source: mainline/kernel/generic/src/mm/as.c@ ae7f6fb

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since ae7f6fb was ae7f6fb, checked in by Jiri Svoboda <jirik.svoboda@…>, 17 years ago

Fix panic caused by not setting new area flags in as_area_change_flags(), as pointed out by Jakub.

  • Property mode set to 100644
File size: 49.0 KB
Line 
1/*
2 * Copyright (c) 2001-2006 Jakub Jermar
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/** @addtogroup genericmm
30 * @{
31 */
32
33/**
34 * @file
35 * @brief Address space related functions.
36 *
37 * This file contains address space manipulation functions.
38 * Roughly speaking, this is a higher-level client of
39 * Virtual Address Translation (VAT) subsystem.
40 *
41 * Functionality provided by this file allows one to
42 * create address spaces and create, resize and share
43 * address space areas.
44 *
45 * @see page.c
46 *
47 */
48
49#include <mm/as.h>
50#include <arch/mm/as.h>
51#include <mm/page.h>
52#include <mm/frame.h>
53#include <mm/slab.h>
54#include <mm/tlb.h>
55#include <arch/mm/page.h>
56#include <genarch/mm/page_pt.h>
57#include <genarch/mm/page_ht.h>
58#include <mm/asid.h>
59#include <arch/mm/asid.h>
60#include <preemption.h>
61#include <synch/spinlock.h>
62#include <synch/mutex.h>
63#include <adt/list.h>
64#include <adt/btree.h>
65#include <proc/task.h>
66#include <proc/thread.h>
67#include <arch/asm.h>
68#include <panic.h>
69#include <debug.h>
70#include <print.h>
71#include <memstr.h>
72#include <macros.h>
73#include <arch.h>
74#include <errno.h>
75#include <config.h>
76#include <align.h>
77#include <arch/types.h>
78#include <syscall/copy.h>
79#include <arch/interrupt.h>
80
81#ifdef CONFIG_VIRT_IDX_DCACHE
82#include <arch/mm/cache.h>
83#endif /* CONFIG_VIRT_IDX_DCACHE */
84
85/**
86 * Each architecture decides what functions will be used to carry out
87 * address space operations such as creating or locking page tables.
88 */
89as_operations_t *as_operations = NULL;
90
91/**
92 * Slab for as_t objects.
93 */
94static slab_cache_t *as_slab;
95
96/**
97 * This lock serializes access to the ASID subsystem.
98 * It protects:
99 * - inactive_as_with_asid_head list
100 * - as->asid for each as of the as_t type
101 * - asids_allocated counter
102 */
103SPINLOCK_INITIALIZE(asidlock);
104
105/**
106 * This list contains address spaces that are not active on any
107 * processor and that have valid ASID.
108 */
109LIST_INITIALIZE(inactive_as_with_asid_head);
110
111/** Kernel address space. */
112as_t *AS_KERNEL = NULL;
113
114static int area_flags_to_page_flags(int aflags);
115static as_area_t *find_area_and_lock(as_t *as, uintptr_t va);
116static bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
117 as_area_t *avoid_area);
118static void sh_info_remove_reference(share_info_t *sh_info);
119
120static int as_constructor(void *obj, int flags)
121{
122 as_t *as = (as_t *) obj;
123 int rc;
124
125 link_initialize(&as->inactive_as_with_asid_link);
126 mutex_initialize(&as->lock, MUTEX_PASSIVE);
127
128 rc = as_constructor_arch(as, flags);
129
130 return rc;
131}
132
133static int as_destructor(void *obj)
134{
135 as_t *as = (as_t *) obj;
136
137 return as_destructor_arch(as);
138}
139
140/** Initialize address space subsystem. */
141void as_init(void)
142{
143 as_arch_init();
144
145 as_slab = slab_cache_create("as_slab", sizeof(as_t), 0,
146 as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);
147
148 AS_KERNEL = as_create(FLAG_AS_KERNEL);
149 if (!AS_KERNEL)
150 panic("can't create kernel address space\n");
151
152}
153
154/** Create address space.
155 *
156 * @param flags Flags that influence way in wich the address space is created.
157 */
158as_t *as_create(int flags)
159{
160 as_t *as;
161
162 as = (as_t *) slab_alloc(as_slab, 0);
163 (void) as_create_arch(as, 0);
164
165 btree_create(&as->as_area_btree);
166
167 if (flags & FLAG_AS_KERNEL)
168 as->asid = ASID_KERNEL;
169 else
170 as->asid = ASID_INVALID;
171
172 atomic_set(&as->refcount, 0);
173 as->cpu_refcount = 0;
174#ifdef AS_PAGE_TABLE
175 as->genarch.page_table = page_table_create(flags);
176#else
177 page_table_create(flags);
178#endif
179
180 return as;
181}
182
183/** Destroy adress space.
184 *
185 * When there are no tasks referencing this address space (i.e. its refcount is
186 * zero), the address space can be destroyed.
187 *
188 * We know that we don't hold any spinlock.
189 */
190void as_destroy(as_t *as)
191{
192 ipl_t ipl;
193 bool cond;
194 DEADLOCK_PROBE_INIT(p_asidlock);
195
196 ASSERT(atomic_get(&as->refcount) == 0);
197
198 /*
199 * Since there is no reference to this area,
200 * it is safe not to lock its mutex.
201 */
202
203 /*
204 * We need to avoid deadlock between TLB shootdown and asidlock.
205 * We therefore try to take asid conditionally and if we don't succeed,
206 * we enable interrupts and try again. This is done while preemption is
207 * disabled to prevent nested context switches. We also depend on the
208 * fact that so far no spinlocks are held.
209 */
210 preemption_disable();
211 ipl = interrupts_read();
212retry:
213 interrupts_disable();
214 if (!spinlock_trylock(&asidlock)) {
215 interrupts_enable();
216 DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
217 goto retry;
218 }
219 preemption_enable(); /* Interrupts disabled, enable preemption */
220 if (as->asid != ASID_INVALID && as != AS_KERNEL) {
221 if (as != AS && as->cpu_refcount == 0)
222 list_remove(&as->inactive_as_with_asid_link);
223 asid_put(as->asid);
224 }
225 spinlock_unlock(&asidlock);
226
227 /*
228 * Destroy address space areas of the address space.
229 * The B+tree must be walked carefully because it is
230 * also being destroyed.
231 */
232 for (cond = true; cond; ) {
233 btree_node_t *node;
234
235 ASSERT(!list_empty(&as->as_area_btree.leaf_head));
236 node = list_get_instance(as->as_area_btree.leaf_head.next,
237 btree_node_t, leaf_link);
238
239 if ((cond = node->keys)) {
240 as_area_destroy(as, node->key[0]);
241 }
242 }
243
244 btree_destroy(&as->as_area_btree);
245#ifdef AS_PAGE_TABLE
246 page_table_destroy(as->genarch.page_table);
247#else
248 page_table_destroy(NULL);
249#endif
250
251 interrupts_restore(ipl);
252
253 slab_free(as_slab, as);
254}
255
256/** Create address space area of common attributes.
257 *
258 * The created address space area is added to the target address space.
259 *
260 * @param as Target address space.
261 * @param flags Flags of the area memory.
262 * @param size Size of area.
263 * @param base Base address of area.
264 * @param attrs Attributes of the area.
265 * @param backend Address space area backend. NULL if no backend is used.
