowed.
379 */
380 mutex_unlock(&area->lock);
381 mutex_unlock(&as->lock);
382 interrupts_restore(ipl);
383 return EPERM;
384 }
385
386 if (pages < area->pages) {
387 bool cond;
388 uintptr_t start_free = area->base + pages * PAGE_SIZE;
389
390 /*
391 * Shrinking the area.
392 * No need to check for overlaps.
393 */
394
395 /*
396 * Start TLB shootdown sequence.
397 */
398 tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base +
399 pages * PAGE_SIZE, area->pages - pages);
400
401 /*
402 * Remove frames belonging to used space starting from
403 * the highest addresses downwards until an overlap with
404 * the resized address space area is found. Note that this
405 * is also the right way to remove part of the used_space
406 * B+tree leaf list.
407 */
408 for (cond = true; cond;) {
409 btree_node_t *node;
410
411 ASSERT(!list_empty(&area->used_space.leaf_head));
412 node =
413 list_get_instance(area->used_space.leaf_head.prev,
414 btree_node_t, leaf_link);
415 if ((cond = (bool) node->keys)) {
416 uintptr_t b = node->key[node->keys - 1];
417 count_t c =
418 (count_t) node->value[node->keys - 1];
419 unsigned int i = 0;
420
421 if (overlaps(b, c * PAGE_SIZE, area->base,
422 pages * PAGE_SIZE)) {
423
424 if (b + c * PAGE_SIZE <= start_free) {
425 /*
426 * The whole interval fits
427 * completely in the resized
428 * address space area.
429 */
430 break;
431 }
432
433 /*
434 * Part of the interval corresponding
435 * to b and c overlaps with the resized
436 * address space area.
437 */
438
439 cond = false; /* we are almost done */
440 i = (start_free - b) >> PAGE_WIDTH;
441 if (!used_space_remove(area, start_free,
442 c - i))
443 panic("Could not remove used "
444 "space.\n");
445 } else {
446 /*
447 * The interval of used space can be
448 * completely removed.
449 */
450 if (!used_space_remove(area, b, c))
451 panic("Could not remove used "
452 "space.\n");
453 }
454
455 for (; i < c; i++) {
456 pte_t *pte;
457
458 page_table_lock(as, false);
459 pte = page_mapping_find(as, b +
460 i * PAGE_SIZE);
461 ASSERT(pte && PTE_VALID(pte) &&
462 PTE_PRESENT(pte));
463 if (area->backend &&
464 area->backend->frame_free) {
465 area->backend->frame_free(area,
466 b + i * PAGE_SIZE,
467 PTE_GET_FRAME(pte));
468 }
469 page_mapping_remove(as, b +
470 i * PAGE_SIZE);
471 page_table_unlock(as, false);
472 }
473 }
474 }
475
476 /*
477 * Finish TLB shootdown sequence.
478 */
479
480 tlb_invalidate_pages(as->asid, area->base + pages * PAGE_SIZE,
481 area->pages - pages);
482 /*
483 * Invalidate software translation caches (e.g. TSB on sparc64).
484 */
485 as_invalidate_translation_cache(as, area->base +
486 pages * PAGE_SIZE, area->pages - pages);
487 tlb_shootdown_finalize();
488
489 } else {
490 /*
491 * Growing the area.
492 * Check for overlaps with other address space areas.
493 */
494 if (!check_area_conflicts(as, address, pages * PAGE_SIZE,
495 area)) {
496 mutex_unlock(&area->lock);
497 mutex_unlock(&as->lock);
498 interrupts_restore(ipl);
499 return EADDRNOTAVAIL;
500 }
501 }
502
503 area->pages = pages;
504
505 mutex_unlock(&area->lock);
506 mutex_unlock(&as->lock);
507 interrupts_restore(ipl);
508
509 return 0;
510}
511
512/** Destroy address space area.
513 *
514 * @param as Address space.
515 * @param address Address within the area to be deleted.
516 *
517 * @return Zero on success or a value from @ref errno.h on failure.
518 */
519int as_area_destroy(as_t *as, uintptr_t address)
520{
521 as_area_t *area;
522 uintptr_t base;
523 link_t *cur;
524 ipl_t ipl;
525
526 ipl = interrupts_disable();
527 mutex_lock(&as->lock);
528
529 area = find_area_and_lock(as, address);
530 if (!area) {
531 mutex_unlock(&as->lock);
532 interrupts_restore(ipl);
533 return ENOENT;
534 }
535
536 base = area->base;
537
538 /*
539 * Start TLB shootdown sequence.
540 */
541 tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
542
543 /*
544 * Visit only the pages mapped by used_space B+tree.
545 */
546 for (cur = area->used_space.leaf_head.next;
547 cur != &area->used_space.leaf_head; cur = cur->next) {
548 btree_node_t *node;
549 unsigned int i;
550
551 node = list_get_instance(cur, btree_node_t, leaf_link);
552 for (i = 0; i < node->keys; i++) {
553 uintptr_t b = node->key[i];
554 count_t j;
555 pte_t *pte;
556
557 for (j = 0; j < (count_t) node->value[i]; j++) {
558 page_table_lock(as, false);
559 pte = page_mapping_find(as, b + j * PAGE_SIZE);
560 ASSERT(pte && PTE_VALID(pte) &&
561 PTE_PRESENT(pte));
562 if (area->backend &&
563 area->backend->frame_free) {
564 area->backend->frame_free(area, b +
565 j * PAGE_SIZE, PTE_GET_FRAME(pte));
566 }
567 page_mapping_remove(as, b + j * PAGE_SIZE);
568 page_table_unlock(as, false);
569 }
570 }
571 }
572
573 /*
574 * Finish TLB shootdown sequence.
575 */
576
577 tlb_invalidate_pages(as->asid, area->base, area->pages);
578 /*
579 * Invalidate potential software translation caches (e.g. TSB on
580 * sparc64).
