source: mainline/kernel/generic/src/mm/as.c@ 346b12a2

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since 346b12a2 was 38dc82d, checked in by Jakub Jermar <jakub@…>, 9 years ago

Make page_mapping_find() return a copy rather than the actual PTE

This makes page_mapping_find() more suitable for use with lock-free data
structures such as CHT that guarantee existence of the data only for
some limited time while a condition holds (e.g. inside of a RCU-protected
critical section that must be around all CHT lookups).

  • Property mode set to 100644
File size: 56.8 KB
Line 
1/*
2 * Copyright (c) 2010 Jakub Jermar
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/** @addtogroup genericmm
30 * @{
31 */
32
33/**
34 * @file
35 * @brief Address space related functions.
36 *
37 * This file contains address space manipulation functions.
38 * Roughly speaking, this is a higher-level client of
39 * Virtual Address Translation (VAT) subsystem.
40 *
41 * Functionality provided by this file allows one to
42 * create address spaces and create, resize and share
43 * address space areas.
44 *
45 * @see page.c
46 *
47 */
48
49#include <mm/as.h>
50#include <arch/mm/as.h>
51#include <mm/page.h>
52#include <mm/frame.h>
53#include <mm/slab.h>
54#include <mm/tlb.h>
55#include <arch/mm/page.h>
56#include <genarch/mm/page_pt.h>
57#include <genarch/mm/page_ht.h>
58#include <mm/asid.h>
59#include <arch/mm/asid.h>
60#include <preemption.h>
61#include <synch/spinlock.h>
62#include <synch/mutex.h>
63#include <adt/list.h>
64#include <adt/btree.h>
65#include <proc/task.h>
66#include <proc/thread.h>
67#include <arch/asm.h>
68#include <panic.h>
69#include <debug.h>
70#include <print.h>
71#include <memstr.h>
72#include <macros.h>
73#include <bitops.h>
74#include <arch.h>
75#include <errno.h>
76#include <config.h>
77#include <align.h>
78#include <typedefs.h>
79#include <syscall/copy.h>
80#include <arch/interrupt.h>
81#include <interrupt.h>
82
83/**
84 * Each architecture decides what functions will be used to carry out
85 * address space operations such as creating or locking page tables.
86 */
87as_operations_t *as_operations = NULL;
88
89/** Slab for as_t objects.
90 *
91 */
92static slab_cache_t *as_slab;
93
94/** ASID subsystem lock.
95 *
96 * This lock protects:
97 * - inactive_as_with_asid_list
98 * - as->asid for each as of the as_t type
99 * - asids_allocated counter
100 *
101 */
102SPINLOCK_INITIALIZE(asidlock);
103
104/**
105 * Inactive address spaces (on all processors)
106 * that have valid ASID.
107 */
108LIST_INITIALIZE(inactive_as_with_asid_list);
109
110/** Kernel address space. */
111as_t *AS_KERNEL = NULL;
112
113NO_TRACE static int as_constructor(void *obj, unsigned int flags)
114{
115 as_t *as = (as_t *) obj;
116
117 link_initialize(&as->inactive_as_with_asid_link);
118 mutex_initialize(&as->lock, MUTEX_PASSIVE);
119
120 return as_constructor_arch(as, flags);
121}
122
123NO_TRACE static size_t as_destructor(void *obj)
124{
125 return as_destructor_arch((as_t *) obj);
126}
127
128/** Initialize address space subsystem. */
129void as_init(void)
130{
131 as_arch_init();
132
133 as_slab = slab_cache_create("as_t", sizeof(as_t), 0,
134 as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);
135
136 AS_KERNEL = as_create(FLAG_AS_KERNEL);
137 if (!AS_KERNEL)
138 panic("Cannot create kernel address space.");
139
140 /*
141 * Make sure the kernel address space
142 * reference count never drops to zero.
143 */
144 as_hold(AS_KERNEL);
145}
146
147/** Create address space.
148 *
149 * @param flags Flags that influence the way in wich the address
150 * space is created.
151 *
152 */
153as_t *as_create(unsigned int flags)
154{
155 as_t *as = (as_t *) slab_alloc(as_slab, 0);
156 (void) as_create_arch(as, 0);
157
158 btree_create(&as->as_area_btree);
159
160 if (flags & FLAG_AS_KERNEL)
161 as->asid = ASID_KERNEL;
162 else
163 as->asid = ASID_INVALID;
164
165 atomic_set(&as->refcount, 0);
166 as->cpu_refcount = 0;
167
168#ifdef AS_PAGE_TABLE
169 as->genarch.page_table = page_table_create(flags);
170#else
171 page_table_create(flags);
172#endif
173
174 return as;
175}
176
177/** Destroy adress space.
178 *
179 * When there are no tasks referencing this address space (i.e. its refcount is
180 * zero), the address space can be destroyed.
181 *
182 * We know that we don't hold any spinlock.
183 *
184 * @param as Address space to be destroyed.
185 *
186 */
187void as_destroy(as_t *as)
188{
189 DEADLOCK_PROBE_INIT(p_asidlock);
190
191 ASSERT(as != AS);
192 ASSERT(atomic_get(&as->refcount) == 0);
193
194 /*
195 * Since there is no reference to this address space, it is safe not to
196 * lock its mutex.
197 */
198
199 /*
200 * We need to avoid deadlock between TLB shootdown and asidlock.
201 * We therefore try to take asid conditionally and if we don't succeed,
202 * we enable interrupts and try again. This is done while preemption is
203 * disabled to prevent nested context switches. We also depend on the
204 * fact that so far no spinlocks are held.
205 */
206 preemption_disable();
207 ipl_t ipl = interrupts_read();
208
209retry:
210 interrupts_disable();
211 if (!spinlock_trylock(&asidlock)) {
212 interrupts_enable();
213 DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
214 goto retry;
215 }
216
217 /* Interrupts disabled, enable preemption */
218 preemption_enable();
219
220 if ((as->asid != ASID_INVALID) && (as != AS_KERNEL)) {
221 if (as->cpu_refcount == 0)
222 list_remove(&as->inactive_as_with_asid_link);
223
224 asid_put(as->asid);
225 }
226
227 spinlock_unlock(&asidlock);
228 interrupts_restore(ipl);
229
230
231 /*
232 * Destroy address space areas of the address space.
233 * The B+tree must be walked carefully because it is
234 * also being destroyed.
235 */
236 bool cond = true;
237 while (cond) {
238 ASSERT(!list_empty(&as->as_area_btree.leaf_list));
239
240 btree_node_t *node =
241 list_get_instance(list_first(&as->as_area_btree.leaf_list),
242 btree_node_t, leaf_link);
243
244 if ((cond = node->keys))
245 as_area_destroy(as, node->key[0]);
246 }
247
248 btree_destroy(&as->as_area_btree);
249
250#ifdef AS_PAGE_TABLE
251 page_table_destroy(as->genarch.page_table);
252#else
253 page_table_destroy(NULL);
254#endif
255
256 slab_free(as_slab, as);
257}
258
259/** Hold a reference to an address space.
260 *
261 * Holding a reference to an address space prevents destruction
262 * of that address space.
263 *
264 * @param as Address space to be held.
265 *
266 */
267NO_TRACE void as_hold(as_t *as)
268{
269 atomic_inc(&as->refcount);
270}
271
272/** Release a reference to an address space.
273 *
274 * The last one to release a reference to an address space
275 * destroys the address space.
276 *
277 * @param asAddress space to be released.
278 *
279 */
280NO_TRACE void as_release(as_t *as)
281{
282 if (atomic_predec(&as->refcount) == 0)
283 as_destroy(as);
284}
285
286/** Check area conflicts with other areas.
287 *
288 * @param as Address space.
289 * @param addr Starting virtual address of the area being tested.
290 * @param count Number of pages in the area being tested.
291 * @param guarded True if the area being tested is protected by guard pages.
292 * @param avoid Do not touch this area.
293 *
294 * @return True if there is no conflict, false otherwise.
295 *
296 */
297NO_TRACE static bool check_area_conflicts(as_t *as, uintptr_t addr,
298 size_t count, bool guarded, as_area_t *avoid)
299{
300 ASSERT((addr % PAGE_SIZE) == 0);
301 ASSERT(mutex_locked(&as->lock));
302
303 /*
304 * If the addition of the supposed area address and size overflows,
305 * report conflict.
306 */
307 if (overflows_into_positive(addr, P2SZ(count)))
308 return false;
309
310 /*
311 * We don't want any area to have conflicts with NULL page.
312 */
313 if (overlaps(addr, P2SZ(count), (uintptr_t) NULL, PAGE_SIZE))
314 return false;
315
316 /*
317 * The leaf node is found in O(log n), where n is proportional to
318 * the number of address space areas belonging to as.
319 * The check for conflicts is then attempted on the rightmost
320 * record in the left neighbour, the leftmost record in the right
321 * neighbour and all records in the leaf node itself.