266 * @param backend_data NULL or a pointer to an array holding two void *.
267 *
268 * @return Address space area on success or NULL on failure.
269 */
270as_area_t *
271as_area_create(as_t *as, int flags, size_t size, uintptr_t base, int attrs,
272 mem_backend_t *backend, mem_backend_data_t *backend_data)
273{
274 ipl_t ipl;
275 as_area_t *a;
276
277 if (base % PAGE_SIZE)
278 return NULL;
279
280 if (!size)
281 return NULL;
282
283 /* Writeable executable areas are not supported. */
284 if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
285 return NULL;
286
287 ipl = interrupts_disable();
288 mutex_lock(&as->lock);
289
290 if (!check_area_conflicts(as, base, size, NULL)) {
291 mutex_unlock(&as->lock);
292 interrupts_restore(ipl);
293 return NULL;
294 }
295
296 a = (as_area_t *) malloc(sizeof(as_area_t), 0);
297
298 mutex_initialize(&a->lock, MUTEX_PASSIVE);
299
300 a->as = as;
301 a->flags = flags;
302 a->attributes = attrs;
303 a->pages = SIZE2FRAMES(size);
304 a->base = base;
305 a->sh_info = NULL;
306 a->backend = backend;
307 if (backend_data)
308 a->backend_data = *backend_data;
309 else
310 memsetb(&a->backend_data, sizeof(a->backend_data), 0);
311
312 btree_create(&a->used_space);
313
314 btree_insert(&as->as_area_btree, base, (void *) a, NULL);
315
316 mutex_unlock(&as->lock);
317 interrupts_restore(ipl);
318
319 return a;
320}
321
322/** Find address space area and change it.
323 *
324 * @param as Address space.
325 * @param address Virtual address belonging to the area to be changed. Must be
326 * page-aligned.
327 * @param size New size of the virtual memory block starting at address.
328 * @param flags Flags influencing the remap operation. Currently unused.
329 *
330 * @return Zero on success or a value from @ref errno.h otherwise.
331 */
332int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags)
333{
334 as_area_t *area;
335 ipl_t ipl;
336 size_t pages;
337
338 ipl = interrupts_disable();
339 mutex_lock(&as->lock);
340
341 /*
342 * Locate the area.
343 */
344 area = find_area_and_lock(as, address);
345 if (!area) {
346 mutex_unlock(&as->lock);
347 interrupts_restore(ipl);
348 return ENOENT;
349 }
350
351 if (area->backend == &phys_backend) {
352 /*
353 * Remapping of address space areas associated
354 * with memory mapped devices is not supported.
355 */
356 mutex_unlock(&area->lock);
357 mutex_unlock(&as->lock);
358 interrupts_restore(ipl);
359 return ENOTSUP;
360 }
361 if (area->sh_info) {
362 /*
363 * Remapping of shared address space areas
364 * is not supported.
365 */
366 mutex_unlock(&area->lock);
367 mutex_unlock(&as->lock);
368 interrupts_restore(ipl);
369 return ENOTSUP;
370 }
371
372 pages = SIZE2FRAMES((address - area->base) + size);
373 if (!pages) {
374 /*
375 * Zero size address space areas are not allowed.
376 */
377 mutex_unlock(&area->lock);
378 mutex_unlock(&as->lock);
379 interrupts_restore(ipl);
380 return EPERM;
381 }
382
383 if (pages < area->pages) {
384 bool cond;
385 uintptr_t start_free = area->base + pages*PAGE_SIZE;
386
387 /*
388 * Shrinking the area.
389 * No need to check for overlaps.
390 */
391
392 /*
393 * Start TLB shootdown sequence.
394 */
395 tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base +
396 pages * PAGE_SIZE, area->pages - pages);
397
398 /*
399 * Remove frames belonging to used space starting from
400 * the highest addresses downwards until an overlap with
401 * the resized address space area is found. Note that this
402 * is also the right way to remove part of the used_space
403 * B+tree leaf list.
404 */
405 for (cond = true; cond;) {
406 btree_node_t *node;
407
408 ASSERT(!list_empty(&area->used_space.leaf_head));
409 node =
410 list_get_instance(area->used_space.leaf_head.prev,
411 btree_node_t, leaf_link);
412 if ((cond = (bool) node->keys)) {
413 uintptr_t b = node->key[node->keys - 1];
414 count_t c =
415 (count_t) node->value[node->keys - 1];
416 unsigned int i = 0;
417
418 if (overlaps(b, c * PAGE_SIZE, area->base,
419 pages * PAGE_SIZE)) {
420
421 if (b + c * PAGE_SIZE <= start_free) {
422 /*
423 * The whole interval fits
424 * completely in the resized
425 * address space area.
426 */
427 break;
428 }
429
430 /*
431 * Part of the interval corresponding
432 * to b and c overlaps with the resized
433 * address space area.
434 */
435
436 cond = false; /* we are almost done */
437 i = (start_free - b) >> PAGE_WIDTH;
438 if (!used_space_remove(area, start_free, c - i))
439 panic("Could not remove used space.\n");
440 } else {
441 /*
442 * The interval of used space can be
443 * completely removed.
444 */
445 if (!used_space_remove(area, b, c))
446 panic("Could not remove used space.\n");
447 }
448
449 for (; i < c; i++) {
450 pte_t *pte;
451
452 page_table_lock(as, false);
453 pte = page_mapping_find(as, b +
454 i * PAGE_SIZE);
455 ASSERT(pte && PTE_VALID(pte) &&
456 PTE_PRESENT(pte));
457 if (area->backend &&
458 area->backend->frame_free) {
459 area->backend->frame_free(area,
460 b + i * PAGE_SIZE,
461 PTE_GET_FRAME(pte));
462 }
463 page_mapping_remove(as, b +
464 i * PAGE_SIZE);
465 page_table_unlock(as, false);
466 }
467 }
468 }
469
470 /*
471 * Finish TLB shootdown sequence.
472 */
473
474 tlb_invalidate_pages(as->asid, area->base + pages * PAGE_SIZE,
475 area->pages - pages);
476 /*
477 * Invalidate software translation caches (e.g. TSB on sparc64).
478 */
479 as_invalidate_translation_cache(as, area->base +
480 pages * PAGE_SIZE, area->pages - pages);
481 tlb_shootdown_finalize();
482
483 } else {
484 /*
485 * Growing the area.
486 * Check for overlaps with other address space areas.
487 */
488 if (!check_area_conflicts(as, address, pages * PAGE_SIZE,
489 area)) {
490 mutex_unlock(&area->lock);
491 mutex_unlock(&as->lock);
492 interrupts_restore(ipl);
493 return EADDRNOTAVAIL;
494 }
495 }
496
497 area->pages = pages;
498
499 mutex_unlock(&area->lock);
500 mutex_unlock(&as->lock);
501 interrupts_restore(ipl);
502
503 return 0;
504}
505
506/** Destroy address space area.
507 *
508 * @param as Address space.
509 * @param address Address withing the area to be deleted.
510 *
511 * @return Zero on success or a value from @ref errno.h on failure.
512 */
513int as_area_destroy(as_t *as, uintptr_t address)
514{
515 as_area_t *area;
516 uintptr_t base;
517 link_t *cur;
518 ipl_t ipl;
519
520 ipl = interrupts_disable();
521 mutex_lock(&as->lock);
522
523 area = find_area_and_lock(as, address);
524 if (!area) {
525 mutex_unlock(&as->lock);
526 interrupts_restore(ipl);
527 return ENOENT;
528 }
529
530 base = area->base;
531
532 /*
533 * Start TLB shootdown sequence.
