source: mainline/kernel/generic/src/mm/as.c@ 6461d286

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since 6461d286 was af863d0, checked in by Martin Decky <martin@…>, 17 years ago

move unfinished ObjC support to a separate branch

  • Property mode set to 100644
File size: 49.0 KB
Line 
1/*
2 * Copyright (c) 2001-2006 Jakub Jermar
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/** @addtogroup genericmm
30 * @{
31 */
32
33/**
34 * @file
35 * @brief Address space related functions.
36 *
37 * This file contains address space manipulation functions.
38 * Roughly speaking, this is a higher-level client of
39 * Virtual Address Translation (VAT) subsystem.
40 *
41 * Functionality provided by this file allows one to
42 * create address spaces and create, resize and share
43 * address space areas.
44 *
45 * @see page.c
46 *
47 */
48
49#include <mm/as.h>
50#include <arch/mm/as.h>
51#include <mm/page.h>
52#include <mm/frame.h>
53#include <mm/slab.h>
54#include <mm/tlb.h>
55#include <arch/mm/page.h>
56#include <genarch/mm/page_pt.h>
57#include <genarch/mm/page_ht.h>
58#include <mm/asid.h>
59#include <arch/mm/asid.h>
60#include <preemption.h>
61#include <synch/spinlock.h>
62#include <synch/mutex.h>
63#include <adt/list.h>
64#include <adt/btree.h>
65#include <proc/task.h>
66#include <proc/thread.h>
67#include <arch/asm.h>
68#include <panic.h>
69#include <debug.h>
70#include <print.h>
71#include <memstr.h>
72#include <macros.h>
73#include <arch.h>
74#include <errno.h>
75#include <config.h>
76#include <align.h>
77#include <arch/types.h>
78#include <syscall/copy.h>
79#include <arch/interrupt.h>
80
81#ifdef CONFIG_VIRT_IDX_DCACHE
82#include <arch/mm/cache.h>
83#endif /* CONFIG_VIRT_IDX_DCACHE */
84
85/**
86 * Each architecture decides what functions will be used to carry out
87 * address space operations such as creating or locking page tables.
88 */
89as_operations_t *as_operations = NULL;
90
91/**
92 * Slab for as_t objects.
93 */
94static slab_cache_t *as_slab;
95
96/**
97 * This lock serializes access to the ASID subsystem.
98 * It protects:
99 * - inactive_as_with_asid_head list
100 * - as->asid for each as of the as_t type
101 * - asids_allocated counter
102 */
103SPINLOCK_INITIALIZE(asidlock);
104
105/**
106 * This list contains address spaces that are not active on any
107 * processor and that have valid ASID.
108 */
109LIST_INITIALIZE(inactive_as_with_asid_head);
110
111/** Kernel address space. */
112as_t *AS_KERNEL = NULL;
113
114static int area_flags_to_page_flags(int aflags);
115static as_area_t *find_area_and_lock(as_t *as, uintptr_t va);
116static bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
117 as_area_t *avoid_area);
118static void sh_info_remove_reference(share_info_t *sh_info);
119
120static int as_constructor(void *obj, int flags)
121{
122 as_t *as = (as_t *) obj;
123 int rc;
124
125 link_initialize(&as->inactive_as_with_asid_link);
126 mutex_initialize(&as->lock, MUTEX_PASSIVE);
127
128 rc = as_constructor_arch(as, flags);
129
130 return rc;
131}
132
133static int as_destructor(void *obj)
134{
135 as_t *as = (as_t *) obj;
136
137 return as_destructor_arch(as);
138}
139
140/** Initialize address space subsystem. */
141void as_init(void)
142{
143 as_arch_init();
144
145 as_slab = slab_cache_create("as_slab", sizeof(as_t), 0,
146 as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);
147
148 AS_KERNEL = as_create(FLAG_AS_KERNEL);
149 if (!AS_KERNEL)
150 panic("can't create kernel address space\n");
151
152}
153
154/** Create address space.
155 *
156 * @param flags Flags that influence way in wich the address space is created.
157 */
158as_t *as_create(int flags)
159{
160 as_t *as;
161
162 as = (as_t *) slab_alloc(as_slab, 0);
163 (void) as_create_arch(as, 0);
164
165 btree_create(&as->as_area_btree);
166
167 if (flags & FLAG_AS_KERNEL)
168 as->asid = ASID_KERNEL;
169 else
170 as->asid = ASID_INVALID;
171
172 atomic_set(&as->refcount, 0);
173 as->cpu_refcount = 0;
174#ifdef AS_PAGE_TABLE
175 as->genarch.page_table = page_table_create(flags);
176#else
177 page_table_create(flags);
178#endif
179
180 return as;
181}
182
183/** Destroy adress space.
184 *
185 * When there are no tasks referencing this address space (i.e. its refcount is
186 * zero), the address space can be destroyed.
187 *
188 * We know that we don't hold any spinlock.
189 */
190void as_destroy(as_t *as)
191{
192 ipl_t ipl;
193 bool cond;
194 DEADLOCK_PROBE_INIT(p_asidlock);
195
196 ASSERT(atomic_get(&as->refcount) == 0);
197
198 /*
199 * Since there is no reference to this area,
200 * it is safe not to lock its mutex.
201 */
202
203 /*
204 * We need to avoid deadlock between TLB shootdown and asidlock.
205 * We therefore try to take asid conditionally and if we don't succeed,
206 * we enable interrupts and try again. This is done while preemption is
207 * disabled to prevent nested context switches. We also depend on the
208 * fact that so far no spinlocks are held.
209 */
210 preemption_disable();
211 ipl = interrupts_read();
212retry:
213 interrupts_disable();
214 if (!spinlock_trylock(&asidlock)) {
215 interrupts_enable();
216 DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
217 goto retry;
218 }
219 preemption_enable(); /* Interrupts disabled, enable preemption */
220 if (as->asid != ASID_INVALID && as != AS_KERNEL) {
221 if (as != AS && as->cpu_refcount == 0)
222 list_remove(&as->inactive_as_with_asid_link);
223 asid_put(as->asid);
224 }
225 spinlock_unlock(&asidlock);
226
227 /*
228 * Destroy address space areas of the address space.
229 * The B+tree must be walked carefully because it is
230 * also being destroyed.
231 */
232 for (cond = true; cond; ) {
233 btree_node_t *node;
234
235 ASSERT(!list_empty(&as->as_area_btree.leaf_head));
236 node = list_get_instance(as->as_area_btree.leaf_head.next,
237 btree_node_t, leaf_link);
238
239 if ((cond = node->keys)) {
240 as_area_destroy(as, node->key[0]);
241 }
242 }
243
244 btree_destroy(&as->as_area_btree);
245#ifdef AS_PAGE_TABLE
246 page_table_destroy(as->genarch.page_table);
247#else
248 page_table_destroy(NULL);
249#endif
250
251 interrupts_restore(ipl);
252
253 slab_free(as_slab, as);
254}
255
256/** Create address space area of common attributes.
257 *
258 * The created address space area is added to the target address space.
259 *
260 * @param as Target address space.
261 * @param flags Flags of the area memory.
262 * @param size Size of area.
263 * @param base Base address of area.
264 * @param attrs Attributes of the area.
265 * @param backend Address space area backend. NULL if no backend is used.
266 * @param backend_data NULL or a pointer to an array holding two void *.