581 */
582 as_invalidate_translation_cache(as, area->base, area->pages);
583 tlb_shootdown_finalize();
584
585 btree_destroy(&area->used_space);
586
587 area->attributes |= AS_AREA_ATTR_PARTIAL;
588
589 if (area->sh_info)
590 sh_info_remove_reference(area->sh_info);
591
592 mutex_unlock(&area->lock);
593
594 /*
595 * Remove the empty area from address space.
596 */
597 btree_remove(&as->as_area_btree, base, NULL);
598
599 free(area);
600
601 mutex_unlock(&as->lock);
602 interrupts_restore(ipl);
603 return 0;
604}
605
606/** Share address space area with another or the same address space.
607 *
608 * Address space area mapping is shared with a new address space area.
609 * If the source address space area has not been shared so far,
610 * a new sh_info is created. The new address space area simply gets the
611 * sh_info of the source area. The process of duplicating the
612 * mapping is done through the backend share function.
613 *
614 * @param src_as Pointer to source address space.
615 * @param src_base Base address of the source address space area.
616 * @param acc_size Expected size of the source area.
617 * @param dst_as Pointer to destination address space.
618 * @param dst_base Target base address.
619 * @param dst_flags_mask Destination address space area flags mask.
620 *
621 * @return Zero on success or ENOENT if there is no such task or if
622 * there is no such address space area, EPERM if there was
623 * a problem in accepting the area or ENOMEM if there was a
624 * problem in allocating destination address space area.
625 * ENOTSUP is returned if the address space area backend
626 * does not support sharing.
627 */
628int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
629 as_t *dst_as, uintptr_t dst_base, int dst_flags_mask)
630{
631 ipl_t ipl;
632 int src_flags;
633 size_t src_size;
634 as_area_t *src_area, *dst_area;
635 share_info_t *sh_info;
636 mem_backend_t *src_backend;
637 mem_backend_data_t src_backend_data;
638
639 ipl = interrupts_disable();
640 mutex_lock(&src_as->lock);
641 src_area = find_area_and_lock(src_as, src_base);
642 if (!src_area) {
643 /*
644 * Could not find the source address space area.
645 */
646 mutex_unlock(&src_as->lock);
647 interrupts_restore(ipl);
648 return ENOENT;
649 }
650
651 if (!src_area->backend || !src_area->backend->share) {
652 /*
653 * There is no backend or the backend does not
654 * know how to share the area.
655 */
656 mutex_unlock(&src_area->lock);
657 mutex_unlock(&src_as->lock);
658 interrupts_restore(ipl);
659 return ENOTSUP;
660 }
661
662 src_size = src_area->pages * PAGE_SIZE;
663 src_flags = src_area->flags;
664 src_backend = src_area->backend;
665 src_backend_data = src_area->backend_data;
666
667 /* Share the cacheable flag from the original mapping */
668 if (src_flags & AS_AREA_CACHEABLE)
669 dst_flags_mask |= AS_AREA_CACHEABLE;
670
671 if (src_size != acc_size ||
672 (src_flags & dst_flags_mask) != dst_flags_mask) {
673 mutex_unlock(&src_area->lock);
674 mutex_unlock(&src_as->lock);
675 interrupts_restore(ipl);
676 return EPERM;
677 }
678
679 /*
680 * Now we are committed to sharing the area.
681 * First, prepare the area for sharing.
682 * Then it will be safe to unlock it.
683 */
684 sh_info = src_area->sh_info;
685 if (!sh_info) {
686 sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
687 mutex_initialize(&sh_info->lock, MUTEX_PASSIVE);
688 sh_info->refcount = 2;
689 btree_create(&sh_info->pagemap);
690 src_area->sh_info = sh_info;
691 /*
692 * Call the backend to setup sharing.
693 */
694 src_area->backend->share(src_area);
695 } else {
696 mutex_lock(&sh_info->lock);
697 sh_info->refcount++;
698 mutex_unlock(&sh_info->lock);
699 }
700
701 mutex_unlock(&src_area->lock);
702 mutex_unlock(&src_as->lock);
703
704 /*
705 * Create copy of the source address space area.
706 * The destination area is created with AS_AREA_ATTR_PARTIAL
707 * attribute set which prevents race condition with
708 * preliminary as_page_fault() calls.
709 * The flags of the source area are masked against dst_flags_mask
710 * to support sharing in less privileged mode.
711 */
712 dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
713 AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
714 if (!dst_area) {
715 /*
716 * Destination address space area could not be created.
717 */
718 sh_info_remove_reference(sh_info);
719
720 interrupts_restore(ipl);
721 return ENOMEM;
722 }
723
724 /*
725 * Now the destination address space area has been
726 * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
727 * attribute and set the sh_info.
728 */
729 mutex_lock(&dst_as->lock);
730 mutex_lock(&dst_area->lock);
731 dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
732 dst_area->sh_info = sh_info;
733 mutex_unlock(&dst_area->lock);
734 mutex_unlock(&dst_as->lock);
735
736 interrupts_restore(ipl);
737
738 return 0;
739}
740
741/** Check access mode for address space area.
742 *
743 * The address space area must be locked prior to this call.
744 *
745 * @param area Address space area.
746 * @param access Access mode.
747 *
748 * @return False if access violates area's permissions, true
749 * otherwise.
750 */
751bool as_area_check_access(as_area_t *area, pf_access_t access)
752{
753 int flagmap[] = {
754 [PF_ACCESS_READ] = AS_AREA_READ,
755 [PF_ACCESS_WRITE] = AS_AREA_WRITE,
756 [PF_ACCESS_EXEC] = AS_AREA_EXEC
757 };
758
759 if (!(area->flags & flagmap[access]))
760 return false;
761
762 return true;
763}
764
765/** Change adress space area flags.
766 *
767 * The idea is to have the same data, but with a different access mode.
768 * This is needed e.g. for writing code into memory and then executing it.
769 * In order for this to work properly, this may copy the data
770 * into private anonymous memory (unless it's already there).
771 *
772 * @param as Address space.
773 * @param flags Flags of the area memory.
774 * @param address Address withing the area to be changed.
775 *
776 * @return Zero on success or a value from @ref errno.h on failure.