534 */
535 tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
536
537 /*
538 * Visit only the pages mapped by used_space B+tree.
539 */
540 for (cur = area->used_space.leaf_head.next;
541 cur != &area->used_space.leaf_head; cur = cur->next) {
542 btree_node_t *node;
543 unsigned int i;
544
545 node = list_get_instance(cur, btree_node_t, leaf_link);
546 for (i = 0; i < node->keys; i++) {
547 uintptr_t b = node->key[i];
548 count_t j;
549 pte_t *pte;
550
551 for (j = 0; j < (count_t) node->value[i]; j++) {
552 page_table_lock(as, false);
553 pte = page_mapping_find(as, b + j * PAGE_SIZE);
554 ASSERT(pte && PTE_VALID(pte) &&
555 PTE_PRESENT(pte));
556 if (area->backend &&
557 area->backend->frame_free) {
558 area->backend->frame_free(area, b +
559 j * PAGE_SIZE, PTE_GET_FRAME(pte));
560 }
561 page_mapping_remove(as, b + j * PAGE_SIZE);
562 page_table_unlock(as, false);
563 }
564 }
565 }
566
567 /*
568 * Finish TLB shootdown sequence.
569 */
570
571 tlb_invalidate_pages(as->asid, area->base, area->pages);
572 /*
573 * Invalidate potential software translation caches (e.g. TSB on
574 * sparc64).
575 */
576 as_invalidate_translation_cache(as, area->base, area->pages);
577 tlb_shootdown_finalize();
578
579 btree_destroy(&area->used_space);
580
581 area->attributes |= AS_AREA_ATTR_PARTIAL;
582
583 if (area->sh_info)
584 sh_info_remove_reference(area->sh_info);
585
586 mutex_unlock(&area->lock);
587
588 /*
589 * Remove the empty area from address space.
590 */
591 btree_remove(&as->as_area_btree, base, NULL);
592
593 free(area);
594
595 mutex_unlock(&as->lock);
596 interrupts_restore(ipl);
597 return 0;
598}
599
600/** Share address space area with another or the same address space.
601 *
602 * Address space area mapping is shared with a new address space area.
603 * If the source address space area has not been shared so far,
604 * a new sh_info is created. The new address space area simply gets the
605 * sh_info of the source area. The process of duplicating the
606 * mapping is done through the backend share function.
607 *
608 * @param src_as Pointer to source address space.
609 * @param src_base Base address of the source address space area.
610 * @param acc_size Expected size of the source area.
611 * @param dst_as Pointer to destination address space.
612 * @param dst_base Target base address.
613 * @param dst_flags_mask Destination address space area flags mask.
614 *
615 * @return Zero on success or ENOENT if there is no such task or if there is no
616 * such address space area, EPERM if there was a problem in accepting the area
617 * or ENOMEM if there was a problem in allocating destination address space
618 * area. ENOTSUP is returned if the address space area backend does not support
619 * sharing.
620 */
621int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
622 as_t *dst_as, uintptr_t dst_base, int dst_flags_mask)
623{
624 ipl_t ipl;
625 int src_flags;
626 size_t src_size;
627 as_area_t *src_area, *dst_area;
628 share_info_t *sh_info;
629 mem_backend_t *src_backend;
630 mem_backend_data_t src_backend_data;
631
632 ipl = interrupts_disable();
633 mutex_lock(&src_as->lock);
634 src_area = find_area_and_lock(src_as, src_base);
635 if (!src_area) {
636 /*
637 * Could not find the source address space area.
638 */
639 mutex_unlock(&src_as->lock);
640 interrupts_restore(ipl);
641 return ENOENT;
642 }
643
644 if (!src_area->backend || !src_area->backend->share) {
645 /*
646 * There is no backend or the backend does not
647 * know how to share the area.
648 */
649 mutex_unlock(&src_area->lock);
650 mutex_unlock(&src_as->lock);
651 interrupts_restore(ipl);
652 return ENOTSUP;
653 }
654
655 src_size = src_area->pages * PAGE_SIZE;
656 src_flags = src_area->flags;
657 src_backend = src_area->backend;
658 src_backend_data = src_area->backend_data;
659
660 /* Share the cacheable flag from the original mapping */
661 if (src_flags & AS_AREA_CACHEABLE)
662 dst_flags_mask |= AS_AREA_CACHEABLE;
663
664 if (src_size != acc_size ||
665 (src_flags & dst_flags_mask) != dst_flags_mask) {
666 mutex_unlock(&src_area->lock);
667 mutex_unlock(&src_as->lock);
668 interrupts_restore(ipl);
669 return EPERM;
670 }
671
672 /*
673 * Now we are committed to sharing the area.
674 * First, prepare the area for sharing.
675 * Then it will be safe to unlock it.
676 */
677 sh_info = src_area->sh_info;
678 if (!sh_info) {
679 sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
680 mutex_initialize(&sh_info->lock, MUTEX_PASSIVE);
681 sh_info->refcount = 2;
682 btree_create(&sh_info->pagemap);
683 src_area->sh_info = sh_info;
684 /*
685 * Call the backend to setup sharing.
686 */
687 src_area->backend->share(src_area);
688 } else {
689 mutex_lock(&sh_info->lock);
690 sh_info->refcount++;
691 mutex_unlock(&sh_info->lock);
692 }
693
694 mutex_unlock(&src_area->lock);
695 mutex_unlock(&src_as->lock);
696
697 /*
698 * Create copy of the source address space area.
699 * The destination area is created with AS_AREA_ATTR_PARTIAL
700 * attribute set which prevents race condition with
701 * preliminary as_page_fault() calls.
702 * The flags of the source area are masked against dst_flags_mask
703 * to support sharing in less privileged mode.
704 */
705 dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
706 AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
707 if (!dst_area) {
708 /*
709 * Destination address space area could not be created.
710 */
711 sh_info_remove_reference(sh_info);
712
713 interrupts_restore(ipl);
714 return ENOMEM;
715 }
716
717 /*
718 * Now the destination address space area has been
719 * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
720 * attribute and set the sh_info.
721 */
722 mutex_lock(&dst_as->lock);
723 mutex_lock(&dst_area->lock);
724 dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
725 dst_area->sh_info = sh_info;
726 mutex_unlock(&dst_area->lock);
727 mutex_unlock(&dst_as->lock);
728
729 interrupts_restore(ipl);
730
731 return 0;
732}
733
734/** Check access mode for address space area.
735 *
736 * The address space area must be locked prior to this call.
737 *
738 * @param area Address space area.
739 * @param access Access mode.
740 *
741 * @return False if access violates area's permissions, true otherwise.
742 */
743bool as_area_check_access(as_area_t *area, pf_access_t access)
744{
745 int flagmap[] = {
746 [PF_ACCESS_READ] = AS_AREA_READ,
747 [PF_ACCESS_WRITE] = AS_AREA_WRITE,
748 [PF_ACCESS_EXEC] = AS_AREA_EXEC
749 };
750
751 if (!(area->flags & flagmap[access]))
752 return false;
753
754 return true;
755}
756
757/** Change adress area flags.