267 *
268 * @return Address space area on success or NULL on failure.
269 */
270as_area_t *
271as_area_create(as_t *as, int flags, size_t size, uintptr_t base, int attrs,
272 mem_backend_t *backend, mem_backend_data_t *backend_data)
273{
274 ipl_t ipl;
275 as_area_t *a;
276
277 if (base % PAGE_SIZE)
278 return NULL;
279
280 if (!size)
281 return NULL;
282
283 /* Writeable executable areas are not supported. */
284 if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
285 return NULL;
286
287 ipl = interrupts_disable();
288 mutex_lock(&as->lock);
289
290 if (!check_area_conflicts(as, base, size, NULL)) {
291 mutex_unlock(&as->lock);
292 interrupts_restore(ipl);
293 return NULL;
294 }
295
296 a = (as_area_t *) malloc(sizeof(as_area_t), 0);
297
298 mutex_initialize(&a->lock, MUTEX_PASSIVE);
299
300 a->as = as;
301 a->flags = flags;
302 a->attributes = attrs;
303 a->pages = SIZE2FRAMES(size);
304 a->base = base;
305 a->sh_info = NULL;
306 a->backend = backend;
307 if (backend_data)
308 a->backend_data = *backend_data;
309 else
310 memsetb(&a->backend_data, sizeof(a->backend_data), 0);
311
312 btree_create(&a->used_space);
313
314 btree_insert(&as->as_area_btree, base, (void *) a, NULL);
315
316 mutex_unlock(&as->lock);
317 interrupts_restore(ipl);
318
319 return a;
320}
321
322/** Find address space area and change it.
323 *
324 * @param as Address space.
325 * @param address Virtual address belonging to the area to be changed. Must be
326 * page-aligned.
327 * @param size New size of the virtual memory block starting at address.
328 * @param flags Flags influencing the remap operation. Currently unused.
329 *
330 * @return Zero on success or a value from @ref errno.h otherwise.
331 */
332int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags)
333{
334 as_area_t *area;
335 ipl_t ipl;
336 size_t pages;
337
338 ipl = interrupts_disable();
339 mutex_lock(&as->lock);
340
341 /*
342 * Locate the area.
343 */
344 area = find_area_and_lock(as, address);
345 if (!area) {
346 mutex_unlock(&as->lock);
347 interrupts_restore(ipl);
348 return ENOENT;
349 }
350
351 if (area->backend == &phys_backend) {
352 /*
353 * Remapping of address space areas associated
354 * with memory mapped devices is not supported.
355 */
356 mutex_unlock(&area->lock);
357 mutex_unlock(&as->lock);
358 interrupts_restore(ipl);
359 return ENOTSUP;
360 }
361 if (area->sh_info) {
362 /*
363 * Remapping of shared address space areas
364 * is not supported.
365 */
366 mutex_unlock(&area->lock);
367 mutex_unlock(&as->lock);
368 interrupts_restore(ipl);
369 return ENOTSUP;
370 }
371
372 pages = SIZE2FRAMES((address - area->base) + size);
373 if (!pages) {
374 /*
375 * Zero size address space areas are not allowed.
376 */
377 mutex_unlock(&area->lock);
378 mutex_unlock(&as->lock);
379 interrupts_restore(ipl);
380 return EPERM;
381 }
382
383 if (pages < area->pages) {
384 bool cond;
385 uintptr_t start_free = area->base + pages*PAGE_SIZE;
386
387 /*
388 * Shrinking the area.
389 * No need to check for overlaps.
390 */
391
392 /*
393 * Start TLB shootdown sequence.
394 */
395 tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base +
396 pages * PAGE_SIZE, area->pages - pages);
397
398 /*
399 * Remove frames belonging to used space starting from
400 * the highest addresses downwards until an overlap with
401 * the resized address space area is found. Note that this
402 * is also the right way to remove part of the used_space
403 * B+tree leaf list.
404 */
405 for (cond = true; cond;) {
406 btree_node_t *node;
407
408 ASSERT(!list_empty(&area->used_space.leaf_head));
409 node =
410 list_get_instance(area->used_space.leaf_head.prev,
411 btree_node_t, leaf_link);
412 if ((cond = (bool) node->keys)) {
413 uintptr_t b = node->key[node->keys - 1];
414 count_t c =
415 (count_t) node->value[node->keys - 1];
416 unsigned int i = 0;
417
418 if (overlaps(b, c * PAGE_SIZE, area->base,
419 pages * PAGE_SIZE)) {
420
421 if (b + c * PAGE_SIZE <= start_free) {
422 /*
423 * The whole interval fits
424 * completely in the resized
425 * address space area.
426 */
427 break;
428 }
429
430 /*
431 * Part of the interval corresponding
432 * to b and c overlaps with the resized
433 * address space area.
434 */
435
436 cond = false; /* we are almost done */
437 i = (start_free - b) >> PAGE_WIDTH;
438 if (!used_space_remove(area, start_free, c - i))
439 panic("Could not remove used space.\n");
440 } else {
441 /*
442 * The interval of used space can be
443 * completely removed.
444 */
445 if (!used_space_remove(area, b, c))
446 panic("Could not remove used space.\n");
447 }
448
449 for (; i < c; i++) {
450 pte_t *pte;
451
452 page_table_lock(as, false);
453 pte = page_mapping_find(as, b +
454 i * PAGE_SIZE);
455 ASSERT(pte && PTE_VALID(pte) &&
456 PTE_PRESENT(pte));
457 if (area->backend &&
458 area->backend->frame_free) {
459 area->backend->frame_free(area,
460 b + i * PAGE_SIZE,
461 PTE_GET_FRAME(pte));
462 }
463 page_mapping_remove(as, b +
464 i * PAGE_SIZE);
465 page_table_unlock(as, false);
466 }
467 }
468 }
469
470 /*
471 * Finish TLB shootdown sequence.
472 */
473
474 tlb_invalidate_pages(as->asid, area->base + pages * PAGE_SIZE,
475 area->pages - pages);
476 /*
477 * Invalidate software translation caches (e.g. TSB on sparc64).
478 */
479 as_invalidate_translation_cache(as, area->base +
480 pages * PAGE_SIZE, area->pages - pages);
481 tlb_shootdown_finalize();
482
483 } else {
484 /*
485 * Growing the area.
486 * Check for overlaps with other address space areas.
487 */
488 if (!check_area_conflicts(as, address, pages * PAGE_SIZE,
489 area)) {
490 mutex_unlock(&area->lock);
491 mutex_unlock(&as->lock);
492 interrupts_restore(ipl);
493 return EADDRNOTAVAIL;
494 }
495 }
496
497 area->pages = pages;
498
499 mutex_unlock(&area->lock);
500 mutex_unlock(&as->lock);
501 interrupts_restore(ipl);
502
503 return 0;
504}
505
506/** Destroy address space area.
507 *
508 * @param as Address space.
509 * @param address Address withing the area to be deleted.
510 *
511 * @return Zero on success or a value from @ref errno.h on failure.
512 */
513int as_area_destroy(as_t *as, uintptr_t address)
514{
515 as_area_t *area;
516 uintptr_t base;
517 link_t *cur;
518 ipl_t ipl;
519
520 ipl = interrupts_disable();
521 mutex_lock(&as->lock);
522
523 area = find_area_and_lock(as, address);
524 if (!area) {
525 mutex_unlock(&as->lock);
526 interrupts_restore(ipl);
527 return ENOENT;
528 }
529
530 base = area->base;
531
532 /*
533 * Start TLB shootdown sequence.