777 */
778int as_area_change_flags(as_t *as, int flags, uintptr_t address)
779{
780 as_area_t *area;
781 uintptr_t base;
782 link_t *cur;
783 ipl_t ipl;
784 int page_flags;
785 uintptr_t *old_frame;
786 index_t frame_idx;
787 count_t used_pages;
788
789 /* Flags for the new memory mapping */
790 page_flags = area_flags_to_page_flags(flags);
791
792 ipl = interrupts_disable();
793 mutex_lock(&as->lock);
794
795 area = find_area_and_lock(as, address);
796 if (!area) {
797 mutex_unlock(&as->lock);
798 interrupts_restore(ipl);
799 return ENOENT;
800 }
801
802 if (area->sh_info || area->backend != &anon_backend) {
803 /* Copying shared areas not supported yet */
804 /* Copying non-anonymous memory not supported yet */
805 mutex_unlock(&area->lock);
806 mutex_unlock(&as->lock);
807 interrupts_restore(ipl);
808 return ENOTSUP;
809 }
810
811 base = area->base;
812
813 /*
814 * Compute total number of used pages in the used_space B+tree
815 */
816 used_pages = 0;
817
818 for (cur = area->used_space.leaf_head.next;
819 cur != &area->used_space.leaf_head; cur = cur->next) {
820 btree_node_t *node;
821 unsigned int i;
822
823 node = list_get_instance(cur, btree_node_t, leaf_link);
824 for (i = 0; i < node->keys; i++) {
825 used_pages += (count_t) node->value[i];
826 }
827 }
828
829 /* An array for storing frame numbers */
830 old_frame = malloc(used_pages * sizeof(uintptr_t), 0);
831
832 /*
833 * Start TLB shootdown sequence.
834 */
835 tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
836
837 /*
838 * Remove used pages from page tables and remember their frame
839 * numbers.
840 */
841 frame_idx = 0;
842
843 for (cur = area->used_space.leaf_head.next;
844 cur != &area->used_space.leaf_head; cur = cur->next) {
845 btree_node_t *node;
846 unsigned int i;
847
848 node = list_get_instance(cur, btree_node_t, leaf_link);
849 for (i = 0; i < node->keys; i++) {
850 uintptr_t b = node->key[i];
851 count_t j;
852 pte_t *pte;
853
854 for (j = 0; j < (count_t) node->value[i]; j++) {
855 page_table_lock(as, false);
856 pte = page_mapping_find(as, b + j * PAGE_SIZE);
857 ASSERT(pte && PTE_VALID(pte) &&
858 PTE_PRESENT(pte));
859 old_frame[frame_idx++] = PTE_GET_FRAME(pte);
860
861 /* Remove old mapping */
862 page_mapping_remove(as, b + j * PAGE_SIZE);
863 page_table_unlock(as, false);
864 }
865 }
866 }
867
868 /*
869 * Finish TLB shootdown sequence.
870 */
871
872 tlb_invalidate_pages(as->asid, area->base, area->pages);
873 /*
874 * Invalidate potential software translation caches (e.g. TSB on
875 * sparc64).
876 */
877 as_invalidate_translation_cache(as, area->base, area->pages);
878 tlb_shootdown_finalize();
879
880 /*
881 * Set the new flags.
882 */
883 area->flags = flags;
884
885 /*
886 * Map pages back in with new flags. This step is kept separate
887 * so that the memory area could not be accesed with both the old and
888 * the new flags at once.
889 */
890 frame_idx = 0;
891
892 for (cur = area->used_space.leaf_head.next;
893 cur != &area->used_space.leaf_head; cur = cur->next) {
894 btree_node_t *node;
895 unsigned int i;
896
897 node = list_get_instance(cur, btree_node_t, leaf_link);
898 for (i = 0; i < node->keys; i++) {
899 uintptr_t b = node->key[i];
900 count_t j;
901
902 for (j = 0; j < (count_t) node->value[i]; j++) {
903 page_table_lock(as, false);
904
905 /* Insert the new mapping */
906 page_mapping_insert(as, b + j * PAGE_SIZE,
907 old_frame[frame_idx++], page_flags);
908
909 page_table_unlock(as, false);
910 }
911 }
912 }
913
914 free(old_frame);
915
916 mutex_unlock(&area->lock);
917 mutex_unlock(&as->lock);
918 interrupts_restore(ipl);
919
920 return 0;
921}
922
923
924/** Handle page fault within the current address space.
925 *
926 * This is the high-level page fault handler. It decides whether the page fault
927 * can be resolved by any backend and if so, it invokes the backend to resolve
928 * the page fault.
929 *
930 * Interrupts are assumed disabled.
931 *
932 * @param page Faulting page.
933 * @param access Access mode that caused the page fault (i.e.
934 * read/write/exec).
935 * @param istate Pointer to the interrupted state.
936 *
937 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or
938 * AS_PF_DEFER if the fault was caused by copy_to_uspace()
939 * or copy_from_uspace().
940 */
941int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
942{
943 pte_t *pte;
944 as_area_t *area;
945
946 if (!THREAD)
947 return AS_PF_FAULT;
948
949 ASSERT(AS);
950
951 mutex_lock(&AS->lock);
952 area = find_area_and_lock(AS, page);
953 if (!area) {
954 /*
955 * No area contained mapping for 'page'.
956 * Signal page fault to low-level handler.
957 */
958 mutex_unlock(&AS->lock);
959 goto page_fault;
960 }
961
962 if (area->attributes & AS_AREA_ATTR_PARTIAL) {
963 /*
964 * The address space area is not fully initialized.
965 * Avoid possible race by returning error.
966 */
967 mutex_unlock(&area->lock);
968 mutex_unlock(&AS->lock);
969 goto page_fault;
970 }
971
972 if (!area->backend || !area->backend->page_fault) {
973 /*
974 * The address space area is not backed by any backend
975 * or the backend cannot handle page faults.
976 */
977 mutex_unlock(&area->lock);
978 mutex_unlock(&AS->lock);
979 goto page_fault;
980 }
981
982 page_table_lock(AS, false);
983
984 /*
985 * To avoid race condition between two page faults on the same address,
986 * we need to make sure the mapping has not been already inserted.