758 *
759 * The idea is to have the same data, but with a different access mode.
760 * This is needed e.g. for writing code into memory and then executing it.
761 * In order for this to work properly, this may copy the data
762 * into private anonymous memory (unless it's already there).
763 *
764 * @param as Address space.
765 * @param flags Flags of the area memory.
766 * @param address Address withing the area to be changed.
767 *
768 * @return Zero on success or a value from @ref errno.h on failure.
769 */
770int as_area_change_flags(as_t *as, int flags, uintptr_t address)
771{
772 as_area_t *area;
773 uintptr_t base;
774 link_t *cur;
775 ipl_t ipl;
776 int page_flags;
777 uintptr_t *old_frame;
778 index_t frame_idx;
779 count_t used_pages;
780
781 /* Flags for the new memory mapping */
782 page_flags = area_flags_to_page_flags(flags);
783
784 ipl = interrupts_disable();
785 mutex_lock(&as->lock);
786
787 area = find_area_and_lock(as, address);
788 if (!area) {
789 mutex_unlock(&as->lock);
790 interrupts_restore(ipl);
791 return ENOENT;
792 }
793
794 if (area->sh_info || area->backend != &anon_backend) {
795 /* Copying shared areas not supported yet */
796 /* Copying non-anonymous memory not supported yet */
797 mutex_unlock(&area->lock);
798 mutex_unlock(&as->lock);
799 interrupts_restore(ipl);
800 return ENOTSUP;
801 }
802
803 base = area->base;
804
805 /*
806 * Compute total number of used pages in the used_space B+tree
807 */
808 used_pages = 0;
809
810 for (cur = area->used_space.leaf_head.next;
811 cur != &area->used_space.leaf_head; cur = cur->next) {
812 btree_node_t *node;
813 unsigned int i;
814
815 node = list_get_instance(cur, btree_node_t, leaf_link);
816 for (i = 0; i < node->keys; i++) {
817 used_pages += (count_t) node->value[i];
818 }
819 }
820
821 /* An array for storing frame numbers */
822 old_frame = malloc(used_pages * sizeof(uintptr_t), 0);
823
824 /*
825 * Start TLB shootdown sequence.
826 */
827 tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
828
829 /*
830 * Remove used pages from page tables and remember their frame
831 * numbers.
832 */
833 frame_idx = 0;
834
835 for (cur = area->used_space.leaf_head.next;
836 cur != &area->used_space.leaf_head; cur = cur->next) {
837 btree_node_t *node;
838 unsigned int i;
839
840 node = list_get_instance(cur, btree_node_t, leaf_link);
841 for (i = 0; i < node->keys; i++) {
842 uintptr_t b = node->key[i];
843 count_t j;
844 pte_t *pte;
845
846 for (j = 0; j < (count_t) node->value[i]; j++) {
847 page_table_lock(as, false);
848 pte = page_mapping_find(as, b + j * PAGE_SIZE);
849 ASSERT(pte && PTE_VALID(pte) &&
850 PTE_PRESENT(pte));
851 old_frame[frame_idx++] = PTE_GET_FRAME(pte);
852
853 /* Remove old mapping */
854 page_mapping_remove(as, b + j * PAGE_SIZE);
855 page_table_unlock(as, false);
856 }
857 }
858 }
859
860 /*
861 * Finish TLB shootdown sequence.
862 */
863
864 tlb_invalidate_pages(as->asid, area->base, area->pages);
865 /*
866 * Invalidate potential software translation caches (e.g. TSB on
867 * sparc64).
868 */
869 as_invalidate_translation_cache(as, area->base, area->pages);
870 tlb_shootdown_finalize();
871
872 /*
873 * Set the new flags.
874 */
875 area->flags = flags;
876
877 /*
878 * Map pages back in with new flags. This step is kept separate
879 * so that there's no instant when the memory area could be
880 * accesed with both the old and the new flags at once.
881 */
882 frame_idx = 0;
883
884 for (cur = area->used_space.leaf_head.next;
885 cur != &area->used_space.leaf_head; cur = cur->next) {
886 btree_node_t *node;
887 unsigned int i;
888
889 node = list_get_instance(cur, btree_node_t, leaf_link);
890 for (i = 0; i < node->keys; i++) {
891 uintptr_t b = node->key[i];
892 count_t j;
893
894 for (j = 0; j < (count_t) node->value[i]; j++) {
895 page_table_lock(as, false);
896
897 /* Insert the new mapping */
898 page_mapping_insert(as, b + j * PAGE_SIZE,
899 old_frame[frame_idx++], page_flags);
900
901 page_table_unlock(as, false);
902 }
903 }
904 }
905
906 free(old_frame);
907
908 mutex_unlock(&area->lock);
909 mutex_unlock(&as->lock);
910 interrupts_restore(ipl);
911
912 return 0;
913}
914
915
916/** Handle page fault within the current address space.
917 *
918 * This is the high-level page fault handler. It decides
919 * whether the page fault can be resolved by any backend
920 * and if so, it invokes the backend to resolve the page
921 * fault.
922 *
923 * Interrupts are assumed disabled.
924 *
925 * @param page Faulting page.
926 * @param access Access mode that caused the fault (i.e. read/write/exec).
927 * @param istate Pointer to interrupted state.
928 *
929 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
930 * fault was caused by copy_to_uspace() or copy_from_uspace().
931 */
932int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
933{
934 pte_t *pte;
935 as_area_t *area;
936
937 if (!THREAD)
938 return AS_PF_FAULT;
939
940 ASSERT(AS);
941
942 mutex_lock(&AS->lock);
943 area = find_area_and_lock(AS, page);
944 if (!area) {
945 /*
946 * No area contained mapping for 'page'.
947 * Signal page fault to low-level handler.
948 */
949 mutex_unlock(&AS->lock);
950 goto page_fault;
951 }
952
953 if (area->attributes & AS_AREA_ATTR_PARTIAL) {
954 /*
955 * The address space area is not fully initialized.
956 * Avoid possible race by returning error.
957 */
958 mutex_unlock(&area->lock);
959 mutex_unlock(&AS->lock);
960 goto page_fault;
961 }
962
963 if (!area->backend || !area->backend->page_fault) {
964 /*
965 * The address space area is not backed by any backend
966 * or the backend cannot handle page faults.
967 */
968 mutex_unlock(&area->lock);
969 mutex_unlock(&AS->lock);
970 goto page_fault;
971 }
972
973 page_table_lock(AS, false);
974
975 /*
976 * To avoid race condition between two page faults
977 * on the same address, we need to make sure
978 * the mapping has not been already inserted.
979 */
980 if ((pte = page_mapping_find(AS, page))) {
981 if (PTE_PRESENT(pte)) {
982 if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
983 (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
984 (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
985 page_table_unlock(AS, false);
986 mutex_unlock(&area->lock);
987 mutex_unlock(&AS->lock);
988 return AS_PF_OK;
989 }
990 }
991 }
992
993 /*
994 * Resort to the backend page fault handler.