322 */
323 btree_node_t *leaf;
324 as_area_t *area =
325 (as_area_t *) btree_search(&as->as_area_btree, addr, &leaf);
326 if (area) {
327 if (area != avoid)
328 return false;
329 }
330
331 /* First, check the two border cases. */
332 btree_node_t *node =
333 btree_leaf_node_left_neighbour(&as->as_area_btree, leaf);
334 if (node) {
335 area = (as_area_t *) node->value[node->keys - 1];
336
337 if (area != avoid) {
338 mutex_lock(&area->lock);
339
340 /*
341 * If at least one of the two areas are protected
342 * by the AS_AREA_GUARD flag then we must be sure
343 * that they are separated by at least one unmapped
344 * page.
345 */
346 int const gp = (guarded ||
347 (area->flags & AS_AREA_GUARD)) ? 1 : 0;
348
349 /*
350 * The area comes from the left neighbour node, which
351 * means that there already are some areas in the leaf
352 * node, which in turn means that adding gp is safe and
353 * will not cause an integer overflow.
354 */
355 if (overlaps(addr, P2SZ(count), area->base,
356 P2SZ(area->pages + gp))) {
357 mutex_unlock(&area->lock);
358 return false;
359 }
360
361 mutex_unlock(&area->lock);
362 }
363 }
364
365 node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf);
366 if (node) {
367 area = (as_area_t *) node->value[0];
368
369 if (area != avoid) {
370 int gp;
371
372 mutex_lock(&area->lock);
373
374 gp = (guarded || (area->flags & AS_AREA_GUARD)) ? 1 : 0;
375 if (gp && overflows(addr, P2SZ(count))) {
376 /*
377 * Guard page not needed if the supposed area
378 * is adjacent to the end of the address space.
379 * We already know that the following test is
380 * going to fail...
381 */
382 gp--;
383 }
384
385 if (overlaps(addr, P2SZ(count + gp), area->base,
386 P2SZ(area->pages))) {
387 mutex_unlock(&area->lock);
388 return false;
389 }
390
391 mutex_unlock(&area->lock);
392 }
393 }
394
395 /* Second, check the leaf node. */
396 btree_key_t i;
397 for (i = 0; i < leaf->keys; i++) {
398 area = (as_area_t *) leaf->value[i];
399 int agp;
400 int gp;
401
402 if (area == avoid)
403 continue;
404
405 mutex_lock(&area->lock);
406
407 gp = (guarded || (area->flags & AS_AREA_GUARD)) ? 1 : 0;
408 agp = gp;
409
410 /*
411 * Sanitize the two possible unsigned integer overflows.
412 */
413 if (gp && overflows(addr, P2SZ(count)))
414 gp--;
415 if (agp && overflows(area->base, P2SZ(area->pages)))
416 agp--;
417
418 if (overlaps(addr, P2SZ(count + gp), area->base,
419 P2SZ(area->pages + agp))) {
420 mutex_unlock(&area->lock);
421 return false;
422 }
423
424 mutex_unlock(&area->lock);
425 }
426
427 /*
428 * So far, the area does not conflict with other areas.
429 * Check if it is contained in the user address space.
430 */
431 if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
432 return iswithin(USER_ADDRESS_SPACE_START,
433 (USER_ADDRESS_SPACE_END - USER_ADDRESS_SPACE_START) + 1,
434 addr, P2SZ(count));
435 }
436
437 return true;
438}
439
440/** Return pointer to unmapped address space area
441 *
442 * The address space must be already locked when calling
443 * this function.
444 *
445 * @param as Address space.
446 * @param bound Lowest address bound.
447 * @param size Requested size of the allocation.
448 * @param guarded True if the allocation must be protected by guard pages.
449 *
450 * @return Address of the beginning of unmapped address space area.
451 * @return -1 if no suitable address space area was found.
452 *
453 */
454NO_TRACE static uintptr_t as_get_unmapped_area(as_t *as, uintptr_t bound,
455 size_t size, bool guarded)
456{
457 ASSERT(mutex_locked(&as->lock));
458
459 if (size == 0)
460 return (uintptr_t) -1;
461
462 /*
463 * Make sure we allocate from page-aligned
464 * address. Check for possible overflow in
465 * each step.
466 */
467
468 size_t pages = SIZE2FRAMES(size);
469
470 /*
471 * Find the lowest unmapped address aligned on the size
472 * boundary, not smaller than bound and of the required size.
473 */
474
475 /* First check the bound address itself */
476 uintptr_t addr = ALIGN_UP(bound, PAGE_SIZE);
477 if (addr >= bound) {
478 if (guarded) {
479 /* Leave an unmapped page between the lower
480 * bound and the area's start address.
481 */
482 addr += P2SZ(1);
483 }
484
485 if (check_area_conflicts(as, addr, pages, guarded, NULL))
486 return addr;
487 }
488
489 /* Eventually check the addresses behind each area */
490 list_foreach(as->as_area_btree.leaf_list, leaf_link, btree_node_t, node) {
491
492 for (btree_key_t i = 0; i < node->keys; i++) {
493 as_area_t *area = (as_area_t *) node->value[i];
494
495 mutex_lock(&area->lock);
496
497 addr =
498 ALIGN_UP(area->base + P2SZ(area->pages), PAGE_SIZE);
499
500 if (guarded || area->flags & AS_AREA_GUARD) {
501 /* We must leave an unmapped page
502 * between the two areas.
503 */
504 addr += P2SZ(1);
505 }
506
507 bool avail =
508 ((addr >= bound) && (addr >= area->base) &&
509 (check_area_conflicts(as, addr, pages, guarded, area)));
510
511 mutex_unlock(&area->lock);
512
513 if (avail)
514 return addr;
515 }
516 }
517
518 /* No suitable address space area found */
519 return (uintptr_t) -1;
520}
521
522/** Remove reference to address space area share info.
523 *
524 * If the reference count drops to 0, the sh_info is deallocated.
525 *
526 * @param sh_info Pointer to address space area share info.
527 *
528 */
529NO_TRACE static void sh_info_remove_reference(share_info_t *sh_info)
530{
531 bool dealloc = false;
532
533 mutex_lock(&sh_info->lock);
534 ASSERT(sh_info->refcount);
535
536 if (--sh_info->refcount == 0) {
537 dealloc = true;
538
539 /*
540 * Now walk carefully the pagemap B+tree and free/remove
541 * reference from all frames found there.
542 */
543 list_foreach(sh_info->pagemap.leaf_list, leaf_link,
544 btree_node_t, node) {
545 btree_key_t i;
546
547 for (i = 0; i < node->keys; i++)
548 frame_free((uintptr_t) node->value[i], 1);
549 }
550
551 }
552 mutex_unlock(&sh_info->lock);
553
554 if (dealloc) {
555 if (sh_info->backend && sh_info->backend->destroy_shared_data) {
556 sh_info->backend->destroy_shared_data(
557 sh_info->backend_shared_data);
558 }
559 btree_destroy(&sh_info->pagemap);
560 free(sh_info);
561 }
562}
563
564
565/** Create address space area of common attributes.
566 *
567 * The created address space area is added to the target address space.
568 *
569 * @param as Target address space.
570 * @param flags Flags of the area memory.
571 * @param size Size of area.
572 * @param attrs Attributes of the area.
573 * @param backend Address space area backend. NULL if no backend is used.
574 * @param backend_data NULL or a pointer to custom backend data.
575 * @param base Starting virtual address of the area.
576 * If set to -1, a suitable mappable area is found.
577 * @param bound Lowest address bound if base is set to -1.
578 * Otherwise ignored.
579 *
580 * @return Address space area on success or NULL on failure.
581 *
582 */
583as_area_t *as_area_create(as_t *as, unsigned int flags, size_t size,
584 unsigned int attrs, mem_backend_t *backend,
585 mem_backend_data_t *backend_data, uintptr_t *base, uintptr_t bound)
586{
587 if ((*base != (uintptr_t) -1) && !IS_ALIGNED(*base, PAGE_SIZE))
588 return NULL;
589
590 if (size == 0)
591 return NULL;
592
593 size_t pages = SIZE2FRAMES(size);
594
595 /* Writeable executable areas are not supported. */
596 if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
597 return NULL;
598
599 bool const guarded = flags & AS_AREA_GUARD;
600
601 mutex_lock(&as->lock);
602
603 if (*base == (uintptr_t) -1) {
604 *base = as_get_unmapped_area(as, bound, size, guarded);
605 if (*base == (uintptr_t) -1) {
606 mutex_unlock(&as->lock);
607 return NULL;
608 }
609 }
610
611 if (overflows_into_positive(*base, size)) {
612 mutex_unlock(&as->lock);
613 return NULL;
614 }
615
616 if (!check_area_conflicts(as, *base, pages, guarded, NULL)) {
617 mutex_unlock(&as->lock);
618 return NULL;
619 }
620
621 as_area_t *area = (as_area_t *) malloc(sizeof(as_area_t), 0);
622
623 mutex_initialize(&area->lock, MUTEX_PASSIVE);
624
625 area->as = as;
626 area->flags = flags;
627 area->attributes = attrs;
628 area->pages = pages;
629 area->resident = 0;
630 area->base = *base;
631 area->backend = backend;
632 area->sh_info = NULL;
633
634 if (backend_data)
635 area->backend_data = *backend_data;
636 else
637 memsetb(&area->backend_data, sizeof(area->backend_data), 0);
638
639 share_info_t *si = NULL;
640
641 /*
642 * Create the sharing info structure.