534 */
535 tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
536
537 /*
538 * Visit only the pages mapped by used_space B+tree.
539 */
540 for (cur = area->used_space.leaf_head.next;
541 cur != &area->used_space.leaf_head; cur = cur->next) {
542 btree_node_t *node;
543 unsigned int i;
544
545 node = list_get_instance(cur, btree_node_t, leaf_link);
546 for (i = 0; i < node->keys; i++) {
547 uintptr_t b = node->key[i];
548 count_t j;
549 pte_t *pte;
550
551 for (j = 0; j < (count_t) node->value[i]; j++) {
552 page_table_lock(as, false);
553 pte = page_mapping_find(as, b + j * PAGE_SIZE);
554 ASSERT(pte && PTE_VALID(pte) &&
555 PTE_PRESENT(pte));
556 if (area->backend &&
557 area->backend->frame_free) {
558 area->backend->frame_free(area, b +
559 j * PAGE_SIZE, PTE_GET_FRAME(pte));
560 }
561 page_mapping_remove(as, b + j * PAGE_SIZE);
562 page_table_unlock(as, false);
563 }
564 }
565 }
566
567 /*
568 * Finish TLB shootdown sequence.
569 */
570
571 tlb_invalidate_pages(as->asid, area->base, area->pages);
572 /*
573 * Invalidate potential software translation caches (e.g. TSB on
574 * sparc64).
575 */
576 as_invalidate_translation_cache(as, area->base, area->pages);
577 tlb_shootdown_finalize();
578
579 btree_destroy(&area->used_space);
580
581 area->attributes |= AS_AREA_ATTR_PARTIAL;
582
583 if (area->sh_info)
584 sh_info_remove_reference(area->sh_info);
585
586 mutex_unlock(&area->lock);
587
588 /*
589 * Remove the empty area from address space.
590 */
591 btree_remove(&as->as_area_btree, base, NULL);
592
593 free(area);
594
595 mutex_unlock(&as->lock);
596 interrupts_restore(ipl);
597 return 0;
598}
599
600/** Share address space area with another or the same address space.
601 *
602 * Address space area mapping is shared with a new address space area.
603 * If the source address space area has not been shared so far,
604 * a new sh_info is created. The new address space area simply gets the
605 * sh_info of the source area. The process of duplicating the
606 * mapping is done through the backend share function.
607 *
608 * @param src_as Pointer to source address space.
609 * @param src_base Base address of the source address space area.
610 * @param acc_size Expected size of the source area.
611 * @param dst_as Pointer to destination address space.
612 * @param dst_base Target base address.
613 * @param dst_flags_mask Destination address space area flags mask.
614 *
615 * @return Zero on success or ENOENT if there is no such task or if there is no
616 * such address space area, EPERM if there was a problem in accepting the area
617 * or ENOMEM if there was a problem in allocating destination address space
618 * area. ENOTSUP is returned if the address space area backend does not support
619 * sharing.
620 */
621int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
622 as_t *dst_as, uintptr_t dst_base, int dst_flags_mask)
623{
624 ipl_t ipl;
625 int src_flags;
626 size_t src_size;
627 as_area_t *src_area, *dst_area;
628 share_info_t *sh_info;
629 mem_backend_t *src_backend;
630 mem_backend_data_t src_backend_data;
631
632 ipl = interrupts_disable();
633 mutex_lock(&src_as->lock);
634 src_area = find_area_and_lock(src_as, src_base);
635 if (!src_area) {
636 /*
637 * Could not find the source address space area.
638 */
639 mutex_unlock(&src_as->lock);
640 interrupts_restore(ipl);
641 return ENOENT;
642 }
643
644 if (!src_area->backend || !src_area->backend->share) {
645 /*
646 * There is no backend or the backend does not
647 * know how to share the area.
648 */
649 mutex_unlock(&src_area->lock);
650 mutex_unlock(&src_as->lock);
651 interrupts_restore(ipl);
652 return ENOTSUP;
653 }
654
655 src_size = src_area->pages * PAGE_SIZE;
656 src_flags = src_area->flags;
657 src_backend = src_area->backend;
658 src_backend_data = src_area->backend_data;
659
660 /* Share the cacheable flag from the original mapping */
661 if (src_flags & AS_AREA_CACHEABLE)
662 dst_flags_mask |= AS_AREA_CACHEABLE;
663
664 if (src_size != acc_size ||
665 (src_flags & dst_flags_mask) != dst_flags_mask) {
666 mutex_unlock(&src_area->lock);
667 mutex_unlock(&src_as->lock);
668 interrupts_restore(ipl);
669 return EPERM;
670 }
671
672 /*
673 * Now we are committed to sharing the area.
674 * First, prepare the area for sharing.
675 * Then it will be safe to unlock it.
676 */
677 sh_info = src_area->sh_info;
678 if (!sh_info) {
679 sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
680 mutex_initialize(&sh_info->lock, MUTEX_PASSIVE);
681 sh_info->refcount = 2;
682 btree_create(&sh_info->pagemap);
683 src_area->sh_info = sh_info;
684 /*
685 * Call the backend to setup sharing.
686 */
687 src_area->backend->share(src_area);
688 } else {
689 mutex_lock(&sh_info->lock);
690 sh_info->refcount++;
691 mutex_unlock(&sh_info->lock);
692 }
693
694 mutex_unlock(&src_area->lock);
695 mutex_unlock(&src_as->lock);
696
697 /*
698 * Create copy of the source address space area.
699 * The destination area is created with AS_AREA_ATTR_PARTIAL
700 * attribute set which prevents race condition with
701 * preliminary as_page_fault() calls.
702 * The flags of the source area are masked against dst_flags_mask
703 * to support sharing in less privileged mode.
704 */
705 dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
706 AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
707 if (!dst_area) {
708 /*
709 * Destination address space area could not be created.
710 */
711 sh_info_remove_reference(sh_info);
712
713 interrupts_restore(ipl);
714 return ENOMEM;
715 }
716
717 /*
718 * Now the destination address space area has been
719 * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
720 * attribute and set the sh_info.
721 */
722 mutex_lock(&dst_as->lock);
723 mutex_lock(&dst_area->lock);
724 dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
725 dst_area->sh_info = sh_info;
726 mutex_unlock(&dst_area->lock);
727 mutex_unlock(&dst_as->lock);
728
729 interrupts_restore(ipl);
730
731 return 0;
732}
733
734/** Check access mode for address space area.
735 *
736 * The address space area must be locked prior to this call.
737 *
738 * @param area Address space area.
739 * @param access Access mode.
740 *
741 * @return False if access violates area's permissions, true otherwise.
742 */
743bool as_area_check_access(as_area_t *area, pf_access_t access)
744{
745 int flagmap[] = {
746 [PF_ACCESS_READ] = AS_AREA_READ,
747 [PF_ACCESS_WRITE] = AS_AREA_WRITE,
748 [PF_ACCESS_EXEC] = AS_AREA_EXEC
749 };
750
751 if (!(area->flags & flagmap[access]))
752 return false;
753
754 return true;
755}
756
757/** Change adress area flags.
758 *
759 * The idea is to have the same data, but with a different access mode.