995 */
996 if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
997 page_table_unlock(AS, false);
998 mutex_unlock(&area->lock);
999 mutex_unlock(&AS->lock);
1000 goto page_fault;
1001 }
1002
1003 page_table_unlock(AS, false);
1004 mutex_unlock(&area->lock);
1005 mutex_unlock(&AS->lock);
1006 return AS_PF_OK;
1007
1008page_fault:
1009 if (THREAD->in_copy_from_uspace) {
1010 THREAD->in_copy_from_uspace = false;
1011 istate_set_retaddr(istate,
1012 (uintptr_t) &memcpy_from_uspace_failover_address);
1013 } else if (THREAD->in_copy_to_uspace) {
1014 THREAD->in_copy_to_uspace = false;
1015 istate_set_retaddr(istate,
1016 (uintptr_t) &memcpy_to_uspace_failover_address);
1017 } else {
1018 return AS_PF_FAULT;
1019 }
1020
1021 return AS_PF_DEFER;
1022}
1023
1024/** Switch address spaces.
1025 *
1026 * Note that this function cannot sleep as it is essentially a part of
1027 * scheduling. Sleeping here would lead to deadlock on wakeup. Another
1028 * thing which is forbidden in this context is locking the address space.
1029 *
1030 * When this function is enetered, no spinlocks may be held.
1031 *
1032 * @param old Old address space or NULL.
1033 * @param new New address space.
1034 */
1035void as_switch(as_t *old_as, as_t *new_as)
1036{
1037 DEADLOCK_PROBE_INIT(p_asidlock);
1038 preemption_disable();
1039retry:
1040 (void) interrupts_disable();
1041 if (!spinlock_trylock(&asidlock)) {
1042 /*
1043 * Avoid deadlock with TLB shootdown.
1044 * We can enable interrupts here because
1045 * preemption is disabled. We should not be
1046 * holding any other lock.
1047 */
1048 (void) interrupts_enable();
1049 DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
1050 goto retry;
1051 }
1052 preemption_enable();
1053
1054 /*
1055 * First, take care of the old address space.
1056 */
1057 if (old_as) {
1058 ASSERT(old_as->cpu_refcount);
1059 if((--old_as->cpu_refcount == 0) && (old_as != AS_KERNEL)) {
1060 /*
1061 * The old address space is no longer active on
1062 * any processor. It can be appended to the
1063 * list of inactive address spaces with assigned
1064 * ASID.
1065 */
1066 ASSERT(old_as->asid != ASID_INVALID);
1067 list_append(&old_as->inactive_as_with_asid_link,
1068 &inactive_as_with_asid_head);
1069 }
1070
1071 /*
1072 * Perform architecture-specific tasks when the address space
1073 * is being removed from the CPU.
1074 */
1075 as_deinstall_arch(old_as);
1076 }
1077
1078 /*
1079 * Second, prepare the new address space.
1080 */
1081 if ((new_as->cpu_refcount++ == 0) && (new_as != AS_KERNEL)) {
1082 if (new_as->asid != ASID_INVALID)
1083 list_remove(&new_as->inactive_as_with_asid_link);
1084 else
1085 new_as->asid = asid_get();
1086 }
1087#ifdef AS_PAGE_TABLE
1088 SET_PTL0_ADDRESS(new_as->genarch.page_table);
1089#endif
1090
1091 /*
1092 * Perform architecture-specific steps.
1093 * (e.g. write ASID to hardware register etc.)
1094 */
1095 as_install_arch(new_as);
1096
1097 spinlock_unlock(&asidlock);
1098
1099 AS = new_as;
1100}
1101
1102/** Convert address space area flags to page flags.
1103 *
1104 * @param aflags Flags of some address space area.
1105 *
1106 * @return Flags to be passed to page_mapping_insert().
1107 */
1108int area_flags_to_page_flags(int aflags)
1109{
1110 int flags;
1111
1112 flags = PAGE_USER | PAGE_PRESENT;
1113
1114 if (aflags & AS_AREA_READ)
1115 flags |= PAGE_READ;
1116
1117 if (aflags & AS_AREA_WRITE)
1118 flags |= PAGE_WRITE;
1119
1120 if (aflags & AS_AREA_EXEC)
1121 flags |= PAGE_EXEC;
1122
1123 if (aflags & AS_AREA_CACHEABLE)
1124 flags |= PAGE_CACHEABLE;
1125
1126 return flags;
1127}
1128
1129/** Compute flags for virtual address translation subsytem.
1130 *
1131 * The address space area must be locked.
1132 * Interrupts must be disabled.
1133 *
1134 * @param a Address space area.
1135 *
1136 * @return Flags to be used in page_mapping_insert().
1137 */
1138int as_area_get_flags(as_area_t *a)
1139{
1140 return area_flags_to_page_flags(a->flags);
1141}
1142
1143/** Create page table.
1144 *
1145 * Depending on architecture, create either address space
1146 * private or global page table.
1147 *
1148 * @param flags Flags saying whether the page table is for kernel address space.
1149 *
1150 * @return First entry of the page table.
1151 */
1152pte_t *page_table_create(int flags)
1153{
1154 ASSERT(as_operations);
1155 ASSERT(as_operations->page_table_create);
1156
1157 return as_operations->page_table_create(flags);
1158}
1159
1160/** Destroy page table.
1161 *
1162 * Destroy page table in architecture specific way.
1163 *
1164 * @param page_table Physical address of PTL0.
1165 */
1166void page_table_destroy(pte_t *page_table)
1167{
1168 ASSERT(as_operations);
1169 ASSERT(as_operations->page_table_destroy);
1170
1171 as_operations->page_table_destroy(page_table);
1172}
1173
1174/** Lock page table.
1175 *
1176 * This function should be called before any page_mapping_insert(),
1177 * page_mapping_remove() and page_mapping_find().
1178 *
1179 * Locking order is such that address space areas must be locked
1180 * prior to this call. Address space can be locked prior to this
1181 * call in which case the lock argument is false.
1182 *
1183 * @param as Address space.
1184 * @param lock If false, do not attempt to lock as->lock.
1185 */
1186void page_table_lock(as_t *as, bool lock)
1187{
1188 ASSERT(as_operations);
1189 ASSERT(as_operations->page_table_lock);
1190
1191 as_operations->page_table_lock(as, lock);
1192}
1193
1194/** Unlock page table.
1195 *
1196 * @param as Address space.
1197 * @param unlock If false, do not attempt to unlock as->lock.
1198 */
1199void page_table_unlock(as_t *as, bool unlock)
1200{
1201 ASSERT(as_operations);
1202 ASSERT(as_operations->page_table_unlock);
1203
1204 as_operations->page_table_unlock(as, unlock);
1205}
1206
1207
1208/** Find address space area and lock it.
1209 *
1210 * The address space must be locked and interrupts must be disabled.
1211 *
1212 * @param as Address space.
1213 * @param va Virtual address.
1214 *
1215 * @return Locked address space area containing va on success or NULL on
1216 * failure.
1217 */
1218as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
1219{
1220 as_area_t *a;
1221 btree_node_t *leaf, *lnode;
1222 unsigned int i;
1223
1224 a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
1225 if (a) {
1226 /* va is the base address of an address space area */
1227 mutex_lock(&a->lock);
1228 return a;
1229 }
1230
1231 /*
1232 * Search the leaf node and the righmost record of its left neighbour
1233 * to find out whether this is a miss or va belongs to an address
1234 * space area found there.
1235 */
1236
1237 /* First, search the leaf node itself. */
1238 for (i = 0; i < leaf->keys; i++) {
1239 a = (as_area_t *) leaf->value[i];
1240 mutex_lock(&a->lock);
1241 if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
1242 return a;
1243 }
1244 mutex_unlock(&a->lock);
1245 }
1246
1247 /*
1248 * Second, locate the left neighbour and test its last record.