643 * We do this in advance for every new area, even if it is not going
644 * to be shared.
645 */
646 if (!(attrs & AS_AREA_ATTR_PARTIAL)) {
647 si = (share_info_t *) malloc(sizeof(share_info_t), 0);
648 mutex_initialize(&si->lock, MUTEX_PASSIVE);
649 si->refcount = 1;
650 si->shared = false;
651 si->backend_shared_data = NULL;
652 si->backend = backend;
653 btree_create(&si->pagemap);
654
655 area->sh_info = si;
656
657 if (area->backend && area->backend->create_shared_data) {
658 if (!area->backend->create_shared_data(area)) {
659 free(area);
660 mutex_unlock(&as->lock);
661 sh_info_remove_reference(si);
662 return NULL;
663 }
664 }
665 }
666
667 if (area->backend && area->backend->create) {
668 if (!area->backend->create(area)) {
669 free(area);
670 mutex_unlock(&as->lock);
671 if (!(attrs & AS_AREA_ATTR_PARTIAL))
672 sh_info_remove_reference(si);
673 return NULL;
674 }
675 }
676
677 btree_create(&area->used_space);
678 btree_insert(&as->as_area_btree, *base, (void *) area,
679 NULL);
680
681 mutex_unlock(&as->lock);
682
683 return area;
684}
685
686/** Find address space area and lock it.
687 *
688 * @param as Address space.
689 * @param va Virtual address.
690 *
691 * @return Locked address space area containing va on success or
692 * NULL on failure.
693 *
694 */
695NO_TRACE static as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
696{
697 ASSERT(mutex_locked(&as->lock));
698
699 btree_node_t *leaf;
700 as_area_t *area = (as_area_t *) btree_search(&as->as_area_btree, va,
701 &leaf);
702 if (area) {
703 /* va is the base address of an address space area */
704 mutex_lock(&area->lock);
705 return area;
706 }
707
708 /*
709 * Search the leaf node and the rightmost record of its left neighbour
710 * to find out whether this is a miss or va belongs to an address
711 * space area found there.
712 */
713
714 /* First, search the leaf node itself. */
715 btree_key_t i;
716
717 for (i = 0; i < leaf->keys; i++) {
718 area = (as_area_t *) leaf->value[i];
719
720 mutex_lock(&area->lock);
721
722 if ((area->base <= va) &&
723 (va <= area->base + (P2SZ(area->pages) - 1)))
724 return area;
725
726 mutex_unlock(&area->lock);
727 }
728
729 /*
730 * Second, locate the left neighbour and test its last record.
731 * Because of its position in the B+tree, it must have base < va.
732 */
733 btree_node_t *lnode = btree_leaf_node_left_neighbour(&as->as_area_btree,
734 leaf);
735 if (lnode) {
736 area = (as_area_t *) lnode->value[lnode->keys - 1];
737
738 mutex_lock(&area->lock);
739
740 if (va <= area->base + (P2SZ(area->pages) - 1))
741 return area;
742
743 mutex_unlock(&area->lock);
744 }
745
746 return NULL;
747}
748
749/** Find address space area and change it.
750 *
751 * @param as Address space.
752 * @param address Virtual address belonging to the area to be changed.
753 * Must be page-aligned.
754 * @param size New size of the virtual memory block starting at
755 * address.
756 * @param flags Flags influencing the remap operation. Currently unused.
757 *
758 * @return Zero on success or a value from @ref errno.h otherwise.
759 *
760 */
761int as_area_resize(as_t *as, uintptr_t address, size_t size, unsigned int flags)
762{
763 if (!IS_ALIGNED(address, PAGE_SIZE))
764 return EINVAL;
765
766 mutex_lock(&as->lock);
767
768 /*
769 * Locate the area.
770 */
771 as_area_t *area = find_area_and_lock(as, address);
772 if (!area) {
773 mutex_unlock(&as->lock);
774 return ENOENT;
775 }
776
777 if (!area->backend->is_resizable(area)) {
778 /*
779 * The backend does not support resizing for this area.
780 */
781 mutex_unlock(&area->lock);
782 mutex_unlock(&as->lock);
783 return ENOTSUP;
784 }
785
786 mutex_lock(&area->sh_info->lock);
787 if (area->sh_info->shared) {
788 /*
789 * Remapping of shared address space areas
790 * is not supported.
791 */
792 mutex_unlock(&area->sh_info->lock);
793 mutex_unlock(&area->lock);
794 mutex_unlock(&as->lock);
795 return ENOTSUP;
796 }
797 mutex_unlock(&area->sh_info->lock);
798
799 size_t pages = SIZE2FRAMES((address - area->base) + size);
800 if (!pages) {
801 /*
802 * Zero size address space areas are not allowed.
803 */
804 mutex_unlock(&area->lock);
805 mutex_unlock(&as->lock);
806 return EPERM;
807 }
808
809 if (pages < area->pages) {
810 uintptr_t start_free = area->base + P2SZ(pages);
811
812 /*
813 * Shrinking the area.
814 * No need to check for overlaps.
815 */
816
817 page_table_lock(as, false);
818
819 /*
820 * Remove frames belonging to used space starting from
821 * the highest addresses downwards until an overlap with
822 * the resized address space area is found. Note that this
823 * is also the right way to remove part of the used_space
824 * B+tree leaf list.
825 */
826 bool cond = true;
827 while (cond) {
828 ASSERT(!list_empty(&area->used_space.leaf_list));
829
830 btree_node_t *node =
831 list_get_instance(list_last(&area->used_space.leaf_list),
832 btree_node_t, leaf_link);
833
834 if ((cond = (bool) node->keys)) {
835 uintptr_t ptr = node->key[node->keys - 1];
836 size_t node_size =
837 (size_t) node->value[node->keys - 1];
838 size_t i = 0;
839
840 if (overlaps(ptr, P2SZ(node_size), area->base,
841 P2SZ(pages))) {
842
843 if (ptr + P2SZ(node_size) <= start_free) {
844 /*
845 * The whole interval fits
846 * completely in the resized
847 * address space area.
848 */
849 break;
850 }
851
852 /*
853 * Part of the interval corresponding
854 * to b and c overlaps with the resized
855 * address space area.
856 */
857
858 /* We are almost done */
859 cond = false;
860 i = (start_free - ptr) >> PAGE_WIDTH;
861 if (!used_space_remove(area, start_free,
862 node_size - i))
863 panic("Cannot remove used space.");
864 } else {
865 /*
866 * The interval of used space can be
867 * completely removed.
868 */
869 if (!used_space_remove(area, ptr, node_size))
870 panic("Cannot remove used space.");
871 }
872
873 /*
874 * Start TLB shootdown sequence.
875 *
876 * The sequence is rather short and can be
877 * repeated multiple times. The reason is that
878 * we don't want to have used_space_remove()
879 * inside the sequence as it may use a blocking
880 * memory allocation for its B+tree. Blocking
881 * while holding the tlblock spinlock is
882 * forbidden and would hit a kernel assertion.
883 */
884
885 ipl_t ipl = tlb_shootdown_start(TLB_INVL_PAGES,
886 as->asid, area->base + P2SZ(pages),
887 area->pages - pages);
888
889 for (; i < node_size; i++) {
890 pte_t pte;
891 bool found = page_mapping_find(as,
892 ptr + P2SZ(i), false, &pte);
893
894 ASSERT(found);
895 ASSERT(PTE_VALID(&pte));
896 ASSERT(PTE_PRESENT(&pte));
897
898 if ((area->backend) &&
899 (area->backend->frame_free)) {
900 area->backend->frame_free(area,
901 ptr + P2SZ(i),
902 PTE_GET_FRAME(&pte));
903 }
904
905 page_mapping_remove(as, ptr + P2SZ(i));
906 }
907
908 /*
909 * Finish TLB shootdown sequence.
910 */
911
912 tlb_invalidate_pages(as->asid,
913 area->base + P2SZ(pages),
914 area->pages - pages);
915
916 /*
917 * Invalidate software translation caches
918 * (e.g. TSB on sparc64, PHT on ppc32).
919 */
920 as_invalidate_translation_cache(as,
921 area->base + P2SZ(pages),
922 area->pages - pages);
923 tlb_shootdown_finalize(ipl);
924 }
925 }
926 page_table_unlock(as, false);
927 } else {
928 /*
929 * Growing the area.
930 */
931
932 if (overflows_into_positive(address, P2SZ(pages)))
933 return EINVAL;
934
935 /*
936 * Check for overlaps with other address space areas.