987 */
988 if ((pte = page_mapping_find(AS, page))) {
989 if (PTE_PRESENT(pte)) {
990 if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
991 (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
992 (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
993 page_table_unlock(AS, false);
994 mutex_unlock(&area->lock);
995 mutex_unlock(&AS->lock);
996 return AS_PF_OK;
997 }
998 }
999 }
1000
1001 /*
1002 * Resort to the backend page fault handler.
1003 */
1004 if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
1005 page_table_unlock(AS, false);
1006 mutex_unlock(&area->lock);
1007 mutex_unlock(&AS->lock);
1008 goto page_fault;
1009 }
1010
1011 page_table_unlock(AS, false);
1012 mutex_unlock(&area->lock);
1013 mutex_unlock(&AS->lock);
1014 return AS_PF_OK;
1015
1016page_fault:
1017 if (THREAD->in_copy_from_uspace) {
1018 THREAD->in_copy_from_uspace = false;
1019 istate_set_retaddr(istate,
1020 (uintptr_t) &memcpy_from_uspace_failover_address);
1021 } else if (THREAD->in_copy_to_uspace) {
1022 THREAD->in_copy_to_uspace = false;
1023 istate_set_retaddr(istate,
1024 (uintptr_t) &memcpy_to_uspace_failover_address);
1025 } else {
1026 return AS_PF_FAULT;
1027 }
1028
1029 return AS_PF_DEFER;
1030}
1031
1032/** Switch address spaces.
1033 *
1034 * Note that this function cannot sleep as it is essentially a part of
1035 * scheduling. Sleeping here would lead to deadlock on wakeup. Another
1036 * thing which is forbidden in this context is locking the address space.
1037 *
1038 * When this function is enetered, no spinlocks may be held.
1039 *
1040 * @param old Old address space or NULL.
1041 * @param new New address space.
1042 */
1043void as_switch(as_t *old_as, as_t *new_as)
1044{
1045 DEADLOCK_PROBE_INIT(p_asidlock);
1046 preemption_disable();
1047retry:
1048 (void) interrupts_disable();
1049 if (!spinlock_trylock(&asidlock)) {
1050 /*
1051 * Avoid deadlock with TLB shootdown.
1052 * We can enable interrupts here because
1053 * preemption is disabled. We should not be
1054 * holding any other lock.
1055 */
1056 (void) interrupts_enable();
1057 DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
1058 goto retry;
1059 }
1060 preemption_enable();
1061
1062 /*
1063 * First, take care of the old address space.
1064 */
1065 if (old_as) {
1066 ASSERT(old_as->cpu_refcount);
1067 if((--old_as->cpu_refcount == 0) && (old_as != AS_KERNEL)) {
1068 /*
1069 * The old address space is no longer active on
1070 * any processor. It can be appended to the
1071 * list of inactive address spaces with assigned
1072 * ASID.
1073 */
1074 ASSERT(old_as->asid != ASID_INVALID);
1075 list_append(&old_as->inactive_as_with_asid_link,
1076 &inactive_as_with_asid_head);
1077 }
1078
1079 /*
1080 * Perform architecture-specific tasks when the address space
1081 * is being removed from the CPU.
1082 */
1083 as_deinstall_arch(old_as);
1084 }
1085
1086 /*
1087 * Second, prepare the new address space.
1088 */
1089 if ((new_as->cpu_refcount++ == 0) && (new_as != AS_KERNEL)) {
1090 if (new_as->asid != ASID_INVALID)
1091 list_remove(&new_as->inactive_as_with_asid_link);
1092 else
1093 new_as->asid = asid_get();
1094 }
1095#ifdef AS_PAGE_TABLE
1096 SET_PTL0_ADDRESS(new_as->genarch.page_table);
1097#endif
1098
1099 /*
1100 * Perform architecture-specific steps.
1101 * (e.g. write ASID to hardware register etc.)
1102 */
1103 as_install_arch(new_as);
1104
1105 spinlock_unlock(&asidlock);
1106
1107 AS = new_as;
1108}
1109
1110/** Convert address space area flags to page flags.
1111 *
1112 * @param aflags Flags of some address space area.
1113 *
1114 * @return Flags to be passed to page_mapping_insert().
1115 */
1116int area_flags_to_page_flags(int aflags)
1117{
1118 int flags;
1119
1120 flags = PAGE_USER | PAGE_PRESENT;
1121
1122 if (aflags & AS_AREA_READ)
1123 flags |= PAGE_READ;
1124
1125 if (aflags & AS_AREA_WRITE)
1126 flags |= PAGE_WRITE;
1127
1128 if (aflags & AS_AREA_EXEC)
1129 flags |= PAGE_EXEC;
1130
1131 if (aflags & AS_AREA_CACHEABLE)
1132 flags |= PAGE_CACHEABLE;
1133
1134 return flags;
1135}
1136
1137/** Compute flags for virtual address translation subsytem.
1138 *
1139 * The address space area must be locked.
1140 * Interrupts must be disabled.
1141 *
1142 * @param a Address space area.
1143 *
1144 * @return Flags to be used in page_mapping_insert().
1145 */
1146int as_area_get_flags(as_area_t *a)
1147{
1148 return area_flags_to_page_flags(a->flags);
1149}
1150
1151/** Create page table.
1152 *
1153 * Depending on architecture, create either address space private or global page
1154 * table.
1155 *
1156 * @param flags Flags saying whether the page table is for the kernel
1157 * address space.
1158 *
1159 * @return First entry of the page table.
1160 */
1161pte_t *page_table_create(int flags)
1162{
1163 ASSERT(as_operations);
1164 ASSERT(as_operations->page_table_create);
1165
1166 return as_operations->page_table_create(flags);
1167}
1168
1169/** Destroy page table.
1170 *
1171 * Destroy page table in architecture specific way.
1172 *
1173 * @param page_table Physical address of PTL0.
1174 */
1175void page_table_destroy(pte_t *page_table)
1176{
1177 ASSERT(as_operations);
1178 ASSERT(as_operations->page_table_destroy);
1179
1180 as_operations->page_table_destroy(page_table);
1181}
1182
1183/** Lock page table.