1249 * Because of its position in the B+tree, it must have base < va.
1250 */
1251 lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf);
1252 if (lnode) {
1253 a = (as_area_t *) lnode->value[lnode->keys - 1];
1254 mutex_lock(&a->lock);
1255 if (va < a->base + a->pages * PAGE_SIZE) {
1256 return a;
1257 }
1258 mutex_unlock(&a->lock);
1259 }
1260
1261 return NULL;
1262}
1263
1264/** Check area conflicts with other areas.
1265 *
1266 * The address space must be locked and interrupts must be disabled.
1267 *
1268 * @param as Address space.
1269 * @param va Starting virtual address of the area being tested.
1270 * @param size Size of the area being tested.
1271 * @param avoid_area Do not touch this area.
1272 *
1273 * @return True if there is no conflict, false otherwise.
1274 */
1275bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
1276 as_area_t *avoid_area)
1277{
1278 as_area_t *a;
1279 btree_node_t *leaf, *node;
1280 unsigned int i;
1281
1282 /*
1283 * We don't want any area to have conflicts with NULL page.
1284 */
1285 if (overlaps(va, size, NULL, PAGE_SIZE))
1286 return false;
1287
1288 /*
1289 * The leaf node is found in O(log n), where n is proportional to
1290 * the number of address space areas belonging to as.
1291 * The check for conflicts is then attempted on the rightmost
1292 * record in the left neighbour, the leftmost record in the right
1293 * neighbour and all records in the leaf node itself.
1294 */
1295
1296 if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1297 if (a != avoid_area)
1298 return false;
1299 }
1300
1301 /* First, check the two border cases. */
1302 if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1303 a = (as_area_t *) node->value[node->keys - 1];
1304 mutex_lock(&a->lock);
1305 if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1306 mutex_unlock(&a->lock);
1307 return false;
1308 }
1309 mutex_unlock(&a->lock);
1310 }
1311 node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf);
1312 if (node) {
1313 a = (as_area_t *) node->value[0];
1314 mutex_lock(&a->lock);
1315 if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1316 mutex_unlock(&a->lock);
1317 return false;
1318 }
1319 mutex_unlock(&a->lock);
1320 }
1321
1322 /* Second, check the leaf node. */
1323 for (i = 0; i < leaf->keys; i++) {
1324 a = (as_area_t *) leaf->value[i];
1325
1326 if (a == avoid_area)
1327 continue;
1328
1329 mutex_lock(&a->lock);
1330 if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1331 mutex_unlock(&a->lock);
1332 return false;
1333 }
1334 mutex_unlock(&a->lock);
1335 }
1336
1337 /*
1338 * So far, the area does not conflict with other areas.
1339 * Check if it doesn't conflict with kernel address space.
1340 */
1341 if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1342 return !overlaps(va, size,
1343 KERNEL_ADDRESS_SPACE_START,
1344 KERNEL_ADDRESS_SPACE_END - KERNEL_ADDRESS_SPACE_START);
1345 }
1346
1347 return true;
1348}
1349
1350/** Return size of the address space area with given base.
1351 *
1352 * @param base Arbitrary address insede the address space area.
1353 *
1354 * @return Size of the address space area in bytes or zero if it
1355 * does not exist.
1356 */
1357size_t as_area_get_size(uintptr_t base)
1358{
1359 ipl_t ipl;
1360 as_area_t *src_area;
1361 size_t size;
1362
1363 ipl = interrupts_disable();
1364 src_area = find_area_and_lock(AS, base);
1365 if (src_area){
1366 size = src_area->pages * PAGE_SIZE;
1367 mutex_unlock(&src_area->lock);
1368 } else {
1369 size = 0;
1370 }
1371 interrupts_restore(ipl);
1372 return size;
1373}
1374
1375/** Mark portion of address space area as used.
1376 *
1377 * The address space area must be already locked.
1378 *
1379 * @param a Address space area.
1380 * @param page First page to be marked.
1381 * @param count Number of page to be marked.
1382 *
1383 * @return 0 on failure and 1 on success.
1384 */
1385int used_space_insert(as_area_t *a, uintptr_t page, count_t count)
1386{
1387 btree_node_t *leaf, *node;
1388 count_t pages;
1389 unsigned int i;
1390
1391 ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1392 ASSERT(count);
1393
1394 pages = (count_t) btree_search(&a->used_space, page, &leaf);
1395 if (pages) {
1396 /*
1397 * We hit the beginning of some used space.
1398 */
1399 return 0;
1400 }
1401
1402 if (!leaf->keys) {
1403 btree_insert(&a->used_space, page, (void *) count, leaf);
1404 return 1;
1405 }
1406
1407 node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1408 if (node) {
1409 uintptr_t left_pg = node->key[node->keys - 1];
1410 uintptr_t right_pg = leaf->key[0];
1411 count_t left_cnt = (count_t) node->value[node->keys - 1];
1412 count_t right_cnt = (count_t) leaf->value[0];
1413
1414 /*
1415 * Examine the possibility that the interval fits
1416 * somewhere between the rightmost interval of
1417 * the left neigbour and the first interval of the leaf.
1418 */
1419
1420 if (page >= right_pg) {
1421 /* Do nothing. */
1422 } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1423 left_cnt * PAGE_SIZE)) {
1424 /* The interval intersects with the left interval. */
1425 return 0;
1426 } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1427 right_cnt * PAGE_SIZE)) {
1428 /* The interval intersects with the right interval. */
1429 return 0;
1430 } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1431 (page + count * PAGE_SIZE == right_pg)) {
1432 /*
1433 * The interval can be added by merging the two already
1434 * present intervals.
1435 */
1436 node->value[node->keys - 1] += count + right_cnt;
1437 btree_remove(&a->used_space, right_pg, leaf);
1438 return 1;
1439 } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1440 /*
1441 * The interval can be added by simply growing the left
1442 * interval.
1443 */
1444 node->value[node->keys - 1] += count;
1445 return 1;
1446 } else if (page + count * PAGE_SIZE == right_pg) {
1447 /*
1448 * The interval can be addded by simply moving base of
1449 * the right interval down and increasing its size
1450 * accordingly.
1451 */
1452 leaf->value[0] += count;
1453 leaf->key[0] = page;
1454 return 1;
1455 } else {
1456 /*
1457 * The interval is between both neigbouring intervals,
1458 * but cannot be merged with any of them.
1459 */
1460 btree_insert(&a->used_space, page, (void *) count,
1461 leaf);
1462 return 1;
1463 }
1464 } else if (page < leaf->key[0]) {
1465 uintptr_t right_pg = leaf->key[0];
1466 count_t right_cnt = (count_t) leaf->value[0];
1467
1468 /*
1469 * Investigate the border case in which the left neighbour does
1470 * not exist but the interval fits from the left.
1471 */
1472
1473 if (overlaps(page, count * PAGE_SIZE, right_pg,
1474 right_cnt * PAGE_SIZE)) {
1475 /* The interval intersects with the right interval. */
1476 return 0;
1477 } else if (page + count * PAGE_SIZE == right_pg) {
1478 /*
1479 * The interval can be added by moving the base of the
1480 * right interval down and increasing its size
1481 * accordingly.
1482 */
1483 leaf->key[0] = page;
1484 leaf->value[0] += count;
1485 return 1;
1486 } else {
1487 /*
1488 * The interval doesn't adjoin with the right interval.