760 * This is needed e.g. for writing code into memory and then executing it.
761 * In order for this to work properly, this may copy the data
762 * into private anonymous memory (unless it's already there).
763 *
764 * @param as Address space.
765 * @param flags Flags of the area memory.
766 * @param address Address withing the area to be changed.
767 *
768 * @return Zero on success or a value from @ref errno.h on failure.
769 */
770int as_area_change_flags(as_t *as, int flags, uintptr_t address)
771{
772 as_area_t *area;
773 uintptr_t base;
774 link_t *cur;
775 ipl_t ipl;
776 int page_flags;
777 uintptr_t *old_frame;
778 index_t frame_idx;
779 count_t used_pages;
780
781 /* Flags for the new memory mapping */
782 page_flags = area_flags_to_page_flags(flags);
783
784 ipl = interrupts_disable();
785 mutex_lock(&as->lock);
786
787 area = find_area_and_lock(as, address);
788 if (!area) {
789 mutex_unlock(&as->lock);
790 interrupts_restore(ipl);
791 return ENOENT;
792 }
793
794 if (area->sh_info || area->backend != &anon_backend) {
795 /* Copying shared areas not supported yet */
796 /* Copying non-anonymous memory not supported yet */
797 mutex_unlock(&area->lock);
798 mutex_unlock(&as->lock);
799 interrupts_restore(ipl);
800 return ENOTSUP;
801 }
802
803 base = area->base;
804
805 /*
806 * Compute total number of used pages in the used_space B+tree
807 */
808 used_pages = 0;
809
810 for (cur = area->used_space.leaf_head.next;
811 cur != &area->used_space.leaf_head; cur = cur->next) {
812 btree_node_t *node;
813 unsigned int i;
814
815 node = list_get_instance(cur, btree_node_t, leaf_link);
816 for (i = 0; i < node->keys; i++) {
817 used_pages += (count_t) node->value[i];
818 }
819 }
820
821 /* An array for storing frame numbers */
822 old_frame = malloc(used_pages * sizeof(uintptr_t), 0);
823
824 /*
825 * Start TLB shootdown sequence.
826 */
827 tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
828
829 /*
830 * Remove used pages from page tables and remember their frame
831 * numbers.
832 */
833 frame_idx = 0;
834
835 for (cur = area->used_space.leaf_head.next;
836 cur != &area->used_space.leaf_head; cur = cur->next) {
837 btree_node_t *node;
838 unsigned int i;
839
840 node = list_get_instance(cur, btree_node_t, leaf_link);
841 for (i = 0; i < node->keys; i++) {
842 uintptr_t b = node->key[i];
843 count_t j;
844 pte_t *pte;
845
846 for (j = 0; j < (count_t) node->value[i]; j++) {
847 page_table_lock(as, false);
848 pte = page_mapping_find(as, b + j * PAGE_SIZE);
849 ASSERT(pte && PTE_VALID(pte) &&
850 PTE_PRESENT(pte));
851 old_frame[frame_idx++] = PTE_GET_FRAME(pte);
852
853 /* Remove old mapping */
854 page_mapping_remove(as, b + j * PAGE_SIZE);
855 page_table_unlock(as, false);
856 }
857 }
858 }
859
860 /*
861 * Finish TLB shootdown sequence.
862 */
863
864 tlb_invalidate_pages(as->asid, area->base, area->pages);
865 /*
866 * Invalidate potential software translation caches (e.g. TSB on
867 * sparc64).
868 */
869 as_invalidate_translation_cache(as, area->base, area->pages);
870 tlb_shootdown_finalize();
871
872 /*
873 * Map pages back in with new flags. This step is kept separate
874 * so that there's no instant when the memory area could be
875 * accesed with both the old and the new flags at once.
876 */
877 frame_idx = 0;
878
879 for (cur = area->used_space.leaf_head.next;
880 cur != &area->used_space.leaf_head; cur = cur->next) {
881 btree_node_t *node;
882 unsigned int i;
883
884 node = list_get_instance(cur, btree_node_t, leaf_link);
885 for (i = 0; i < node->keys; i++) {
886 uintptr_t b = node->key[i];
887 count_t j;
888
889 for (j = 0; j < (count_t) node->value[i]; j++) {
890 page_table_lock(as, false);
891
892 /* Insert the new mapping */
893 page_mapping_insert(as, b + j * PAGE_SIZE,
894 old_frame[frame_idx++], page_flags);
895
896 page_table_unlock(as, false);
897 }
898 }
899 }
900
901 free(old_frame);
902
903 mutex_unlock(&area->lock);
904 mutex_unlock(&as->lock);
905 interrupts_restore(ipl);
906
907 return 0;
908}
909
910
911/** Handle page fault within the current address space.
912 *
913 * This is the high-level page fault handler. It decides
914 * whether the page fault can be resolved by any backend
915 * and if so, it invokes the backend to resolve the page
916 * fault.
917 *
918 * Interrupts are assumed disabled.
919 *
920 * @param page Faulting page.
921 * @param access Access mode that caused the fault (i.e. read/write/exec).
922 * @param istate Pointer to interrupted state.
923 *
924 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
925 * fault was caused by copy_to_uspace() or copy_from_uspace().
926 */
927int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
928{
929 pte_t *pte;
930 as_area_t *area;
931
932 if (!THREAD)
933 return AS_PF_FAULT;
934
935 ASSERT(AS);
936
937 mutex_lock(&AS->lock);
938 area = find_area_and_lock(AS, page);
939 if (!area) {
940 /*
941 * No area contained mapping for 'page'.
942 * Signal page fault to low-level handler.
943 */
944 mutex_unlock(&AS->lock);
945 goto page_fault;
946 }
947
948 if (area->attributes & AS_AREA_ATTR_PARTIAL) {
949 /*
950 * The address space area is not fully initialized.
951 * Avoid possible race by returning error.
952 */
953 mutex_unlock(&area->lock);
954 mutex_unlock(&AS->lock);
955 goto page_fault;
956 }
957
958 if (!area->backend || !area->backend->page_fault) {
959 /*
960 * The address space area is not backed by any backend
961 * or the backend cannot handle page faults.
962 */
963 mutex_unlock(&area->lock);
964 mutex_unlock(&AS->lock);
965 goto page_fault;
966 }
967
968 page_table_lock(AS, false);
969
970 /*
971 * To avoid race condition between two page faults
972 * on the same address, we need to make sure
973 * the mapping has not been already inserted.
974 */
975 if ((pte = page_mapping_find(AS, page))) {
976 if (PTE_PRESENT(pte)) {
977 if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
978 (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
979 (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
980 page_table_unlock(AS, false);
981 mutex_unlock(&area->lock);
982 mutex_unlock(&AS->lock);
983 return AS_PF_OK;
984 }
985 }
986 }
987
988 /*
989 * Resort to the backend page fault handler.