1184 *
1185 * This function should be called before any page_mapping_insert(),
1186 * page_mapping_remove() and page_mapping_find().
1187 *
1188 * Locking order is such that address space areas must be locked
1189 * prior to this call. Address space can be locked prior to this
1190 * call in which case the lock argument is false.
1191 *
1192 * @param as Address space.
1193 * @param lock If false, do not attempt to lock as->lock.
1194 */
1195void page_table_lock(as_t *as, bool lock)
1196{
1197 ASSERT(as_operations);
1198 ASSERT(as_operations->page_table_lock);
1199
1200 as_operations->page_table_lock(as, lock);
1201}
1202
1203/** Unlock page table.
1204 *
1205 * @param as Address space.
1206 * @param unlock If false, do not attempt to unlock as->lock.
1207 */
1208void page_table_unlock(as_t *as, bool unlock)
1209{
1210 ASSERT(as_operations);
1211 ASSERT(as_operations->page_table_unlock);
1212
1213 as_operations->page_table_unlock(as, unlock);
1214}
1215
1216
1217/** Find address space area and lock it.
1218 *
1219 * The address space must be locked and interrupts must be disabled.
1220 *
1221 * @param as Address space.
1222 * @param va Virtual address.
1223 *
1224 * @return Locked address space area containing va on success or
1225 * NULL on failure.
1226 */
1227as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
1228{
1229 as_area_t *a;
1230 btree_node_t *leaf, *lnode;
1231 unsigned int i;
1232
1233 a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
1234 if (a) {
1235 /* va is the base address of an address space area */
1236 mutex_lock(&a->lock);
1237 return a;
1238 }
1239
1240 /*
1241 * Search the leaf node and the righmost record of its left neighbour
1242 * to find out whether this is a miss or va belongs to an address
1243 * space area found there.
1244 */
1245
1246 /* First, search the leaf node itself. */
1247 for (i = 0; i < leaf->keys; i++) {
1248 a = (as_area_t *) leaf->value[i];
1249 mutex_lock(&a->lock);
1250 if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
1251 return a;
1252 }
1253 mutex_unlock(&a->lock);
1254 }
1255
1256 /*
1257 * Second, locate the left neighbour and test its last record.
1258 * Because of its position in the B+tree, it must have base < va.
1259 */
1260 lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf);
1261 if (lnode) {
1262 a = (as_area_t *) lnode->value[lnode->keys - 1];
1263 mutex_lock(&a->lock);
1264 if (va < a->base + a->pages * PAGE_SIZE) {
1265 return a;
1266 }
1267 mutex_unlock(&a->lock);
1268 }
1269
1270 return NULL;
1271}
1272
1273/** Check area conflicts with other areas.
1274 *
1275 * The address space must be locked and interrupts must be disabled.
1276 *
1277 * @param as Address space.
1278 * @param va Starting virtual address of the area being tested.
1279 * @param size Size of the area being tested.
1280 * @param avoid_area Do not touch this area.
1281 *
1282 * @return True if there is no conflict, false otherwise.
1283 */
1284bool
1285check_area_conflicts(as_t *as, uintptr_t va, size_t size, as_area_t *avoid_area)
1286{
1287 as_area_t *a;
1288 btree_node_t *leaf, *node;
1289 unsigned int i;
1290
1291 /*
1292 * We don't want any area to have conflicts with NULL page.
1293 */
1294 if (overlaps(va, size, NULL, PAGE_SIZE))
1295 return false;
1296
1297 /*
1298 * The leaf node is found in O(log n), where n is proportional to
1299 * the number of address space areas belonging to as.
1300 * The check for conflicts is then attempted on the rightmost
1301 * record in the left neighbour, the leftmost record in the right
1302 * neighbour and all records in the leaf node itself.
1303 */
1304
1305 if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1306 if (a != avoid_area)
1307 return false;
1308 }
1309
1310 /* First, check the two border cases. */
1311 if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1312 a = (as_area_t *) node->value[node->keys - 1];
1313 mutex_lock(&a->lock);
1314 if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1315 mutex_unlock(&a->lock);
1316 return false;
1317 }
1318 mutex_unlock(&a->lock);
1319 }
1320 node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf);
1321 if (node) {
1322 a = (as_area_t *) node->value[0];
1323 mutex_lock(&a->lock);
1324 if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1325 mutex_unlock(&a->lock);
1326 return false;
1327 }
1328 mutex_unlock(&a->lock);
1329 }
1330
1331 /* Second, check the leaf node. */
1332 for (i = 0; i < leaf->keys; i++) {
1333 a = (as_area_t *) leaf->value[i];
1334
1335 if (a == avoid_area)
1336 continue;
1337
1338 mutex_lock(&a->lock);
1339 if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1340 mutex_unlock(&a->lock);
1341 return false;
1342 }
1343 mutex_unlock(&a->lock);
1344 }
1345
1346 /*
1347 * So far, the area does not conflict with other areas.
1348 * Check if it doesn't conflict with kernel address space.
1349 */
1350 if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1351 return !overlaps(va, size,
1352 KERNEL_ADDRESS_SPACE_START,
1353 KERNEL_ADDRESS_SPACE_END - KERNEL_ADDRESS_SPACE_START);
1354 }
1355
1356 return true;
1357}
1358
1359/** Return size of the address space area with given base.
1360 *
1361 * @param base Arbitrary address insede the address space area.
1362 *
1363 * @return Size of the address space area in bytes or zero if it
1364 * does not exist.
1365 */
1366size_t as_area_get_size(uintptr_t base)
1367{
1368 ipl_t ipl;
1369 as_area_t *src_area;
1370 size_t size;
1371
1372 ipl = interrupts_disable();
1373 src_area = find_area_and_lock(AS, base);
1374 if (src_area) {
1375 size = src_area->pages * PAGE_SIZE;
1376 mutex_unlock(&src_area->lock);
1377 } else {
1378 size = 0;
1379 }
1380 interrupts_restore(ipl);
1381 return size;
1382}
1383
1384/** Mark portion of address space area as used.
1385 *
1386 * The address space area must be already locked.