1489 * It must be added individually.
1490 */
1491 btree_insert(&a->used_space, page, (void *) count,
1492 leaf);
1493 return 1;
1494 }
1495 }
1496
1497 node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1498 if (node) {
1499 uintptr_t left_pg = leaf->key[leaf->keys - 1];
1500 uintptr_t right_pg = node->key[0];
1501 count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1502 count_t right_cnt = (count_t) node->value[0];
1503
1504 /*
1505 * Examine the possibility that the interval fits
1506 * somewhere between the leftmost interval of
1507 * the right neigbour and the last interval of the leaf.
1508 */
1509
1510 if (page < left_pg) {
1511 /* Do nothing. */
1512 } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1513 left_cnt * PAGE_SIZE)) {
1514 /* The interval intersects with the left interval. */
1515 return 0;
1516 } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1517 right_cnt * PAGE_SIZE)) {
1518 /* The interval intersects with the right interval. */
1519 return 0;
1520 } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1521 (page + count * PAGE_SIZE == right_pg)) {
1522 /*
1523 * The interval can be added by merging the two already
1524 * present intervals.
1525 * */
1526 leaf->value[leaf->keys - 1] += count + right_cnt;
1527 btree_remove(&a->used_space, right_pg, node);
1528 return 1;
1529 } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1530 /*
1531 * The interval can be added by simply growing the left
1532 * interval.
1533 * */
1534 leaf->value[leaf->keys - 1] += count;
1535 return 1;
1536 } else if (page + count * PAGE_SIZE == right_pg) {
1537 /*
1538 * The interval can be addded by simply moving base of
1539 * the right interval down and increasing its size
1540 * accordingly.
1541 */
1542 node->value[0] += count;
1543 node->key[0] = page;
1544 return 1;
1545 } else {
1546 /*
1547 * The interval is between both neigbouring intervals,
1548 * but cannot be merged with any of them.
1549 */
1550 btree_insert(&a->used_space, page, (void *) count,
1551 leaf);
1552 return 1;
1553 }
1554 } else if (page >= leaf->key[leaf->keys - 1]) {
1555 uintptr_t left_pg = leaf->key[leaf->keys - 1];
1556 count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1557
1558 /*
1559 * Investigate the border case in which the right neighbour
1560 * does not exist but the interval fits from the right.
1561 */
1562
1563 if (overlaps(page, count * PAGE_SIZE, left_pg,
1564 left_cnt * PAGE_SIZE)) {
1565 /* The interval intersects with the left interval. */
1566 return 0;
1567 } else if (left_pg + left_cnt * PAGE_SIZE == page) {
1568 /*
1569 * The interval can be added by growing the left
1570 * interval.
1571 */
1572 leaf->value[leaf->keys - 1] += count;
1573 return 1;
1574 } else {
1575 /*
1576 * The interval doesn't adjoin with the left interval.
1577 * It must be added individually.
1578 */
1579 btree_insert(&a->used_space, page, (void *) count,
1580 leaf);
1581 return 1;
1582 }
1583 }
1584
1585 /*
1586 * Note that if the algorithm made it thus far, the interval can fit
1587 * only between two other intervals of the leaf. The two border cases
1588 * were already resolved.
1589 */
1590 for (i = 1; i < leaf->keys; i++) {
1591 if (page < leaf->key[i]) {
1592 uintptr_t left_pg = leaf->key[i - 1];
1593 uintptr_t right_pg = leaf->key[i];
1594 count_t left_cnt = (count_t) leaf->value[i - 1];
1595 count_t right_cnt = (count_t) leaf->value[i];
1596
1597 /*
1598 * The interval fits between left_pg and right_pg.
1599 */
1600
1601 if (overlaps(page, count * PAGE_SIZE, left_pg,
1602 left_cnt * PAGE_SIZE)) {
1603 /*
1604 * The interval intersects with the left
1605 * interval.
1606 */
1607 return 0;
1608 } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1609 right_cnt * PAGE_SIZE)) {
1610 /*
1611 * The interval intersects with the right
1612 * interval.
1613 */
1614 return 0;
1615 } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1616 (page + count * PAGE_SIZE == right_pg)) {
1617 /*
1618 * The interval can be added by merging the two
1619 * already present intervals.
1620 */
1621 leaf->value[i - 1] += count + right_cnt;
1622 btree_remove(&a->used_space, right_pg, leaf);
1623 return 1;
1624 } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1625 /*
1626 * The interval can be added by simply growing
1627 * the left interval.
1628 */
1629 leaf->value[i - 1] += count;
1630 return 1;
1631 } else if (page + count * PAGE_SIZE == right_pg) {
1632 /*
1633 * The interval can be addded by simply moving
1634 * base of the right interval down and
1635 * increasing its size accordingly.
1636 */
1637 leaf->value[i] += count;
1638 leaf->key[i] = page;
1639 return 1;
1640 } else {
1641 /*
1642 * The interval is between both neigbouring
1643 * intervals, but cannot be merged with any of
1644 * them.
1645 */
1646 btree_insert(&a->used_space, page,
1647 (void *) count, leaf);
1648 return 1;
1649 }
1650 }
1651 }
1652
1653 panic("Inconsistency detected while adding %" PRIc " pages of used space at "
1654 "%p.\n", count, page);
1655}
1656
1657/** Mark portion of address space area as unused.
1658 *
1659 * The address space area must be already locked.
1660 *
1661 * @param a Address space area.
1662 * @param page First page to be marked.
1663 * @param count Number of page to be marked.
1664 *
1665 * @return 0 on failure and 1 on success.
1666 */
1667int used_space_remove(as_area_t *a, uintptr_t page, count_t count)
1668{
1669 btree_node_t *leaf, *node;
1670 count_t pages;
1671 unsigned int i;
1672
1673 ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1674 ASSERT(count);
1675
1676 pages = (count_t) btree_search(&a->used_space, page, &leaf);
1677 if (pages) {
1678 /*
1679 * We are lucky, page is the beginning of some interval.
1680 */
1681 if (count > pages) {
1682 return 0;
1683 } else if (count == pages) {
1684 btree_remove(&a->used_space, page, leaf);
1685 return 1;
1686 } else {
1687 /*
1688 * Find the respective interval.
1689 * Decrease its size and relocate its start address.
1690 */
1691 for (i = 0; i < leaf->keys; i++) {
1692 if (leaf->key[i] == page) {
1693 leaf->key[i] += count * PAGE_SIZE;
1694 leaf->value[i] -= count;
1695 return 1;
1696 }
1697 }
1698 goto error;
1699 }
1700 }
1701
1702 node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1703 if (node && page < leaf->key[0]) {
1704 uintptr_t left_pg = node->key[node->keys - 1];
1705 count_t left_cnt = (count_t) node->value[node->keys - 1];
1706
1707 if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1708 count * PAGE_SIZE)) {
1709 if (page + count * PAGE_SIZE ==
1710 left_pg + left_cnt * PAGE_SIZE) {
1711 /*
1712 * The interval is contained in the rightmost
1713 * interval of the left neighbour and can be
1714 * removed by updating the size of the bigger
1715 * interval.