990 */
991 if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
992 page_table_unlock(AS, false);
993 mutex_unlock(&area->lock);
994 mutex_unlock(&AS->lock);
995 goto page_fault;
996 }
997
998 page_table_unlock(AS, false);
999 mutex_unlock(&area->lock);
1000 mutex_unlock(&AS->lock);
1001 return AS_PF_OK;
1002
1003page_fault:
1004 if (THREAD->in_copy_from_uspace) {
1005 THREAD->in_copy_from_uspace = false;
1006 istate_set_retaddr(istate,
1007 (uintptr_t) &memcpy_from_uspace_failover_address);
1008 } else if (THREAD->in_copy_to_uspace) {
1009 THREAD->in_copy_to_uspace = false;
1010 istate_set_retaddr(istate,
1011 (uintptr_t) &memcpy_to_uspace_failover_address);
1012 } else {
1013 return AS_PF_FAULT;
1014 }
1015
1016 return AS_PF_DEFER;
1017}
1018
1019/** Switch address spaces.
1020 *
1021 * Note that this function cannot sleep as it is essentially a part of
1022 * scheduling. Sleeping here would lead to deadlock on wakeup. Another
1023 * thing which is forbidden in this context is locking the address space.
1024 *
1025 * When this function is enetered, no spinlocks may be held.
1026 *
1027 * @param old Old address space or NULL.
1028 * @param new New address space.
1029 */
1030void as_switch(as_t *old_as, as_t *new_as)
1031{
1032 DEADLOCK_PROBE_INIT(p_asidlock);
1033 preemption_disable();
1034retry:
1035 (void) interrupts_disable();
1036 if (!spinlock_trylock(&asidlock)) {
1037 /*
1038 * Avoid deadlock with TLB shootdown.
1039 * We can enable interrupts here because
1040 * preemption is disabled. We should not be
1041 * holding any other lock.
1042 */
1043 (void) interrupts_enable();
1044 DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
1045 goto retry;
1046 }
1047 preemption_enable();
1048
1049 /*
1050 * First, take care of the old address space.
1051 */
1052 if (old_as) {
1053 ASSERT(old_as->cpu_refcount);
1054 if((--old_as->cpu_refcount == 0) && (old_as != AS_KERNEL)) {
1055 /*
1056 * The old address space is no longer active on
1057 * any processor. It can be appended to the
1058 * list of inactive address spaces with assigned
1059 * ASID.
1060 */
1061 ASSERT(old_as->asid != ASID_INVALID);
1062 list_append(&old_as->inactive_as_with_asid_link,
1063 &inactive_as_with_asid_head);
1064 }
1065
1066 /*
1067 * Perform architecture-specific tasks when the address space
1068 * is being removed from the CPU.
1069 */
1070 as_deinstall_arch(old_as);
1071 }
1072
1073 /*
1074 * Second, prepare the new address space.
1075 */
1076 if ((new_as->cpu_refcount++ == 0) && (new_as != AS_KERNEL)) {
1077 if (new_as->asid != ASID_INVALID)
1078 list_remove(&new_as->inactive_as_with_asid_link);
1079 else
1080 new_as->asid = asid_get();
1081 }
1082#ifdef AS_PAGE_TABLE
1083 SET_PTL0_ADDRESS(new_as->genarch.page_table);
1084#endif
1085
1086 /*
1087 * Perform architecture-specific steps.
1088 * (e.g. write ASID to hardware register etc.)
1089 */
1090 as_install_arch(new_as);
1091
1092 spinlock_unlock(&asidlock);
1093
1094 AS = new_as;
1095}
1096
1097/** Convert address space area flags to page flags.
1098 *
1099 * @param aflags Flags of some address space area.
1100 *
1101 * @return Flags to be passed to page_mapping_insert().
1102 */
1103int area_flags_to_page_flags(int aflags)
1104{
1105 int flags;
1106
1107 flags = PAGE_USER | PAGE_PRESENT;
1108
1109 if (aflags & AS_AREA_READ)
1110 flags |= PAGE_READ;
1111
1112 if (aflags & AS_AREA_WRITE)
1113 flags |= PAGE_WRITE;
1114
1115 if (aflags & AS_AREA_EXEC)
1116 flags |= PAGE_EXEC;
1117
1118 if (aflags & AS_AREA_CACHEABLE)
1119 flags |= PAGE_CACHEABLE;
1120
1121 return flags;
1122}
1123
1124/** Compute flags for virtual address translation subsytem.
1125 *
1126 * The address space area must be locked.
1127 * Interrupts must be disabled.
1128 *
1129 * @param a Address space area.
1130 *
1131 * @return Flags to be used in page_mapping_insert().
1132 */
1133int as_area_get_flags(as_area_t *a)
1134{
1135 return area_flags_to_page_flags(a->flags);
1136}
1137
1138/** Create page table.
1139 *
1140 * Depending on architecture, create either address space
1141 * private or global page table.
1142 *
1143 * @param flags Flags saying whether the page table is for kernel address space.
1144 *
1145 * @return First entry of the page table.
1146 */
1147pte_t *page_table_create(int flags)
1148{
1149 ASSERT(as_operations);
1150 ASSERT(as_operations->page_table_create);
1151
1152 return as_operations->page_table_create(flags);
1153}
1154
1155/** Destroy page table.
1156 *
1157 * Destroy page table in architecture specific way.
1158 *
1159 * @param page_table Physical address of PTL0.
1160 */
1161void page_table_destroy(pte_t *page_table)
1162{
1163 ASSERT(as_operations);
1164 ASSERT(as_operations->page_table_destroy);
1165
1166 as_operations->page_table_destroy(page_table);
1167}
1168
1169/** Lock page table.
1170 *
1171 * This function should be called before any page_mapping_insert(),
1172 * page_mapping_remove() and page_mapping_find().
1173 *
1174 * Locking order is such that address space areas must be locked
1175 * prior to this call. Address space can be locked prior to this
1176 * call in which case the lock argument is false.
1177 *
1178 * @param as Address space.
1179 * @param lock If false, do not attempt to lock as->lock.
1180 */
1181void page_table_lock(as_t *as, bool lock)
1182{
1183 ASSERT(as_operations);
1184 ASSERT(as_operations->page_table_lock);
1185
1186 as_operations->page_table_lock(as, lock);
1187}
1188
1189/** Unlock page table.
1190 *
1191 * @param as Address space.
1192 * @param unlock If false, do not attempt to unlock as->lock.
1193 */
1194void page_table_unlock(as_t *as, bool unlock)
1195{
1196 ASSERT(as_operations);
1197 ASSERT(as_operations->page_table_unlock);
1198
1199 as_operations->page_table_unlock(as, unlock);
1200}
1201
1202
1203/** Find address space area and lock it.
1204 *
1205 * The address space must be locked and interrupts must be disabled.
1206 *
1207 * @param as Address space.
1208 * @param va Virtual address.
1209 *
1210 * @return Locked address space area containing va on success or NULL on
1211 * failure.
1212 */
1213as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
1214{
1215 as_area_t *a;
1216 btree_node_t *leaf, *lnode;
1217 unsigned int i;
1218
1219 a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
1220 if (a) {
1221 /* va is the base address of an address space area */
1222 mutex_lock(&a->lock);
1223 return a;
1224 }
1225
1226 /*
1227 * Search the leaf node and the righmost record of its left neighbour
1228 * to find out whether this is a miss or va belongs to an address
1229 * space area found there.
1230 */
1231
1232 /* First, search the leaf node itself. */
1233 for (i = 0; i < leaf->keys; i++) {
1234 a = (as_area_t *) leaf->value[i];
1235 mutex_lock(&a->lock);
1236 if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
1237 return a;
1238 }
1239 mutex_unlock(&a->lock);
1240 }
1241
1242 /*
1243 * Second, locate the left neighbour and test its last record.