1387 *
1388 * @param a Address space area.
1389 * @param page First page to be marked.
1390 * @param count Number of page to be marked.
1391 *
1392 * @return Zero on failure and non-zero on success.
1393 */
1394int used_space_insert(as_area_t *a, uintptr_t page, count_t count)
1395{
1396 btree_node_t *leaf, *node;
1397 count_t pages;
1398 unsigned int i;
1399
1400 ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1401 ASSERT(count);
1402
1403 pages = (count_t) btree_search(&a->used_space, page, &leaf);
1404 if (pages) {
1405 /*
1406 * We hit the beginning of some used space.
1407 */
1408 return 0;
1409 }
1410
1411 if (!leaf->keys) {
1412 btree_insert(&a->used_space, page, (void *) count, leaf);
1413 return 1;
1414 }
1415
1416 node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1417 if (node) {
1418 uintptr_t left_pg = node->key[node->keys - 1];
1419 uintptr_t right_pg = leaf->key[0];
1420 count_t left_cnt = (count_t) node->value[node->keys - 1];
1421 count_t right_cnt = (count_t) leaf->value[0];
1422
1423 /*
1424 * Examine the possibility that the interval fits
1425 * somewhere between the rightmost interval of
1426 * the left neigbour and the first interval of the leaf.
1427 */
1428
1429 if (page >= right_pg) {
1430 /* Do nothing. */
1431 } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1432 left_cnt * PAGE_SIZE)) {
1433 /* The interval intersects with the left interval. */
1434 return 0;
1435 } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1436 right_cnt * PAGE_SIZE)) {
1437 /* The interval intersects with the right interval. */
1438 return 0;
1439 } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1440 (page + count * PAGE_SIZE == right_pg)) {
1441 /*
1442 * The interval can be added by merging the two already
1443 * present intervals.
1444 */
1445 node->value[node->keys - 1] += count + right_cnt;
1446 btree_remove(&a->used_space, right_pg, leaf);
1447 return 1;
1448 } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1449 /*
1450 * The interval can be added by simply growing the left
1451 * interval.
1452 */
1453 node->value[node->keys - 1] += count;
1454 return 1;
1455 } else if (page + count * PAGE_SIZE == right_pg) {
1456 /*
1457 * The interval can be addded by simply moving base of
1458 * the right interval down and increasing its size
1459 * accordingly.
1460 */
1461 leaf->value[0] += count;
1462 leaf->key[0] = page;
1463 return 1;
1464 } else {
1465 /*
1466 * The interval is between both neigbouring intervals,
1467 * but cannot be merged with any of them.
1468 */
1469 btree_insert(&a->used_space, page, (void *) count,
1470 leaf);
1471 return 1;
1472 }
1473 } else if (page < leaf->key[0]) {
1474 uintptr_t right_pg = leaf->key[0];
1475 count_t right_cnt = (count_t) leaf->value[0];
1476
1477 /*
1478 * Investigate the border case in which the left neighbour does
1479 * not exist but the interval fits from the left.
1480 */
1481
1482 if (overlaps(page, count * PAGE_SIZE, right_pg,
1483 right_cnt * PAGE_SIZE)) {
1484 /* The interval intersects with the right interval. */
1485 return 0;
1486 } else if (page + count * PAGE_SIZE == right_pg) {
1487 /*
1488 * The interval can be added by moving the base of the
1489 * right interval down and increasing its size
1490 * accordingly.
1491 */
1492 leaf->key[0] = page;
1493 leaf->value[0] += count;
1494 return 1;
1495 } else {
1496 /*
1497 * The interval doesn't adjoin with the right interval.
1498 * It must be added individually.
1499 */
1500 btree_insert(&a->used_space, page, (void *) count,
1501 leaf);
1502 return 1;
1503 }
1504 }
1505
1506 node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1507 if (node) {
1508 uintptr_t left_pg = leaf->key[leaf->keys - 1];
1509 uintptr_t right_pg = node->key[0];
1510 count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1511 count_t right_cnt = (count_t) node->value[0];
1512
1513 /*
1514 * Examine the possibility that the interval fits
1515 * somewhere between the leftmost interval of
1516 * the right neigbour and the last interval of the leaf.
1517 */
1518
1519 if (page < left_pg) {
1520 /* Do nothing. */
1521 } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1522 left_cnt * PAGE_SIZE)) {
1523 /* The interval intersects with the left interval. */
1524 return 0;
1525 } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1526 right_cnt * PAGE_SIZE)) {
1527 /* The interval intersects with the right interval. */
1528 return 0;
1529 } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1530 (page + count * PAGE_SIZE == right_pg)) {
1531 /*
1532 * The interval can be added by merging the two already
1533 * present intervals.
1534 * */
1535 leaf->value[leaf->keys - 1] += count + right_cnt;
1536 btree_remove(&a->used_space, right_pg, node);
1537 return 1;
1538 } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1539 /*
1540 * The interval can be added by simply growing the left
1541 * interval.
1542 * */
1543 leaf->value[leaf->keys - 1] += count;
1544 return 1;
1545 } else if (page + count * PAGE_SIZE == right_pg) {
1546 /*
1547 * The interval can be addded by simply moving base of
1548 * the right interval down and increasing its size
1549 * accordingly.
1550 */
1551 node->value[0] += count;
1552 node->key[0] = page;
1553 return 1;
1554 } else {
1555 /*
1556 * The interval is between both neigbouring intervals,
1557 * but cannot be merged with any of them.
1558 */
1559 btree_insert(&a->used_space, page, (void *) count,
1560 leaf);
1561 return 1;
1562 }
1563 } else if (page >= leaf->key[leaf->keys - 1]) {
1564 uintptr_t left_pg = leaf->key[leaf->keys - 1];
1565 count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1566
1567 /*
1568 * Investigate the border case in which the right neighbour
1569 * does not exist but the interval fits from the right.
1570 */
1571
1572 if (overlaps(page, count * PAGE_SIZE, left_pg,
1573 left_cnt * PAGE_SIZE)) {
1574 /* The interval intersects with the left interval. */
1575 return 0;
1576 } else if (left_pg + left_cnt * PAGE_SIZE == page) {
1577 /*
1578 * The interval can be added by growing the left
1579 * interval.