1716 */
1717 node->value[node->keys - 1] -= count;
1718 return 1;
1719 } else if (page + count * PAGE_SIZE <
1720 left_pg + left_cnt*PAGE_SIZE) {
1721 count_t new_cnt;
1722
1723 /*
1724 * The interval is contained in the rightmost
1725 * interval of the left neighbour but its
1726 * removal requires both updating the size of
1727 * the original interval and also inserting a
1728 * new interval.
1729 */
1730 new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1731 (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1732 node->value[node->keys - 1] -= count + new_cnt;
1733 btree_insert(&a->used_space, page +
1734 count * PAGE_SIZE, (void *) new_cnt, leaf);
1735 return 1;
1736 }
1737 }
1738 return 0;
1739 } else if (page < leaf->key[0]) {
1740 return 0;
1741 }
1742
1743 if (page > leaf->key[leaf->keys - 1]) {
1744 uintptr_t left_pg = leaf->key[leaf->keys - 1];
1745 count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1746
1747 if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1748 count * PAGE_SIZE)) {
1749 if (page + count * PAGE_SIZE ==
1750 left_pg + left_cnt * PAGE_SIZE) {
1751 /*
1752 * The interval is contained in the rightmost
1753 * interval of the leaf and can be removed by
1754 * updating the size of the bigger interval.
1755 */
1756 leaf->value[leaf->keys - 1] -= count;
1757 return 1;
1758 } else if (page + count * PAGE_SIZE < left_pg +
1759 left_cnt * PAGE_SIZE) {
1760 count_t new_cnt;
1761
1762 /*
1763 * The interval is contained in the rightmost
1764 * interval of the leaf but its removal
1765 * requires both updating the size of the
1766 * original interval and also inserting a new
1767 * interval.
1768 */
1769 new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1770 (page + count * PAGE_SIZE)) >> PAGE_WIDTH;
1771 leaf->value[leaf->keys - 1] -= count + new_cnt;
1772 btree_insert(&a->used_space, page +
1773 count * PAGE_SIZE, (void *) new_cnt, leaf);
1774 return 1;
1775 }
1776 }
1777 return 0;
1778 }
1779
1780 /*
1781 * The border cases have been already resolved.
1782 * Now the interval can be only between intervals of the leaf.
1783 */
1784 for (i = 1; i < leaf->keys - 1; i++) {
1785 if (page < leaf->key[i]) {
1786 uintptr_t left_pg = leaf->key[i - 1];
1787 count_t left_cnt = (count_t) leaf->value[i - 1];
1788
1789 /*
1790 * Now the interval is between intervals corresponding
1791 * to (i - 1) and i.
1792 */
1793 if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1794 count * PAGE_SIZE)) {
1795 if (page + count * PAGE_SIZE ==
1796 left_pg + left_cnt*PAGE_SIZE) {
1797 /*
1798 * The interval is contained in the
1799 * interval (i - 1) of the leaf and can
1800 * be removed by updating the size of
1801 * the bigger interval.
1802 */
1803 leaf->value[i - 1] -= count;
1804 return 1;
1805 } else if (page + count * PAGE_SIZE <
1806 left_pg + left_cnt * PAGE_SIZE) {
1807 count_t new_cnt;
1808
1809 /*
1810 * The interval is contained in the
1811 * interval (i - 1) of the leaf but its
1812 * removal requires both updating the
1813 * size of the original interval and
1814 * also inserting a new interval.
1815 */
1816 new_cnt = ((left_pg +
1817 left_cnt * PAGE_SIZE) -
1818 (page + count * PAGE_SIZE)) >>
1819 PAGE_WIDTH;
1820 leaf->value[i - 1] -= count + new_cnt;
1821 btree_insert(&a->used_space, page +
1822 count * PAGE_SIZE, (void *) new_cnt,
1823 leaf);
1824 return 1;
1825 }
1826 }
1827 return 0;
1828 }
1829 }
1830
1831error:
1832 panic("Inconsistency detected while removing %" PRIc " pages of used space "
1833 "from %p.\n", count, page);
1834}
1835
1836/** Remove reference to address space area share info.
1837 *
1838 * If the reference count drops to 0, the sh_info is deallocated.
1839 *
1840 * @param sh_info Pointer to address space area share info.
1841 */
1842void sh_info_remove_reference(share_info_t *sh_info)
1843{
1844 bool dealloc = false;
1845
1846 mutex_lock(&sh_info->lock);
1847 ASSERT(sh_info->refcount);
1848 if (--sh_info->refcount == 0) {
1849 dealloc = true;
1850 link_t *cur;
1851
1852 /*
1853 * Now walk carefully the pagemap B+tree and free/remove
1854 * reference from all frames found there.
1855 */
1856 for (cur = sh_info->pagemap.leaf_head.next;
1857 cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1858 btree_node_t *node;
1859 unsigned int i;
1860
1861 node = list_get_instance(cur, btree_node_t, leaf_link);
1862 for (i = 0; i < node->keys; i++)
1863 frame_free((uintptr_t) node->value[i]);
1864 }
1865
1866 }
1867 mutex_unlock(&sh_info->lock);
1868
1869 if (dealloc) {
1870 btree_destroy(&sh_info->pagemap);
1871 free(sh_info);
1872 }
1873}
1874
1875/*
1876 * Address space related syscalls.
1877 */
1878
1879/** Wrapper for as_area_create(). */
1880unative_t sys_as_area_create(uintptr_t address, size_t size, int flags)
1881{
1882 if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address,
1883 AS_AREA_ATTR_NONE, &anon_backend, NULL))
1884 return (unative_t) address;
1885 else
1886 return (unative_t) -1;
1887}
1888
1889/** Wrapper for as_area_resize(). */
1890unative_t sys_as_area_resize(uintptr_t address, size_t size, int flags)
1891{
1892 return (unative_t) as_area_resize(AS, address, size, 0);
1893}
1894
1895/** Wrapper for as_area_change_flags(). */
1896unative_t sys_as_area_change_flags(uintptr_t address, int flags)
1897{
1898 return (unative_t) as_area_change_flags(AS, flags, address);
1899}
1900
1901/** Wrapper for as_area_destroy(). */
1902unative_t sys_as_area_destroy(uintptr_t address)
1903{
1904 return (unative_t) as_area_destroy(AS, address);
1905}
1906
1907/** Print out information about address space.
1908 *
1909 * @param as Address space.
1910 */
1911void as_print(as_t *as)
1912{
1913 ipl_t ipl;
1914
1915 ipl = interrupts_disable();
1916 mutex_lock(&as->lock);
1917
1918 /* print out info about address space areas */
1919 link_t *cur;
1920 for (cur = as->as_area_btree.leaf_head.next;
1921 cur != &as->as_area_btree.leaf_head; cur = cur->next) {
1922 btree_node_t *node;
1923
1924 node = list_get_instance(cur, btree_node_t, leaf_link);
1925
1926 unsigned int i;
1927 for (i = 0; i < node->keys; i++) {
1928 as_area_t *area = node->value[i];
1929
1930 mutex_lock(&area->lock);
1931 printf("as_area: %p, base=%p, pages=%" PRIc " (%p - %p)\n",
1932 area, area->base, area->pages, area->base,
1933 area->base + FRAMES2SIZE(area->pages));
1934 mutex_unlock(&area->lock);
1935 }
1936 }
1937
1938 mutex_unlock(&as->lock);
1939 interrupts_restore(ipl);
1940}
1941
1942/** @}
1943 */
Note: See TracBrowser for help on using the repository browser.