937 */
938 bool const guarded = area->flags & AS_AREA_GUARD;
939 if (!check_area_conflicts(as, address, pages, guarded, area)) {
940 mutex_unlock(&area->lock);
941 mutex_unlock(&as->lock);
942 return EADDRNOTAVAIL;
943 }
944 }
945
946 if (area->backend && area->backend->resize) {
947 if (!area->backend->resize(area, pages)) {
948 mutex_unlock(&area->lock);
949 mutex_unlock(&as->lock);
950 return ENOMEM;
951 }
952 }
953
954 area->pages = pages;
955
956 mutex_unlock(&area->lock);
957 mutex_unlock(&as->lock);
958
959 return 0;
960}
961
962/** Destroy address space area.
963 *
964 * @param as Address space.
965 * @param address Address within the area to be deleted.
966 *
967 * @return Zero on success or a value from @ref errno.h on failure.
968 *
969 */
970int as_area_destroy(as_t *as, uintptr_t address)
971{
972 mutex_lock(&as->lock);
973
974 as_area_t *area = find_area_and_lock(as, address);
975 if (!area) {
976 mutex_unlock(&as->lock);
977 return ENOENT;
978 }
979
980 if (area->backend && area->backend->destroy)
981 area->backend->destroy(area);
982
983 uintptr_t base = area->base;
984
985 page_table_lock(as, false);
986
987 /*
988 * Start TLB shootdown sequence.
989 */
990 ipl_t ipl = tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base,
991 area->pages);
992
993 /*
994 * Visit only the pages mapped by used_space B+tree.
995 */
996 list_foreach(area->used_space.leaf_list, leaf_link, btree_node_t,
997 node) {
998 btree_key_t i;
999
1000 for (i = 0; i < node->keys; i++) {
1001 uintptr_t ptr = node->key[i];
1002 size_t size;
1003
1004 for (size = 0; size < (size_t) node->value[i]; size++) {
1005 pte_t pte;
1006 bool found = page_mapping_find(as,
1007 ptr + P2SZ(size), false, &pte);
1008
1009 ASSERT(found);
1010 ASSERT(PTE_VALID(&pte));
1011 ASSERT(PTE_PRESENT(&pte));
1012
1013 if ((area->backend) &&
1014 (area->backend->frame_free)) {
1015 area->backend->frame_free(area,
1016 ptr + P2SZ(size),
1017 PTE_GET_FRAME(&pte));
1018 }
1019
1020 page_mapping_remove(as, ptr + P2SZ(size));
1021 }
1022 }
1023 }
1024
1025 /*
1026 * Finish TLB shootdown sequence.
1027 */
1028
1029 tlb_invalidate_pages(as->asid, area->base, area->pages);
1030
1031 /*
1032 * Invalidate potential software translation caches
1033 * (e.g. TSB on sparc64, PHT on ppc32).
1034 */
1035 as_invalidate_translation_cache(as, area->base, area->pages);
1036 tlb_shootdown_finalize(ipl);
1037
1038 page_table_unlock(as, false);
1039
1040 btree_destroy(&area->used_space);
1041
1042 area->attributes |= AS_AREA_ATTR_PARTIAL;
1043
1044 sh_info_remove_reference(area->sh_info);
1045
1046 mutex_unlock(&area->lock);
1047
1048 /*
1049 * Remove the empty area from address space.
1050 */
1051 btree_remove(&as->as_area_btree, base, NULL);
1052
1053 free(area);
1054
1055 mutex_unlock(&as->lock);
1056 return 0;
1057}
1058
1059/** Share address space area with another or the same address space.
1060 *
1061 * Address space area mapping is shared with a new address space area.
1062 * If the source address space area has not been shared so far,
1063 * a new sh_info is created. The new address space area simply gets the
1064 * sh_info of the source area. The process of duplicating the
1065 * mapping is done through the backend share function.
1066 *
1067 * @param src_as Pointer to source address space.
1068 * @param src_base Base address of the source address space area.
1069 * @param acc_size Expected size of the source area.
1070 * @param dst_as Pointer to destination address space.
1071 * @param dst_flags_mask Destination address space area flags mask.
1072 * @param dst_base Target base address. If set to -1,
1073 * a suitable mappable area is found.
1074 * @param bound Lowest address bound if dst_base is set to -1.
1075 * Otherwise ignored.
1076 *
1077 * @return Zero on success.
1078 * @return ENOENT if there is no such task or such address space.
1079 * @return EPERM if there was a problem in accepting the area.
1080 * @return ENOMEM if there was a problem in allocating destination
1081 * address space area.
1082 * @return ENOTSUP if the address space area backend does not support
1083 * sharing.
1084 *
1085 */
1086int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
1087 as_t *dst_as, unsigned int dst_flags_mask, uintptr_t *dst_base,
1088 uintptr_t bound)
1089{
1090 mutex_lock(&src_as->lock);
1091 as_area_t *src_area = find_area_and_lock(src_as, src_base);
1092 if (!src_area) {
1093 /*
1094 * Could not find the source address space area.
1095 */
1096 mutex_unlock(&src_as->lock);
1097 return ENOENT;
1098 }
1099
1100 if (!src_area->backend->is_shareable(src_area)) {
1101 /*
1102 * The backend does not permit sharing of this area.
1103 */
1104 mutex_unlock(&src_area->lock);
1105 mutex_unlock(&src_as->lock);
1106 return ENOTSUP;
1107 }
1108
1109 size_t src_size = P2SZ(src_area->pages);
1110 unsigned int src_flags = src_area->flags;
1111 mem_backend_t *src_backend = src_area->backend;
1112 mem_backend_data_t src_backend_data = src_area->backend_data;
1113
1114 /* Share the cacheable flag from the original mapping */
1115 if (src_flags & AS_AREA_CACHEABLE)
1116 dst_flags_mask |= AS_AREA_CACHEABLE;
1117
1118 if ((src_size != acc_size) ||
1119 ((src_flags & dst_flags_mask) != dst_flags_mask)) {
1120 mutex_unlock(&src_area->lock);
1121 mutex_unlock(&src_as->lock);
1122 return EPERM;
1123 }
1124
1125 /*
1126 * Now we are committed to sharing the area.
1127 * First, prepare the area for sharing.
1128 * Then it will be safe to unlock it.
1129 */
1130 share_info_t *sh_info = src_area->sh_info;
1131
1132 mutex_lock(&sh_info->lock);
1133 sh_info->refcount++;
1134 bool shared = sh_info->shared;
1135 sh_info->shared = true;
1136 mutex_unlock(&sh_info->lock);
1137
1138 if (!shared) {
1139 /*
1140 * Call the backend to setup sharing.
1141 * This only happens once for each sh_info.
1142 */
1143 src_area->backend->share(src_area);
1144 }
1145
1146 mutex_unlock(&src_area->lock);
1147 mutex_unlock(&src_as->lock);
1148
1149 /*
1150 * Create copy of the source address space area.
1151 * The destination area is created with AS_AREA_ATTR_PARTIAL
1152 * attribute set which prevents race condition with
1153 * preliminary as_page_fault() calls.
1154 * The flags of the source area are masked against dst_flags_mask
1155 * to support sharing in less privileged mode.
1156 */
1157 as_area_t *dst_area = as_area_create(dst_as, dst_flags_mask,
1158 src_size, AS_AREA_ATTR_PARTIAL, src_backend,
1159 &src_backend_data, dst_base, bound);
1160 if (!dst_area) {
1161 /*
1162 * Destination address space area could not be created.
1163 */
1164 sh_info_remove_reference(sh_info);
1165
1166 return ENOMEM;
1167 }
1168
1169 /*
1170 * Now the destination address space area has been
1171 * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
1172 * attribute and set the sh_info.
1173 */
1174 mutex_lock(&dst_as->lock);
1175 mutex_lock(&dst_area->lock);
1176 dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
1177 dst_area->sh_info = sh_info;
1178 mutex_unlock(&dst_area->lock);
1179 mutex_unlock(&dst_as->lock);
1180
1181 return 0;
1182}
1183
1184/** Check access mode for address space area.
1185 *
1186 * @param area Address space area.
1187 * @param access Access mode.
1188 *
1189 * @return False if access violates area's permissions, true
1190 * otherwise.
1191 *
1192 */
1193NO_TRACE bool as_area_check_access(as_area_t *area, pf_access_t access)
1194{
1195 ASSERT(mutex_locked(&area->lock));
1196
1197 int flagmap[] = {
1198 [PF_ACCESS_READ] = AS_AREA_READ,
1199 [PF_ACCESS_WRITE] = AS_AREA_WRITE,
1200 [PF_ACCESS_EXEC] = AS_AREA_EXEC
1201 };
1202
1203 if (!(area->flags & flagmap[access]))
1204 return false;
1205
1206 return true;
1207}
1208
1209/** Convert address space area flags to page flags.
1210 *
1211 * @param aflags Flags of some address space area.
1212 *
1213 * @return Flags to be passed to page_mapping_insert().