1244 * Because of its position in the B+tree, it must have base < va.
1245 */
1246 lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf);
1247 if (lnode) {
1248 a = (as_area_t *) lnode->value[lnode->keys - 1];
1249 mutex_lock(&a->lock);
1250 if (va < a->base + a->pages * PAGE_SIZE) {
1251 return a;
1252 }
1253 mutex_unlock(&a->lock);
1254 }
1255
1256 return NULL;
1257}
1258
1259/** Check area conflicts with other areas.
1260 *
1261 * The address space must be locked and interrupts must be disabled.
1262 *
1263 * @param as Address space.
1264 * @param va Starting virtual address of the area being tested.
1265 * @param size Size of the area being tested.
1266 * @param avoid_area Do not touch this area.
1267 *
1268 * @return True if there is no conflict, false otherwise.
1269 */
1270bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
1271 as_area_t *avoid_area)
1272{
1273 as_area_t *a;
1274 btree_node_t *leaf, *node;
1275 unsigned int i;
1276
1277 /*
1278 * We don't want any area to have conflicts with NULL page.
1279 */
1280 if (overlaps(va, size, NULL, PAGE_SIZE))
1281 return false;
1282
1283 /*
1284 * The leaf node is found in O(log n), where n is proportional to
1285 * the number of address space areas belonging to as.
1286 * The check for conflicts is then attempted on the rightmost
1287 * record in the left neighbour, the leftmost record in the right
1288 * neighbour and all records in the leaf node itself.
1289 */
1290
1291 if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1292 if (a != avoid_area)
1293 return false;
1294 }
1295
1296 /* First, check the two border cases. */
1297 if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1298 a = (as_area_t *) node->value[node->keys - 1];
1299 mutex_lock(&a->lock);
1300 if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1301 mutex_unlock(&a->lock);
1302 return false;
1303 }
1304 mutex_unlock(&a->lock);
1305 }
1306 node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf);
1307 if (node) {
1308 a = (as_area_t *) node->value[0];
1309 mutex_lock(&a->lock);
1310 if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1311 mutex_unlock(&a->lock);
1312 return false;
1313 }
1314 mutex_unlock(&a->lock);
1315 }
1316
1317 /* Second, check the leaf node. */
1318 for (i = 0; i < leaf->keys; i++) {
1319 a = (as_area_t *) leaf->value[i];
1320
1321 if (a == avoid_area)
1322 continue;
1323
1324 mutex_lock(&a->lock);
1325 if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1326 mutex_unlock(&a->lock);
1327 return false;
1328 }
1329 mutex_unlock(&a->lock);
1330 }
1331
1332 /*
1333 * So far, the area does not conflict with other areas.
1334 * Check if it doesn't conflict with kernel address space.
1335 */
1336 if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1337 return !overlaps(va, size,
1338 KERNEL_ADDRESS_SPACE_START,
1339 KERNEL_ADDRESS_SPACE_END - KERNEL_ADDRESS_SPACE_START);
1340 }
1341
1342 return true;
1343}
1344
1345/** Return size of the address space area with given base.
1346 *
1347 * @param base Arbitrary address insede the address space area.
1348 *
1349 * @return Size of the address space area in bytes or zero if it
1350 * does not exist.
1351 */
1352size_t as_area_get_size(uintptr_t base)
1353{
1354 ipl_t ipl;
1355 as_area_t *src_area;
1356 size_t size;
1357
1358 ipl = interrupts_disable();
1359 src_area = find_area_and_lock(AS, base);
1360 if (src_area){
1361 size = src_area->pages * PAGE_SIZE;
1362 mutex_unlock(&src_area->lock);
1363 } else {
1364 size = 0;
1365 }
1366 interrupts_restore(ipl);
1367 return size;
1368}
1369
1370/** Mark portion of address space area as used.
1371 *
1372 * The address space area must be already locked.
1373 *
1374 * @param a Address space area.
1375 * @param page First page to be marked.
1376 * @param count Number of page to be marked.
1377 *
1378 * @return 0 on failure and 1 on success.
1379 */
1380int used_space_insert(as_area_t *a, uintptr_t page, count_t count)
1381{
1382 btree_node_t *leaf, *node;
1383 count_t pages;
1384 unsigned int i;
1385
1386 ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1387 ASSERT(count);
1388
1389 pages = (count_t) btree_search(&a->used_space, page, &leaf);
1390 if (pages) {
1391 /*
1392 * We hit the beginning of some used space.
1393 */
1394 return 0;
1395 }
1396
1397 if (!leaf->keys) {
1398 btree_insert(&a->used_space, page, (void *) count, leaf);
1399 return 1;
1400 }
1401
1402 node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1403 if (node) {
1404 uintptr_t left_pg = node->key[node->keys - 1];
1405 uintptr_t right_pg = leaf->key[0];
1406 count_t left_cnt = (count_t) node->value[node->keys - 1];
1407 count_t right_cnt = (count_t) leaf->value[0];
1408
1409 /*
1410 * Examine the possibility that the interval fits
1411 * somewhere between the rightmost interval of
1412 * the left neigbour and the first interval of the leaf.
1413 */
1414
1415 if (page >= right_pg) {
1416 /* Do nothing. */
1417 } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1418 left_cnt * PAGE_SIZE)) {
1419 /* The interval intersects with the left interval. */
1420 return 0;
1421 } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1422 right_cnt * PAGE_SIZE)) {
1423 /* The interval intersects with the right interval. */
1424 return 0;
1425 } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1426 (page + count * PAGE_SIZE == right_pg)) {
1427 /*
1428 * The interval can be added by merging the two already
1429 * present intervals.
1430 */
1431 node->value[node->keys - 1] += count + right_cnt;
1432 btree_remove(&a->used_space, right_pg, leaf);
1433 return 1;
1434 } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1435 /*
1436 * The interval can be added by simply growing the left
1437 * interval.
1438 */
1439 node->value[node->keys - 1] += count;
1440 return 1;
1441 } else if (page + count * PAGE_SIZE == right_pg) {
1442 /*
1443 * The interval can be addded by simply moving base of
1444 * the right interval down and increasing its size
1445 * accordingly.
1446 */
1447 leaf->value[0] += count;
1448 leaf->key[0] = page;
1449 return 1;
1450 } else {
1451 /*
1452 * The interval is between both neigbouring intervals,
1453 * but cannot be merged with any of them.
1454 */
1455 btree_insert(&a->used_space, page, (void *) count,
1456 leaf);
1457 return 1;
1458 }
1459 } else if (page < leaf->key[0]) {
1460 uintptr_t right_pg = leaf->key[0];
1461 count_t right_cnt = (count_t) leaf->value[0];
1462
1463 /*
1464 * Investigate the border case in which the left neighbour does
1465 * not exist but the interval fits from the left.
1466 */
1467
1468 if (overlaps(page, count * PAGE_SIZE, right_pg,
1469 right_cnt * PAGE_SIZE)) {
1470 /* The interval intersects with the right interval. */
1471 return 0;
1472 } else if (page + count * PAGE_SIZE == right_pg) {
1473 /*
1474 * The interval can be added by moving the base of the
1475 * right interval down and increasing its size
1476 * accordingly.
1477 */
1478 leaf->key[0] = page;
1479 leaf->value[0] += count;
1480 return 1;
1481 } else {
1482 /*
1483 * The interval doesn't adjoin with the right interval.