1580 */
1581 leaf->value[leaf->keys - 1] += count;
1582 return 1;
1583 } else {
1584 /*
1585 * The interval doesn't adjoin with the left interval.
1586 * It must be added individually.
1587 */
1588 btree_insert(&a->used_space, page, (void *) count,
1589 leaf);
1590 return 1;
1591 }
1592 }
1593
1594 /*
1595 * Note that if the algorithm made it thus far, the interval can fit
1596 * only between two other intervals of the leaf. The two border cases
1597 * were already resolved.
1598 */
1599 for (i = 1; i < leaf->keys; i++) {
1600 if (page < leaf->key[i]) {
1601 uintptr_t left_pg = leaf->key[i - 1];
1602 uintptr_t right_pg = leaf->key[i];
1603 count_t left_cnt = (count_t) leaf->value[i - 1];
1604 count_t right_cnt = (count_t) leaf->value[i];
1605
1606 /*
1607 * The interval fits between left_pg and right_pg.
1608 */
1609
1610 if (overlaps(page, count * PAGE_SIZE, left_pg,
1611 left_cnt * PAGE_SIZE)) {
1612 /*
1613 * The interval intersects with the left
1614 * interval.
1615 */
1616 return 0;
1617 } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1618 right_cnt * PAGE_SIZE)) {
1619 /*
1620 * The interval intersects with the right
1621 * interval.
1622 */
1623 return 0;
1624 } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1625 (page + count * PAGE_SIZE == right_pg)) {
1626 /*
1627 * The interval can be added by merging the two
1628 * already present intervals.
1629 */
1630 leaf->value[i - 1] += count + right_cnt;
1631 btree_remove(&a->used_space, right_pg, leaf);
1632 return 1;
1633 } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1634 /*
1635 * The interval can be added by simply growing
1636 * the left interval.
1637 */
1638 leaf->value[i - 1] += count;
1639 return 1;
1640 } else if (page + count * PAGE_SIZE == right_pg) {
1641 /*
1642 * The interval can be addded by simply moving
1643 * base of the right interval down and
1644 * increasing its size accordingly.
1645 */
1646 leaf->value[i] += count;
1647 leaf->key[i] = page;
1648 return 1;
1649 } else {
1650 /*
1651 * The interval is between both neigbouring
1652 * intervals, but cannot be merged with any of
1653 * them.
1654 */
1655 btree_insert(&a->used_space, page,
1656 (void *) count, leaf);
1657 return 1;
1658 }
1659 }
1660 }
1661
1662 panic("Inconsistency detected while adding %" PRIc " pages of used "
1663 "space at %p.\n", count, page);
1664}
1665
1666/** Mark portion of address space area as unused.
1667 *
1668 * The address space area must be already locked.
1669 *
1670 * @param a Address space area.
1671 * @param page First page to be marked.
1672 * @param count Number of page to be marked.
1673 *
1674 * @return Zero on failure and non-zero on success.
1675 */
1676int used_space_remove(as_area_t *a, uintptr_t page, count_t count)
1677{
1678 btree_node_t *leaf, *node;
1679 count_t pages;
1680 unsigned int i;
1681
1682 ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1683 ASSERT(count);
1684
1685 pages = (count_t) btree_search(&a->used_space, page, &leaf);
1686 if (pages) {
1687 /*
1688 * We are lucky, page is the beginning of some interval.
1689 */
1690 if (count > pages) {
1691 return 0;
1692 } else if (count == pages) {
1693 btree_remove(&a->used_space, page, leaf);
1694 return 1;
1695 } else {
1696 /*
1697 * Find the respective interval.
1698 * Decrease its size and relocate its start address.
1699 */
1700 for (i = 0; i < leaf->keys; i++) {
1701 if (leaf->key[i] == page) {
1702 leaf->key[i] += count * PAGE_SIZE;
1703 leaf->value[i] -= count;
1704 return 1;
1705 }
1706 }
1707 goto error;
1708 }
1709 }
1710
1711 node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1712 if (node && page < leaf->key[0]) {
1713 uintptr_t left_pg = node->key[node->keys - 1];
1714 count_t left_cnt = (count_t) node->value[node->keys - 1];
1715
1716 if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1717 count * PAGE_SIZE)) {
1718 if (page + count * PAGE_SIZE ==
1719 left_pg + left_cnt * PAGE_SIZE) {
1720 /*
1721 * The interval is contained in the rightmost
1722 * interval of the left neighbour and can be
1723 * removed by updating the size of the bigger
1724 * interval.
1725 */
1726 node->value[node->keys - 1] -= count;
1727 return 1;
1728 } else if (page + count * PAGE_SIZE <
1729 left_pg + left_cnt*PAGE_SIZE) {
1730 count_t new_cnt;
1731
1732 /*
1733 * The interval is contained in the rightmost
1734 * interval of the left neighbour but its
1735 * removal requires both updating the size of
1736 * the original interval and also inserting a
1737 * new interval.
1738 */
1739 new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1740 (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1741 node->value[node->keys - 1] -= count + new_cnt;
1742 btree_insert(&a->used_space, page +
1743 count * PAGE_SIZE, (void *) new_cnt, leaf);
1744 return 1;
1745 }
1746 }
1747 return 0;
1748 } else if (page < leaf->key[0]) {
1749 return 0;
1750 }
1751
1752 if (page > leaf->key[leaf->keys - 1]) {
1753 uintptr_t left_pg = leaf->key[leaf->keys - 1];
1754 count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1755
1756 if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1757 count * PAGE_SIZE)) {
1758 if (page + count * PAGE_SIZE ==
1759 left_pg + left_cnt * PAGE_SIZE) {
1760 /*
1761 * The interval is contained in the rightmost
1762 * interval of the leaf and can be removed by
1763 * updating the size of the bigger interval.