1214 *
1215 */
1216NO_TRACE static unsigned int area_flags_to_page_flags(unsigned int aflags)
1217{
1218 unsigned int flags = PAGE_USER | PAGE_PRESENT;
1219
1220 if (aflags & AS_AREA_READ)
1221 flags |= PAGE_READ;
1222
1223 if (aflags & AS_AREA_WRITE)
1224 flags |= PAGE_WRITE;
1225
1226 if (aflags & AS_AREA_EXEC)
1227 flags |= PAGE_EXEC;
1228
1229 if (aflags & AS_AREA_CACHEABLE)
1230 flags |= PAGE_CACHEABLE;
1231
1232 return flags;
1233}
1234
1235/** Change adress space area flags.
1236 *
1237 * The idea is to have the same data, but with a different access mode.
1238 * This is needed e.g. for writing code into memory and then executing it.
1239 * In order for this to work properly, this may copy the data
1240 * into private anonymous memory (unless it's already there).
1241 *
1242 * @param as Address space.
1243 * @param flags Flags of the area memory.
1244 * @param address Address within the area to be changed.
1245 *
1246 * @return Zero on success or a value from @ref errno.h on failure.
1247 *
1248 */
1249int as_area_change_flags(as_t *as, unsigned int flags, uintptr_t address)
1250{
1251 /* Flags for the new memory mapping */
1252 unsigned int page_flags = area_flags_to_page_flags(flags);
1253
1254 mutex_lock(&as->lock);
1255
1256 as_area_t *area = find_area_and_lock(as, address);
1257 if (!area) {
1258 mutex_unlock(&as->lock);
1259 return ENOENT;
1260 }
1261
1262 if (area->backend != &anon_backend) {
1263 /* Copying non-anonymous memory not supported yet */
1264 mutex_unlock(&area->lock);
1265 mutex_unlock(&as->lock);
1266 return ENOTSUP;
1267 }
1268
1269 mutex_lock(&area->sh_info->lock);
1270 if (area->sh_info->shared) {
1271 /* Copying shared areas not supported yet */
1272 mutex_unlock(&area->sh_info->lock);
1273 mutex_unlock(&area->lock);
1274 mutex_unlock(&as->lock);
1275 return ENOTSUP;
1276 }
1277 mutex_unlock(&area->sh_info->lock);
1278
1279 /*
1280 * Compute total number of used pages in the used_space B+tree
1281 */
1282 size_t used_pages = 0;
1283
1284 list_foreach(area->used_space.leaf_list, leaf_link, btree_node_t,
1285 node) {
1286 btree_key_t i;
1287
1288 for (i = 0; i < node->keys; i++)
1289 used_pages += (size_t) node->value[i];
1290 }
1291
1292 /* An array for storing frame numbers */
1293 uintptr_t *old_frame = malloc(used_pages * sizeof(uintptr_t), 0);
1294
1295 page_table_lock(as, false);
1296
1297 /*
1298 * Start TLB shootdown sequence.
1299 */
1300 ipl_t ipl = tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base,
1301 area->pages);
1302
1303 /*
1304 * Remove used pages from page tables and remember their frame
1305 * numbers.
1306 */
1307 size_t frame_idx = 0;
1308
1309 list_foreach(area->used_space.leaf_list, leaf_link, btree_node_t,
1310 node) {
1311 btree_key_t i;
1312
1313 for (i = 0; i < node->keys; i++) {
1314 uintptr_t ptr = node->key[i];
1315 size_t size;
1316
1317 for (size = 0; size < (size_t) node->value[i]; size++) {
1318 pte_t pte;
1319 bool found = page_mapping_find(as,
1320 ptr + P2SZ(size), false, &pte);
1321
1322 ASSERT(found);
1323 ASSERT(PTE_VALID(&pte));
1324 ASSERT(PTE_PRESENT(&pte));
1325
1326 old_frame[frame_idx++] = PTE_GET_FRAME(&pte);
1327
1328 /* Remove old mapping */
1329 page_mapping_remove(as, ptr + P2SZ(size));
1330 }
1331 }
1332 }
1333
1334 /*
1335 * Finish TLB shootdown sequence.
1336 */
1337
1338 tlb_invalidate_pages(as->asid, area->base, area->pages);
1339
1340 /*
1341 * Invalidate potential software translation caches
1342 * (e.g. TSB on sparc64, PHT on ppc32).
1343 */
1344 as_invalidate_translation_cache(as, area->base, area->pages);
1345 tlb_shootdown_finalize(ipl);
1346
1347 page_table_unlock(as, false);
1348
1349 /*
1350 * Set the new flags.
1351 */
1352 area->flags = flags;
1353
1354 /*
1355 * Map pages back in with new flags. This step is kept separate
1356 * so that the memory area could not be accesed with both the old and
1357 * the new flags at once.
1358 */
1359 frame_idx = 0;
1360
1361 list_foreach(area->used_space.leaf_list, leaf_link, btree_node_t,
1362 node) {
1363 btree_key_t i;
1364
1365 for (i = 0; i < node->keys; i++) {
1366 uintptr_t ptr = node->key[i];
1367 size_t size;
1368
1369 for (size = 0; size < (size_t) node->value[i]; size++) {
1370 page_table_lock(as, false);
1371
1372 /* Insert the new mapping */
1373 page_mapping_insert(as, ptr + P2SZ(size),
1374 old_frame[frame_idx++], page_flags);
1375
1376 page_table_unlock(as, false);
1377 }
1378 }
1379 }
1380
1381 free(old_frame);
1382
1383 mutex_unlock(&area->lock);
1384 mutex_unlock(&as->lock);
1385
1386 return 0;
1387}
1388
1389/** Handle page fault within the current address space.
1390 *
1391 * This is the high-level page fault handler. It decides whether the page fault
1392 * can be resolved by any backend and if so, it invokes the backend to resolve
1393 * the page fault.
1394 *
1395 * Interrupts are assumed disabled.
1396 *
1397 * @param address Faulting address.
1398 * @param access Access mode that caused the page fault (i.e.
1399 * read/write/exec).
1400 * @param istate Pointer to the interrupted state.
1401 *
1402 * @return AS_PF_FAULT on page fault.
1403 * @return AS_PF_OK on success.
1404 * @return AS_PF_DEFER if the fault was caused by copy_to_uspace()
1405 * or copy_from_uspace().
1406 *
1407 */
1408int as_page_fault(uintptr_t address, pf_access_t access, istate_t *istate)
1409{
1410 uintptr_t page = ALIGN_DOWN(address, PAGE_SIZE);
1411 int rc = AS_PF_FAULT;
1412
1413 if (!THREAD)
1414 goto page_fault;
1415
1416 if (!AS)
1417 goto page_fault;
1418
1419 mutex_lock(&AS->lock);
1420 as_area_t *area = find_area_and_lock(AS, page);
1421 if (!area) {
1422 /*
1423 * No area contained mapping for 'page'.
1424 * Signal page fault to low-level handler.
1425 */
1426 mutex_unlock(&AS->lock);
1427 goto page_fault;
1428 }
1429
1430 if (area->attributes & AS_AREA_ATTR_PARTIAL) {
1431 /*
1432 * The address space area is not fully initialized.
1433 * Avoid possible race by returning error.
1434 */
1435 mutex_unlock(&area->lock);
1436 mutex_unlock(&AS->lock);
1437 goto page_fault;
1438 }
1439
1440 if ((!area->backend) || (!area->backend->page_fault)) {
1441 /*
1442 * The address space area is not backed by any backend
1443 * or the backend cannot handle page faults.
1444 */
1445 mutex_unlock(&area->lock);
1446 mutex_unlock(&AS->lock);
1447 goto page_fault;
1448 }
1449
1450 page_table_lock(AS, false);
1451
1452 /*
1453 * To avoid race condition between two page faults on the same address,
1454 * we need to make sure the mapping has not been already inserted.
1455 */
1456 pte_t pte;
1457 bool found = page_mapping_find(AS, page, false, &pte);
1458 if (found) {
1459 if (PTE_PRESENT(&pte)) {
1460 if (((access == PF_ACCESS_READ) && PTE_READABLE(&pte)) ||
1461 (access == PF_ACCESS_WRITE && PTE_WRITABLE(&pte)) ||
1462 (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(&pte))) {
1463 page_table_unlock(AS, false);
1464 mutex_unlock(&area->lock);
1465 mutex_unlock(&AS->lock);
1466 return AS_PF_OK;
1467 }
1468 }
1469 }
1470
1471 /*
1472 * Resort to the backend page fault handler.