1484 * It must be added individually.
1485 */
1486 btree_insert(&a->used_space, page, (void *) count,
1487 leaf);
1488 return 1;
1489 }
1490 }
1491
1492 node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1493 if (node) {
1494 uintptr_t left_pg = leaf->key[leaf->keys - 1];
1495 uintptr_t right_pg = node->key[0];
1496 count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1497 count_t right_cnt = (count_t) node->value[0];
1498
1499 /*
1500 * Examine the possibility that the interval fits
1501 * somewhere between the leftmost interval of
1502 * the right neigbour and the last interval of the leaf.
1503 */
1504
1505 if (page < left_pg) {
1506 /* Do nothing. */
1507 } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1508 left_cnt * PAGE_SIZE)) {
1509 /* The interval intersects with the left interval. */
1510 return 0;
1511 } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1512 right_cnt * PAGE_SIZE)) {
1513 /* The interval intersects with the right interval. */
1514 return 0;
1515 } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1516 (page + count * PAGE_SIZE == right_pg)) {
1517 /*
1518 * The interval can be added by merging the two already
1519 * present intervals.
1520 * */
1521 leaf->value[leaf->keys - 1] += count + right_cnt;
1522 btree_remove(&a->used_space, right_pg, node);
1523 return 1;
1524 } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1525 /*
1526 * The interval can be added by simply growing the left
1527 * interval.
1528 * */
1529 leaf->value[leaf->keys - 1] += count;
1530 return 1;
1531 } else if (page + count * PAGE_SIZE == right_pg) {
1532 /*
1533 * The interval can be addded by simply moving base of
1534 * the right interval down and increasing its size
1535 * accordingly.
1536 */
1537 node->value[0] += count;
1538 node->key[0] = page;
1539 return 1;
1540 } else {
1541 /*
1542 * The interval is between both neigbouring intervals,
1543 * but cannot be merged with any of them.
1544 */
1545 btree_insert(&a->used_space, page, (void *) count,
1546 leaf);
1547 return 1;
1548 }
1549 } else if (page >= leaf->key[leaf->keys - 1]) {
1550 uintptr_t left_pg = leaf->key[leaf->keys - 1];
1551 count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1552
1553 /*
1554 * Investigate the border case in which the right neighbour
1555 * does not exist but the interval fits from the right.
1556 */
1557
1558 if (overlaps(page, count * PAGE_SIZE, left_pg,
1559 left_cnt * PAGE_SIZE)) {
1560 /* The interval intersects with the left interval. */
1561 return 0;
1562 } else if (left_pg + left_cnt * PAGE_SIZE == page) {
1563 /*
1564 * The interval can be added by growing the left
1565 * interval.
1566 */
1567 leaf->value[leaf->keys - 1] += count;
1568 return 1;
1569 } else {
1570 /*
1571 * The interval doesn't adjoin with the left interval.
1572 * It must be added individually.
1573 */
1574 btree_insert(&a->used_space, page, (void *) count,
1575 leaf);
1576 return 1;
1577 }
1578 }
1579
1580 /*
1581 * Note that if the algorithm made it thus far, the interval can fit
1582 * only between two other intervals of the leaf. The two border cases
1583 * were already resolved.
1584 */
1585 for (i = 1; i < leaf->keys; i++) {
1586 if (page < leaf->key[i]) {
1587 uintptr_t left_pg = leaf->key[i - 1];
1588 uintptr_t right_pg = leaf->key[i];
1589 count_t left_cnt = (count_t) leaf->value[i - 1];
1590 count_t right_cnt = (count_t) leaf->value[i];
1591
1592 /*
1593 * The interval fits between left_pg and right_pg.
1594 */
1595
1596 if (overlaps(page, count * PAGE_SIZE, left_pg,
1597 left_cnt * PAGE_SIZE)) {
1598 /*
1599 * The interval intersects with the left
1600 * interval.
1601 */
1602 return 0;
1603 } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1604 right_cnt * PAGE_SIZE)) {
1605 /*
1606 * The interval intersects with the right
1607 * interval.
1608 */
1609 return 0;
1610 } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1611 (page + count * PAGE_SIZE == right_pg)) {
1612 /*
1613 * The interval can be added by merging the two
1614 * already present intervals.
1615 */
1616 leaf->value[i - 1] += count + right_cnt;
1617 btree_remove(&a->used_space, right_pg, leaf);
1618 return 1;
1619 } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1620 /*
1621 * The interval can be added by simply growing
1622 * the left interval.
1623 */
1624 leaf->value[i - 1] += count;
1625 return 1;
1626 } else if (page + count * PAGE_SIZE == right_pg) {
1627 /*
1628 * The interval can be addded by simply moving
1629 * base of the right interval down and
1630 * increasing its size accordingly.
1631 */
1632 leaf->value[i] += count;
1633 leaf->key[i] = page;
1634 return 1;
1635 } else {
1636 /*
1637 * The interval is between both neigbouring
1638 * intervals, but cannot be merged with any of
1639 * them.
1640 */
1641 btree_insert(&a->used_space, page,
1642 (void *) count, leaf);
1643 return 1;
1644 }
1645 }
1646 }
1647
1648 panic("Inconsistency detected while adding %" PRIc " pages of used space at "
1649 "%p.\n", count, page);
1650}
1651
1652/** Mark portion of address space area as unused.
1653 *
1654 * The address space area must be already locked.
1655 *
1656 * @param a Address space area.
1657 * @param page First page to be marked.
1658 * @param count Number of page to be marked.
1659 *
1660 * @return 0 on failure and 1 on success.
1661 */
1662int used_space_remove(as_area_t *a, uintptr_t page, count_t count)
1663{
1664 btree_node_t *leaf, *node;
1665 count_t pages;
1666 unsigned int i;
1667
1668 ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1669 ASSERT(count);
1670
1671 pages = (count_t) btree_search(&a->used_space, page, &leaf);
1672 if (pages) {
1673 /*
1674 * We are lucky, page is the beginning of some interval.
1675 */
1676 if (count > pages) {
1677 return 0;
1678 } else if (count == pages) {
1679 btree_remove(&a->used_space, page, leaf);
1680 return 1;
1681 } else {
1682 /*
1683 * Find the respective interval.
1684 * Decrease its size and relocate its start address.
1685 */
1686 for (i = 0; i < leaf->keys; i++) {
1687 if (leaf->key[i] == page) {
1688 leaf->key[i] += count * PAGE_SIZE;
1689 leaf->value[i] -= count;
1690 return 1;
1691 }
1692 }
1693 goto error;
1694 }
1695 }
1696
1697 node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1698 if (node && page < leaf->key[0]) {
1699 uintptr_t left_pg = node->key[node->keys - 1];
1700 count_t left_cnt = (count_t) node->value[node->keys - 1];
1701
1702 if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1703 count * PAGE_SIZE)) {
1704 if (page + count * PAGE_SIZE ==
1705 left_pg + left_cnt * PAGE_SIZE) {
1706 /*
1707 * The interval is contained in the rightmost
1708 * interval of the left neighbour and can be
1709 * removed by updating the size of the bigger
1710 * interval.