1764 */
1765 leaf->value[leaf->keys - 1] -= count;
1766 return 1;
1767 } else if (page + count * PAGE_SIZE < left_pg +
1768 left_cnt * PAGE_SIZE) {
1769 count_t new_cnt;
1770
1771 /*
1772 * The interval is contained in the rightmost
1773 * interval of the leaf but its removal
1774 * requires both updating the size of the
1775 * original interval and also inserting a new
1776 * interval.
1777 */
1778 new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1779 (page + count * PAGE_SIZE)) >> PAGE_WIDTH;
1780 leaf->value[leaf->keys - 1] -= count + new_cnt;
1781 btree_insert(&a->used_space, page +
1782 count * PAGE_SIZE, (void *) new_cnt, leaf);
1783 return 1;
1784 }
1785 }
1786 return 0;
1787 }
1788
1789 /*
1790 * The border cases have been already resolved.
1791 * Now the interval can be only between intervals of the leaf.
1792 */
1793 for (i = 1; i < leaf->keys - 1; i++) {
1794 if (page < leaf->key[i]) {
1795 uintptr_t left_pg = leaf->key[i - 1];
1796 count_t left_cnt = (count_t) leaf->value[i - 1];
1797
1798 /*
1799 * Now the interval is between intervals corresponding
1800 * to (i - 1) and i.
1801 */
1802 if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1803 count * PAGE_SIZE)) {
1804 if (page + count * PAGE_SIZE ==
1805 left_pg + left_cnt*PAGE_SIZE) {
1806 /*
1807 * The interval is contained in the
1808 * interval (i - 1) of the leaf and can
1809 * be removed by updating the size of
1810 * the bigger interval.
1811 */
1812 leaf->value[i - 1] -= count;
1813 return 1;
1814 } else if (page + count * PAGE_SIZE <
1815 left_pg + left_cnt * PAGE_SIZE) {
1816 count_t new_cnt;
1817
1818 /*
1819 * The interval is contained in the
1820 * interval (i - 1) of the leaf but its
1821 * removal requires both updating the
1822 * size of the original interval and
1823 * also inserting a new interval.
1824 */
1825 new_cnt = ((left_pg +
1826 left_cnt * PAGE_SIZE) -
1827 (page + count * PAGE_SIZE)) >>
1828 PAGE_WIDTH;
1829 leaf->value[i - 1] -= count + new_cnt;
1830 btree_insert(&a->used_space, page +
1831 count * PAGE_SIZE, (void *) new_cnt,
1832 leaf);
1833 return 1;
1834 }
1835 }
1836 return 0;
1837 }
1838 }
1839
1840error:
1841 panic("Inconsistency detected while removing %" PRIc " pages of used "
1842 "space from %p.\n", count, page);
1843}
1844
1845/** Remove reference to address space area share info.
1846 *
1847 * If the reference count drops to 0, the sh_info is deallocated.
1848 *
1849 * @param sh_info Pointer to address space area share info.
1850 */
1851void sh_info_remove_reference(share_info_t *sh_info)
1852{
1853 bool dealloc = false;
1854
1855 mutex_lock(&sh_info->lock);
1856 ASSERT(sh_info->refcount);
1857 if (--sh_info->refcount == 0) {
1858 dealloc = true;
1859 link_t *cur;
1860
1861 /*
1862 * Now walk carefully the pagemap B+tree and free/remove
1863 * reference from all frames found there.
1864 */
1865 for (cur = sh_info->pagemap.leaf_head.next;
1866 cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1867 btree_node_t *node;
1868 unsigned int i;
1869
1870 node = list_get_instance(cur, btree_node_t, leaf_link);
1871 for (i = 0; i < node->keys; i++)
1872 frame_free((uintptr_t) node->value[i]);
1873 }
1874
1875 }
1876 mutex_unlock(&sh_info->lock);
1877
1878 if (dealloc) {
1879 btree_destroy(&sh_info->pagemap);
1880 free(sh_info);
1881 }
1882}
1883
1884/*
1885 * Address space related syscalls.
1886 */
1887
1888/** Wrapper for as_area_create(). */
1889unative_t sys_as_area_create(uintptr_t address, size_t size, int flags)
1890{
1891 if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address,
1892 AS_AREA_ATTR_NONE, &anon_backend, NULL))
1893 return (unative_t) address;
1894 else
1895 return (unative_t) -1;
1896}
1897
1898/** Wrapper for as_area_resize(). */
1899unative_t sys_as_area_resize(uintptr_t address, size_t size, int flags)
1900{
1901 return (unative_t) as_area_resize(AS, address, size, 0);
1902}
1903
1904/** Wrapper for as_area_change_flags(). */
1905unative_t sys_as_area_change_flags(uintptr_t address, int flags)
1906{
1907 return (unative_t) as_area_change_flags(AS, flags, address);
1908}
1909
1910/** Wrapper for as_area_destroy(). */
1911unative_t sys_as_area_destroy(uintptr_t address)
1912{
1913 return (unative_t) as_area_destroy(AS, address);
1914}
1915
1916/** Print out information about address space.
1917 *
1918 * @param as Address space.
1919 */
1920void as_print(as_t *as)
1921{
1922 ipl_t ipl;
1923
1924 ipl = interrupts_disable();
1925 mutex_lock(&as->lock);
1926
1927 /* print out info about address space areas */
1928 link_t *cur;
1929 for (cur = as->as_area_btree.leaf_head.next;
1930 cur != &as->as_area_btree.leaf_head; cur = cur->next) {
1931 btree_node_t *node;
1932
1933 node = list_get_instance(cur, btree_node_t, leaf_link);
1934
1935 unsigned int i;
1936 for (i = 0; i < node->keys; i++) {
1937 as_area_t *area = node->value[i];
1938
1939 mutex_lock(&area->lock);
1940 printf("as_area: %p, base=%p, pages=%" PRIc
1941 " (%p - %p)\n", area, area->base, area->pages,
1942 area->base, area->base + FRAMES2SIZE(area->pages));
1943 mutex_unlock(&area->lock);
1944 }
1945 }
1946
1947 mutex_unlock(&as->lock);
1948 interrupts_restore(ipl);
1949}
1950
1951/** @}
1952 */
Note: See TracBrowser for help on using the repository browser.