1473 */
1474 rc = area->backend->page_fault(area, page, access);
1475 if (rc != AS_PF_OK) {
1476 page_table_unlock(AS, false);
1477 mutex_unlock(&area->lock);
1478 mutex_unlock(&AS->lock);
1479 goto page_fault;
1480 }
1481
1482 page_table_unlock(AS, false);
1483 mutex_unlock(&area->lock);
1484 mutex_unlock(&AS->lock);
1485 return AS_PF_OK;
1486
1487page_fault:
1488 if (THREAD->in_copy_from_uspace) {
1489 THREAD->in_copy_from_uspace = false;
1490 istate_set_retaddr(istate,
1491 (uintptr_t) &memcpy_from_uspace_failover_address);
1492 } else if (THREAD->in_copy_to_uspace) {
1493 THREAD->in_copy_to_uspace = false;
1494 istate_set_retaddr(istate,
1495 (uintptr_t) &memcpy_to_uspace_failover_address);
1496 } else if (rc == AS_PF_SILENT) {
1497 printf("Killing task %" PRIu64 " due to a "
1498 "failed late reservation request.\n", TASK->taskid);
1499 task_kill_self(true);
1500 } else {
1501 fault_if_from_uspace(istate, "Page fault: %p.", (void *) address);
1502 panic_memtrap(istate, access, address, NULL);
1503 }
1504
1505 return AS_PF_DEFER;
1506}
1507
1508/** Switch address spaces.
1509 *
1510 * Note that this function cannot sleep as it is essentially a part of
1511 * scheduling. Sleeping here would lead to deadlock on wakeup. Another
1512 * thing which is forbidden in this context is locking the address space.
1513 *
1514 * When this function is entered, no spinlocks may be held.
1515 *
1516 * @param old Old address space or NULL.
1517 * @param new New address space.
1518 *
1519 */
1520void as_switch(as_t *old_as, as_t *new_as)
1521{
1522 DEADLOCK_PROBE_INIT(p_asidlock);
1523 preemption_disable();
1524
1525retry:
1526 (void) interrupts_disable();
1527 if (!spinlock_trylock(&asidlock)) {
1528 /*
1529 * Avoid deadlock with TLB shootdown.
1530 * We can enable interrupts here because
1531 * preemption is disabled. We should not be
1532 * holding any other lock.
1533 */
1534 (void) interrupts_enable();
1535 DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
1536 goto retry;
1537 }
1538 preemption_enable();
1539
1540 /*
1541 * First, take care of the old address space.
1542 */
1543 if (old_as) {
1544 ASSERT(old_as->cpu_refcount);
1545
1546 if ((--old_as->cpu_refcount == 0) && (old_as != AS_KERNEL)) {
1547 /*
1548 * The old address space is no longer active on
1549 * any processor. It can be appended to the
1550 * list of inactive address spaces with assigned
1551 * ASID.
1552 */
1553 ASSERT(old_as->asid != ASID_INVALID);
1554
1555 list_append(&old_as->inactive_as_with_asid_link,
1556 &inactive_as_with_asid_list);
1557 }
1558
1559 /*
1560 * Perform architecture-specific tasks when the address space
1561 * is being removed from the CPU.
1562 */
1563 as_deinstall_arch(old_as);
1564 }
1565
1566 /*
1567 * Second, prepare the new address space.
1568 */
1569 if ((new_as->cpu_refcount++ == 0) && (new_as != AS_KERNEL)) {
1570 if (new_as->asid != ASID_INVALID)
1571 list_remove(&new_as->inactive_as_with_asid_link);
1572 else
1573 new_as->asid = asid_get();
1574 }
1575
1576#ifdef AS_PAGE_TABLE
1577 SET_PTL0_ADDRESS(new_as->genarch.page_table);
1578#endif
1579
1580 /*
1581 * Perform architecture-specific steps.
1582 * (e.g. write ASID to hardware register etc.)
1583 */
1584 as_install_arch(new_as);
1585
1586 spinlock_unlock(&asidlock);
1587
1588 AS = new_as;
1589}
1590
1591/** Compute flags for virtual address translation subsytem.
1592 *
1593 * @param area Address space area.
1594 *
1595 * @return Flags to be used in page_mapping_insert().
1596 *
1597 */
1598NO_TRACE unsigned int as_area_get_flags(as_area_t *area)
1599{
1600 ASSERT(mutex_locked(&area->lock));
1601
1602 return area_flags_to_page_flags(area->flags);
1603}
1604
1605/** Create page table.
1606 *
1607 * Depending on architecture, create either address space private or global page
1608 * table.
1609 *
1610 * @param flags Flags saying whether the page table is for the kernel
1611 * address space.
1612 *
1613 * @return First entry of the page table.
1614 *
1615 */
1616NO_TRACE pte_t *page_table_create(unsigned int flags)
1617{
1618 ASSERT(as_operations);
1619 ASSERT(as_operations->page_table_create);
1620
1621 return as_operations->page_table_create(flags);
1622}
1623
1624/** Destroy page table.
1625 *
1626 * Destroy page table in architecture specific way.
1627 *
1628 * @param page_table Physical address of PTL0.
1629 *
1630 */
1631NO_TRACE void page_table_destroy(pte_t *page_table)
1632{
1633 ASSERT(as_operations);
1634 ASSERT(as_operations->page_table_destroy);
1635
1636 as_operations->page_table_destroy(page_table);
1637}
1638
1639/** Lock page table.
1640 *
1641 * This function should be called before any page_mapping_insert(),
1642 * page_mapping_remove() and page_mapping_find().
1643 *
1644 * Locking order is such that address space areas must be locked
1645 * prior to this call. Address space can be locked prior to this
1646 * call in which case the lock argument is false.
1647 *
1648 * @param as Address space.
1649 * @param lock If false, do not attempt to lock as->lock.
1650 *
1651 */
1652NO_TRACE void page_table_lock(as_t *as, bool lock)
1653{
1654 ASSERT(as_operations);
1655 ASSERT(as_operations->page_table_lock);
1656
1657 as_operations->page_table_lock(as, lock);
1658}
1659
1660/** Unlock page table.
1661 *
1662 * @param as Address space.
1663 * @param unlock If false, do not attempt to unlock as->lock.
1664 *
1665 */
1666NO_TRACE void page_table_unlock(as_t *as, bool unlock)
1667{
1668 ASSERT(as_operations);
1669 ASSERT(as_operations->page_table_unlock);
1670
1671 as_operations->page_table_unlock(as, unlock);
1672}
1673
1674/** Test whether page tables are locked.
1675 *
1676 * @param as Address space where the page tables belong.
1677 *
1678 * @return True if the page tables belonging to the address soace
1679 * are locked, otherwise false.
1680 */
1681NO_TRACE bool page_table_locked(as_t *as)
1682{
1683 ASSERT(as_operations);
1684 ASSERT(as_operations->page_table_locked);
1685
1686 return as_operations->page_table_locked(as);
1687}
1688
1689/** Return size of the address space area with given base.
1690 *
1691 * @param base Arbitrary address inside the address space area.
1692 *
1693 * @return Size of the address space area in bytes or zero if it
1694 * does not exist.
1695 *
1696 */
1697size_t as_area_get_size(uintptr_t base)
1698{
1699 size_t size;
1700
1701 page_table_lock(AS, true);
1702 as_area_t *src_area = find_area_and_lock(AS, base);
1703
1704 if (src_area) {
1705 size = P2SZ(src_area->pages);
1706 mutex_unlock(&src_area->lock);
1707 } else
1708 size = 0;
1709
1710 page_table_unlock(AS, true);
1711 return size;
1712}
1713
1714/** Mark portion of address space area as used.
1715 *
1716 * The address space area must be already locked.
1717 *
1718 * @param area Address space area.
1719 * @param page First page to be marked.
1720 * @param count Number of page to be marked.
1721 *
1722 * @return False on failure or true on success.
1723 *
1724 */
1725bool used_space_insert(as_area_t *area, uintptr_t page, size_t count)
1726{
1727 ASSERT(mutex_locked(&area->lock));
1728 ASSERT(IS_ALIGNED(page, PAGE_SIZE));
1729 ASSERT(count);
1730
1731 btree_node_t *leaf = NULL;
1732 size_t pages = (size_t) btree_search(&area->used_space, page, &leaf);
1733 if (pages) {
1734 /*
1735 * We hit the beginning of some used space.
1736 */
1737 return false;
1738 }
1739
1740 ASSERT(leaf != NULL);
1741
1742 if (!leaf->keys) {
1743 btree_insert(&area->used_space, page, (void *) count, leaf);
1744 goto success;
1745 }
1746
1747 btree_node_t *node = btree_leaf_node_left_neighbour(&area->used_space, leaf);
1748 if (node) {
1749 uintptr_t left_pg = node->key[node->keys - 1];
1750 uintptr_t right_pg = leaf->key[0];
1751 size_t left_cnt = (size_t) node->value[node->keys - 1];
1752 size_t right_cnt = (size_t) leaf->value[0];
1753
1754 /*
1755 * Examine the possibility that the interval fits
1756 * somewhere between the rightmost interval of
1757 * the left neigbour and the first interval of the leaf.