1711 */
1712 node->value[node->keys - 1] -= count;
1713 return 1;
1714 } else if (page + count * PAGE_SIZE <
1715 left_pg + left_cnt*PAGE_SIZE) {
1716 count_t new_cnt;
1717
1718 /*
1719 * The interval is contained in the rightmost
1720 * interval of the left neighbour but its
1721 * removal requires both updating the size of
1722 * the original interval and also inserting a
1723 * new interval.
1724 */
1725 new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1726 (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1727 node->value[node->keys - 1] -= count + new_cnt;
1728 btree_insert(&a->used_space, page +
1729 count * PAGE_SIZE, (void *) new_cnt, leaf);
1730 return 1;
1731 }
1732 }
1733 return 0;
1734 } else if (page < leaf->key[0]) {
1735 return 0;
1736 }
1737
1738 if (page > leaf->key[leaf->keys - 1]) {
1739 uintptr_t left_pg = leaf->key[leaf->keys - 1];
1740 count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1741
1742 if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1743 count * PAGE_SIZE)) {
1744 if (page + count * PAGE_SIZE ==
1745 left_pg + left_cnt * PAGE_SIZE) {
1746 /*
1747 * The interval is contained in the rightmost
1748 * interval of the leaf and can be removed by
1749 * updating the size of the bigger interval.
1750 */
1751 leaf->value[leaf->keys - 1] -= count;
1752 return 1;
1753 } else if (page + count * PAGE_SIZE < left_pg +
1754 left_cnt * PAGE_SIZE) {
1755 count_t new_cnt;
1756
1757 /*
1758 * The interval is contained in the rightmost
1759 * interval of the leaf but its removal
1760 * requires both updating the size of the
1761 * original interval and also inserting a new
1762 * interval.
1763 */
1764 new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1765 (page + count * PAGE_SIZE)) >> PAGE_WIDTH;
1766 leaf->value[leaf->keys - 1] -= count + new_cnt;
1767 btree_insert(&a->used_space, page +
1768 count * PAGE_SIZE, (void *) new_cnt, leaf);
1769 return 1;
1770 }
1771 }
1772 return 0;
1773 }
1774
1775 /*
1776 * The border cases have been already resolved.
1777 * Now the interval can be only between intervals of the leaf.
1778 */
1779 for (i = 1; i < leaf->keys - 1; i++) {
1780 if (page < leaf->key[i]) {
1781 uintptr_t left_pg = leaf->key[i - 1];
1782 count_t left_cnt = (count_t) leaf->value[i - 1];
1783
1784 /*
1785 * Now the interval is between intervals corresponding
1786 * to (i - 1) and i.
1787 */
1788 if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1789 count * PAGE_SIZE)) {
1790 if (page + count * PAGE_SIZE ==
1791 left_pg + left_cnt*PAGE_SIZE) {
1792 /*
1793 * The interval is contained in the
1794 * interval (i - 1) of the leaf and can
1795 * be removed by updating the size of
1796 * the bigger interval.
1797 */
1798 leaf->value[i - 1] -= count;
1799 return 1;
1800 } else if (page + count * PAGE_SIZE <
1801 left_pg + left_cnt * PAGE_SIZE) {
1802 count_t new_cnt;
1803
1804 /*
1805 * The interval is contained in the
1806 * interval (i - 1) of the leaf but its
1807 * removal requires both updating the
1808 * size of the original interval and
1809 * also inserting a new interval.
1810 */
1811 new_cnt = ((left_pg +
1812 left_cnt * PAGE_SIZE) -
1813 (page + count * PAGE_SIZE)) >>
1814 PAGE_WIDTH;
1815 leaf->value[i - 1] -= count + new_cnt;
1816 btree_insert(&a->used_space, page +
1817 count * PAGE_SIZE, (void *) new_cnt,
1818 leaf);
1819 return 1;
1820 }
1821 }
1822 return 0;
1823 }
1824 }
1825
1826error:
1827 panic("Inconsistency detected while removing %" PRIc " pages of used space "
1828 "from %p.\n", count, page);
1829}
1830
1831/** Remove reference to address space area share info.
1832 *
1833 * If the reference count drops to 0, the sh_info is deallocated.
1834 *
1835 * @param sh_info Pointer to address space area share info.
1836 */
1837void sh_info_remove_reference(share_info_t *sh_info)
1838{
1839 bool dealloc = false;
1840
1841 mutex_lock(&sh_info->lock);
1842 ASSERT(sh_info->refcount);
1843 if (--sh_info->refcount == 0) {
1844 dealloc = true;
1845 link_t *cur;
1846
1847 /*
1848 * Now walk carefully the pagemap B+tree and free/remove
1849 * reference from all frames found there.
1850 */
1851 for (cur = sh_info->pagemap.leaf_head.next;
1852 cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1853 btree_node_t *node;
1854 unsigned int i;
1855
1856 node = list_get_instance(cur, btree_node_t, leaf_link);
1857 for (i = 0; i < node->keys; i++)
1858 frame_free((uintptr_t) node->value[i]);
1859 }
1860
1861 }
1862 mutex_unlock(&sh_info->lock);
1863
1864 if (dealloc) {
1865 btree_destroy(&sh_info->pagemap);
1866 free(sh_info);
1867 }
1868}
1869
1870/*
1871 * Address space related syscalls.
1872 */
1873
1874/** Wrapper for as_area_create(). */
1875unative_t sys_as_area_create(uintptr_t address, size_t size, int flags)
1876{
1877 if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address,
1878 AS_AREA_ATTR_NONE, &anon_backend, NULL))
1879 return (unative_t) address;
1880 else
1881 return (unative_t) -1;
1882}
1883
1884/** Wrapper for as_area_resize(). */
1885unative_t sys_as_area_resize(uintptr_t address, size_t size, int flags)
1886{
1887 return (unative_t) as_area_resize(AS, address, size, 0);
1888}
1889
1890/** Wrapper for as_area_change_flags(). */
1891unative_t sys_as_area_change_flags(uintptr_t address, int flags)
1892{
1893 return (unative_t) as_area_change_flags(AS, flags, address);
1894}
1895
1896/** Wrapper for as_area_destroy(). */
1897unative_t sys_as_area_destroy(uintptr_t address)
1898{
1899 return (unative_t) as_area_destroy(AS, address);
1900}
1901
1902/** Print out information about address space.
1903 *
1904 * @param as Address space.
1905 */
1906void as_print(as_t *as)
1907{
1908 ipl_t ipl;
1909
1910 ipl = interrupts_disable();
1911 mutex_lock(&as->lock);
1912
1913 /* print out info about address space areas */
1914 link_t *cur;
1915 for (cur = as->as_area_btree.leaf_head.next;
1916 cur != &as->as_area_btree.leaf_head; cur = cur->next) {
1917 btree_node_t *node;
1918
1919 node = list_get_instance(cur, btree_node_t, leaf_link);
1920
1921 unsigned int i;
1922 for (i = 0; i < node->keys; i++) {
1923 as_area_t *area = node->value[i];
1924
1925 mutex_lock(&area->lock);
1926 printf("as_area: %p, base=%p, pages=%" PRIc " (%p - %p)\n",
1927 area, area->base, area->pages, area->base,
1928 area->base + FRAMES2SIZE(area->pages));
1929 mutex_unlock(&area->lock);
1930 }
1931 }
1932
1933 mutex_unlock(&as->lock);
1934 interrupts_restore(ipl);
1935}
1936
1937/** @}
1938 */
Note: See TracBrowser for help on using the repository browser.