1758 */
1759
1760 if (page >= right_pg) {
1761 /* Do nothing. */
1762 } else if (overlaps(page, P2SZ(count), left_pg,
1763 P2SZ(left_cnt))) {
1764 /* The interval intersects with the left interval. */
1765 return false;
1766 } else if (overlaps(page, P2SZ(count), right_pg,
1767 P2SZ(right_cnt))) {
1768 /* The interval intersects with the right interval. */
1769 return false;
1770 } else if ((page == left_pg + P2SZ(left_cnt)) &&
1771 (page + P2SZ(count) == right_pg)) {
1772 /*
1773 * The interval can be added by merging the two already
1774 * present intervals.
1775 */
1776 node->value[node->keys - 1] += count + right_cnt;
1777 btree_remove(&area->used_space, right_pg, leaf);
1778 goto success;
1779 } else if (page == left_pg + P2SZ(left_cnt)) {
1780 /*
1781 * The interval can be added by simply growing the left
1782 * interval.
1783 */
1784 node->value[node->keys - 1] += count;
1785 goto success;
1786 } else if (page + P2SZ(count) == right_pg) {
1787 /*
1788 * The interval can be addded by simply moving base of
1789 * the right interval down and increasing its size
1790 * accordingly.
1791 */
1792 leaf->value[0] += count;
1793 leaf->key[0] = page;
1794 goto success;
1795 } else {
1796 /*
1797 * The interval is between both neigbouring intervals,
1798 * but cannot be merged with any of them.
1799 */
1800 btree_insert(&area->used_space, page, (void *) count,
1801 leaf);
1802 goto success;
1803 }
1804 } else if (page < leaf->key[0]) {
1805 uintptr_t right_pg = leaf->key[0];
1806 size_t right_cnt = (size_t) leaf->value[0];
1807
1808 /*
1809 * Investigate the border case in which the left neighbour does
1810 * not exist but the interval fits from the left.
1811 */
1812
1813 if (overlaps(page, P2SZ(count), right_pg, P2SZ(right_cnt))) {
1814 /* The interval intersects with the right interval. */
1815 return false;
1816 } else if (page + P2SZ(count) == right_pg) {
1817 /*
1818 * The interval can be added by moving the base of the
1819 * right interval down and increasing its size
1820 * accordingly.
1821 */
1822 leaf->key[0] = page;
1823 leaf->value[0] += count;
1824 goto success;
1825 } else {
1826 /*
1827 * The interval doesn't adjoin with the right interval.
1828 * It must be added individually.
1829 */
1830 btree_insert(&area->used_space, page, (void *) count,
1831 leaf);
1832 goto success;
1833 }
1834 }
1835
1836 node = btree_leaf_node_right_neighbour(&area->used_space, leaf);
1837 if (node) {
1838 uintptr_t left_pg = leaf->key[leaf->keys - 1];
1839 uintptr_t right_pg = node->key[0];
1840 size_t left_cnt = (size_t) leaf->value[leaf->keys - 1];
1841 size_t right_cnt = (size_t) node->value[0];
1842
1843 /*
1844 * Examine the possibility that the interval fits
1845 * somewhere between the leftmost interval of
1846 * the right neigbour and the last interval of the leaf.
1847 */
1848
1849 if (page < left_pg) {
1850 /* Do nothing. */
1851 } else if (overlaps(page, P2SZ(count), left_pg,
1852 P2SZ(left_cnt))) {
1853 /* The interval intersects with the left interval. */
1854 return false;
1855 } else if (overlaps(page, P2SZ(count), right_pg,
1856 P2SZ(right_cnt))) {
1857 /* The interval intersects with the right interval. */
1858 return false;
1859 } else if ((page == left_pg + P2SZ(left_cnt)) &&
1860 (page + P2SZ(count) == right_pg)) {
1861 /*
1862 * The interval can be added by merging the two already
1863 * present intervals.
1864 */
1865 leaf->value[leaf->keys - 1] += count + right_cnt;
1866 btree_remove(&area->used_space, right_pg, node);
1867 goto success;
1868 } else if (page == left_pg + P2SZ(left_cnt)) {
1869 /*
1870 * The interval can be added by simply growing the left
1871 * interval.
1872 */
1873 leaf->value[leaf->keys - 1] += count;
1874 goto success;
1875 } else if (page + P2SZ(count) == right_pg) {
1876 /*
1877 * The interval can be addded by simply moving base of
1878 * the right interval down and increasing its size
1879 * accordingly.
1880 */
1881 node->value[0] += count;
1882 node->key[0] = page;
1883 goto success;
1884 } else {
1885 /*
1886 * The interval is between both neigbouring intervals,
1887 * but cannot be merged with any of them.
1888 */
1889 btree_insert(&area->used_space, page, (void *) count,
1890 leaf);
1891 goto success;
1892 }
1893 } else if (page >= leaf->key[leaf->keys - 1]) {
1894 uintptr_t left_pg = leaf->key[leaf->keys - 1];
1895 size_t left_cnt = (size_t) leaf->value[leaf->keys - 1];
1896
1897 /*
1898 * Investigate the border case in which the right neighbour
1899 * does not exist but the interval fits from the right.
1900 */
1901
1902 if (overlaps(page, P2SZ(count), left_pg, P2SZ(left_cnt))) {
1903 /* The interval intersects with the left interval. */
1904 return false;
1905 } else if (left_pg + P2SZ(left_cnt) == page) {
1906 /*
1907 * The interval can be added by growing the left
1908 * interval.
1909 */
1910 leaf->value[leaf->keys - 1] += count;
1911 goto success;
1912 } else {
1913 /*
1914 * The interval doesn't adjoin with the left interval.
1915 * It must be added individually.
1916 */
1917 btree_insert(&area->used_space, page, (void *) count,
1918 leaf);
1919 goto success;
1920 }
1921 }
1922
1923 /*
1924 * Note that if the algorithm made it thus far, the interval can fit
1925 * only between two other intervals of the leaf. The two border cases
1926 * were already resolved.
1927 */
1928 btree_key_t i;
1929 for (i = 1; i < leaf->keys; i++) {
1930 if (page < leaf->key[i]) {
1931 uintptr_t left_pg = leaf->key[i - 1];
1932 uintptr_t right_pg = leaf->key[i];
1933 size_t left_cnt = (size_t) leaf->value[i - 1];
1934 size_t right_cnt = (size_t) leaf->value[i];
1935
1936 /*
1937 * The interval fits between left_pg and right_pg.
1938 */
1939
1940 if (overlaps(page, P2SZ(count), left_pg,
1941 P2SZ(left_cnt))) {
1942 /*
1943 * The interval intersects with the left
1944 * interval.
1945 */
1946 return false;
1947 } else if (overlaps(page, P2SZ(count), right_pg,
1948 P2SZ(right_cnt))) {
1949 /*
1950 * The interval intersects with the right
1951 * interval.
1952 */
1953 return false;
1954 } else if ((page == left_pg + P2SZ(left_cnt)) &&
1955 (page + P2SZ(count) == right_pg)) {
1956 /*
1957 * The interval can be added by merging the two
1958 * already present intervals.
1959 */
1960 leaf->value[i - 1] += count + right_cnt;
1961 btree_remove(&area->used_space, right_pg, leaf);
1962 goto success;
1963 } else if (page == left_pg + P2SZ(left_cnt)) {
1964 /*
1965 * The interval can be added by simply growing
1966 * the left interval.
1967 */
1968 leaf->value[i - 1] += count;
1969 goto success;
1970 } else if (page + P2SZ(count) == right_pg) {
1971 /*
1972 * The interval can be addded by simply moving
1973 * base of the right interval down and
1974 * increasing its size accordingly.
1975 */
1976 leaf->value[i] += count;
1977 leaf->key[i] = page;
1978 goto success;
1979 } else {
1980 /*
1981 * The interval is between both neigbouring
1982 * intervals, but cannot be merged with any of
1983 * them.
1984 */
1985 btree_insert(&area->used_space, page,
1986 (void *) count, leaf);
1987 goto success;
1988 }
1989 }
1990 }
1991
1992 panic("Inconsistency detected while adding %zu pages of used "
1993 "space at %p.", count, (void *) page);
1994
1995success:
1996 area->resident += count;
1997 return true;
1998}
1999
2000/** Mark portion of address space area as unused.
2001 *
2002 * The address space area must be already locked.
2003 *
2004 * @param area Address space area.
2005 * @param page First page to be marked.
2006 * @param count Number of page to be marked.
2007 *
2008 * @return False on failure or true on success.
2009 *
2010 */
2011bool used_space_remove(as_area_t *area, uintptr_t page, size_t count)
2012{
2013 ASSERT(mutex_locked(&area->lock));
2014 ASSERT(IS_ALIGNED(page, PAGE_SIZE));
2015 ASSERT(count);
2016
2017 btree_node_t *leaf;
2018 size_t pages = (size_t) btree_search(&area->used_space, page, &leaf);
2019 if (pages) {
2020 /*
2021 * We are lucky, page is the beginning of some interval.
2022 */
2023 if (count > pages) {
2024 return false;
2025 } else if (count == pages) {
2026 btree_remove(&area->used_space, page, leaf);
2027 goto success;
2028 } else {
2029 /*
2030 * Find the respective interval.
2031 * Decrease its size and relocate its start address.
2032 */
2033 btree_key_t i;
2034 for (i = 0; i < leaf->keys; i++) {
2035 if (leaf->key[i] == page) {
2036 leaf->key[i] += P2SZ(count);
2037 leaf->value[i] -= count;
2038 goto success;
2039 }
2040 }
2041
2042 goto error;
2043 }
2044 }
2045
2046 btree_node_t *node = btree_leaf_node_left_neighbour(&area->used_space,
2047 leaf);
2048 if ((node) && (page < leaf->key[0])) {
2049 uintptr_t left_pg = node->key[node->keys - 1];
2050 size_t left_cnt = (size_t) node->value[node->keys - 1];
2051
2052 if (overlaps(left_pg, P2SZ(left_cnt), page, P2SZ(count))) {
2053 if (page + P2SZ(count) == left_pg + P2SZ(left_cnt)) {
2054 /*
2055 * The interval is contained in the rightmost
2056 * interval of the left neighbour and can be
2057 * removed by updating the size of the bigger
2058 * interval.
2059 */
2060 node->value[node->keys - 1] -= count;
2061 goto success;
2062 } else if (page + P2SZ(count) <
2063 left_pg + P2SZ(left_cnt)) {
2064 size_t new_cnt;
2065
2066 /*
2067 * The interval is contained in the rightmost
2068 * interval of the left neighbour but its
2069 * removal requires both updating the size of
2070 * the original interval and also inserting a
2071 * new interval.
2072 */
2073 new_cnt = ((left_pg + P2SZ(left_cnt)) -
2074 (page + P2SZ(count))) >> PAGE_WIDTH;
2075 node->value[node->keys - 1] -= count + new_cnt;
2076 btree_insert(&area->used_space, page +
2077 P2SZ(count), (void *) new_cnt, leaf);
2078 goto success;
2079 }
2080 }
2081
2082 return false;
2083 } else if (page < leaf->key[0])
2084 return false;
2085
2086 if (page > leaf->key[leaf->keys - 1]) {
2087 uintptr_t left_pg = leaf->key[leaf->keys - 1];
2088 size_t left_cnt = (size_t) leaf->value[leaf->keys - 1];
2089
2090 if (overlaps(left_pg, P2SZ(left_cnt), page, P2SZ(count))) {
2091 if (page + P2SZ(count) == left_pg + P2SZ(left_cnt)) {
2092 /*
2093 * The interval is contained in the rightmost
2094 * interval of the leaf and can be removed by
2095 * updating the size of the bigger interval.
2096 */
2097 leaf->value[leaf->keys - 1] -= count;
2098 goto success;
2099 } else if (page + P2SZ(count) < left_pg +
2100 P2SZ(left_cnt)) {
2101 size_t new_cnt;
2102
2103 /*
2104 * The interval is contained in the rightmost
2105 * interval of the leaf but its removal
2106 * requires both updating the size of the
2107 * original interval and also inserting a new
2108 * interval.
2109 */
2110 new_cnt = ((left_pg + P2SZ(left_cnt)) -
2111 (page + P2SZ(count))) >> PAGE_WIDTH;
2112 leaf->value[leaf->keys - 1] -= count + new_cnt;
2113 btree_insert(&area->used_space, page +
2114 P2SZ(count), (void *) new_cnt, leaf);
2115 goto success;
2116 }
2117 }
2118
2119 return false;
2120 }
2121
2122 /*
2123 * The border cases have been already resolved.
2124 * Now the interval can be only between intervals of the leaf.
2125 */
2126 btree_key_t i;
2127 for (i = 1; i < leaf->keys - 1; i++) {
2128 if (page < leaf->key[i]) {
2129 uintptr_t left_pg = leaf->key[i - 1];
2130 size_t left_cnt = (size_t) leaf->value[i - 1];
2131
2132 /*
2133 * Now the interval is between intervals corresponding
2134 * to (i - 1) and i.
2135 */
2136 if (overlaps(left_pg, P2SZ(left_cnt), page,
2137 P2SZ(count))) {
2138 if (page + P2SZ(count) ==
2139 left_pg + P2SZ(left_cnt)) {
2140 /*
2141 * The interval is contained in the
2142 * interval (i - 1) of the leaf and can
2143 * be removed by updating the size of
2144 * the bigger interval.
2145 */
2146 leaf->value[i - 1] -= count;
2147 goto success;
2148 } else if (page + P2SZ(count) <
2149 left_pg + P2SZ(left_cnt)) {
2150 size_t new_cnt;
2151
2152 /*
2153 * The interval is contained in the
2154 * interval (i - 1) of the leaf but its
2155 * removal requires both updating the
2156 * size of the original interval and
2157 * also inserting a new interval.
2158 */
2159 new_cnt = ((left_pg + P2SZ(left_cnt)) -
2160 (page + P2SZ(count))) >>
2161 PAGE_WIDTH;
2162 leaf->value[i - 1] -= count + new_cnt;
2163 btree_insert(&area->used_space, page +
2164 P2SZ(count), (void *) new_cnt,
2165 leaf);
2166 goto success;
2167 }
2168 }
2169
2170 return false;
2171 }
2172 }
2173
2174error:
2175 panic("Inconsistency detected while removing %zu pages of used "
2176 "space from %p.", count, (void *) page);
2177
2178success:
2179 area->resident -= count;
2180 return true;
2181}
2182
2183/*
2184 * Address space related syscalls.
2185 */
2186
2187sysarg_t sys_as_area_create(uintptr_t base, size_t size, unsigned int flags,
2188 uintptr_t bound)
2189{
2190 uintptr_t virt = base;
2191 as_area_t *area = as_area_create(AS, flags, size,
2192 AS_AREA_ATTR_NONE, &anon_backend, NULL, &virt, bound);
2193 if (area == NULL)
2194 return (sysarg_t) -1;
2195
2196 return (sysarg_t) virt;
2197}
2198
2199sysarg_t sys_as_area_resize(uintptr_t address, size_t size, unsigned int flags)
2200{
2201 return (sysarg_t) as_area_resize(AS, address, size, 0);
2202}
2203
2204sysarg_t sys_as_area_change_flags(uintptr_t address, unsigned int flags)
2205{
2206 return (sysarg_t) as_area_change_flags(AS, flags, address);
2207}
2208
2209sysarg_t sys_as_area_destroy(uintptr_t address)
2210{
2211 return (sysarg_t) as_area_destroy(AS, address);
2212}
2213
2214/** Get list of adress space areas.
2215 *
2216 * @param as Address space.
2217 * @param obuf Place to save pointer to returned buffer.
2218 * @param osize Place to save size of returned buffer.
2219 *
2220 */
2221void as_get_area_info(as_t *as, as_area_info_t **obuf, size_t *osize)
2222{
2223 mutex_lock(&as->lock);
2224
2225 /* First pass, count number of areas. */
2226
2227 size_t area_cnt = 0;
2228
2229 list_foreach(as->as_area_btree.leaf_list, leaf_link, btree_node_t,
2230 node) {
2231 area_cnt += node->keys;
2232 }
2233
2234 size_t isize = area_cnt * sizeof(as_area_info_t);
2235 as_area_info_t *info = malloc(isize, 0);
2236
2237 /* Second pass, record data. */
2238
2239 size_t area_idx = 0;
2240
2241 list_foreach(as->as_area_btree.leaf_list, leaf_link, btree_node_t,
2242 node) {
2243 btree_key_t i;
2244
2245 for (i = 0; i < node->keys; i++) {
2246 as_area_t *area = node->value[i];
2247
2248 ASSERT(area_idx < area_cnt);
2249 mutex_lock(&area->lock);
2250
2251 info[area_idx].start_addr = area->base;
2252 info[area_idx].size = P2SZ(area->pages);
2253 info[area_idx].flags = area->flags;
2254 ++area_idx;
2255
2256 mutex_unlock(&area->lock);
2257 }
2258 }
2259
2260 mutex_unlock(&as->lock);
2261
2262 *obuf = info;
2263 *osize = isize;
2264}
2265
2266/** Print out information about address space.
2267 *
2268 * @param as Address space.
2269 *
2270 */
2271void as_print(as_t *as)
2272{
2273 mutex_lock(&as->lock);
2274
2275 /* Print out info about address space areas */
2276 list_foreach(as->as_area_btree.leaf_list, leaf_link, btree_node_t,
2277 node) {
2278 btree_key_t i;
2279
2280 for (i = 0; i < node->keys; i++) {
2281 as_area_t *area = node->value[i];
2282
2283 mutex_lock(&area->lock);
2284 printf("as_area: %p, base=%p, pages=%zu"
2285 " (%p - %p)\n", area, (void *) area->base,
2286 area->pages, (void *) area->base,
2287 (void *) (area->base + P2SZ(area->pages)));
2288 mutex_unlock(&area->lock);
2289 }
2290 }
2291
2292 mutex_unlock(&as->lock);
2293}
2294
2295/** @}
2296 */
Note: See TracBrowser for help on using the repository browser.