source: mainline/kernel/generic/src/cap/cap.c@ 3d95c9d

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since 3d95c9d was cde999a, checked in by Jiří Zárevúcky <zarevucky.jiri@…>, 7 years ago

Fix comments to stop referring to error codes as negative.

  • Property mode set to 100644
File size: 13.2 KB
Line 
1/*
2 * Copyright (c) 2017 Jakub Jermar
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/** @addtogroup generic
30 * @{
31 */
32/** @file
33 */
34
35/*
36 * HelenOS capabilities are task-local names for references to kernel objects.
37 * Kernel objects are reference-counted wrappers for a select group of objects
38 * allocated in and by the kernel that can be made accessible to userspace in a
39 * controlled way via integer handles.
40 *
41 * A kernel object (kobject_t) encapsulates one of the following raw objects:
42 *
43 * - IPC call
44 * - IPC phone
45 * - IRQ object
46 *
47 * A capability (cap_t) is either free, allocated or published. Free
48 * capabilities can be allocated, which reserves the capability handle in the
49 * task-local capability space. Allocated capabilities can be published, which
50 * associates them with an existing kernel object. Userspace can only access
51 * published capabilities.
52 *
53 * A published capability may get unpublished, which disassociates it from the
54 * underlying kernel object and puts it back into the allocated state. An
55 * allocated capability can be freed to become available for future use.
56 *
57 * There is a 1:1 correspondence between a kernel object (kobject_t) and the
58 * actual raw object it encapsulates. A kernel object (kobject_t) may have
59 * multiple references, either implicit from one or more capabilities (cap_t),
60 * even from capabilities in different tasks, or explicit as a result of
61 * creating a new reference from a capability handle using kobject_get(), or
62 * creating a new reference from an already existing reference by
63 * kobject_add_ref() or as a result of unpublishing a capability and
64 * disassociating it from its kobject_t using cap_unpublish().
65 *
66 * As kernel objects are reference-counted, they get automatically destroyed
67 * when their last reference is dropped in kobject_put(). The idea is that
68 * whenever a kernel object is inserted into some sort of a container (e.g. a
69 * list or hash table), its reference count should be incremented via
70 * kobject_get() or kobject_add_ref(). When the kernel object is removed from
71 * the container, the reference count should go down via a call to
72 * kobject_put().
73 */
74
75#include <cap/cap.h>
76#include <abi/cap.h>
77#include <proc/task.h>
78#include <synch/mutex.h>
79#include <abi/errno.h>
80#include <mm/slab.h>
81#include <adt/list.h>
82
83#include <stdint.h>
84
85#define CAPS_START (CAP_NIL + 1)
86#define CAPS_SIZE (INT_MAX - CAPS_START)
87#define CAPS_LAST (CAPS_SIZE - 1)
88
89static slab_cache_t *cap_cache;
90
91static size_t caps_hash(const ht_link_t *item)
92{
93 cap_t *cap = hash_table_get_inst(item, cap_t, caps_link);
94 return hash_mix(cap->handle);
95}
96
97static size_t caps_key_hash(void *key)
98{
99 cap_handle_t *handle = (cap_handle_t *) key;
100 return hash_mix(*handle);
101}
102
103static bool caps_key_equal(void *key, const ht_link_t *item)
104{
105 cap_handle_t *handle = (cap_handle_t *) key;
106 cap_t *cap = hash_table_get_inst(item, cap_t, caps_link);
107 return *handle == cap->handle;
108}
109
110static hash_table_ops_t caps_ops = {
111 .hash = caps_hash,
112 .key_hash = caps_key_hash,
113 .key_equal = caps_key_equal
114};
115
116void caps_init(void)
117{
118 cap_cache = slab_cache_create("cap_t", sizeof(cap_t), 0, NULL,
119 NULL, 0);
120}
121
122/** Allocate the capability info structure
123 *
124 * @param task Task for which to allocate the info structure.
125 */
126int caps_task_alloc(task_t *task)
127{
128 task->cap_info = (cap_info_t *) malloc(sizeof(cap_info_t),
129 FRAME_ATOMIC);
130 if (!task->cap_info)
131 return ENOMEM;
132 task->cap_info->handles = ra_arena_create();
133 if (!task->cap_info->handles)
134 goto error_handles;
135 if (!ra_span_add(task->cap_info->handles, CAPS_START, CAPS_SIZE))
136 goto error_span;
137 if (!hash_table_create(&task->cap_info->caps, 0, 0, &caps_ops))
138 goto error_span;
139 return EOK;
140
141error_span:
142 ra_arena_destroy(task->cap_info->handles);
143error_handles:
144 free(task->cap_info);
145 return ENOMEM;
146}
147
148/** Initialize the capability info structure
149 *
150 * @param task Task for which to initialize the info structure.
151 */
152void caps_task_init(task_t *task)
153{
154 mutex_initialize(&task->cap_info->lock, MUTEX_RECURSIVE);
155
156 for (kobject_type_t t = 0; t < KOBJECT_TYPE_MAX; t++)
157 list_initialize(&task->cap_info->type_list[t]);
158}
159
160/** Deallocate the capability info structure
161 *
162 * @param task Task from which to deallocate the info structure.
163 */
164void caps_task_free(task_t *task)
165{
166 hash_table_destroy(&task->cap_info->caps);
167 ra_arena_destroy(task->cap_info->handles);
168 free(task->cap_info);
169}
170
171/** Invoke callback function on task's capabilites of given type
172 *
173 * @param task Task where the invocation should take place.
174 * @param type Kernel object type of the task's capabilities that will be
175 * subject to the callback invocation.
176 * @param cb Callback function.
177 * @param arg Argument for the callback function.
178 *
179 * @return True if the callback was called on all matching capabilities.
180 * @return False if the callback was applied only partially.
181 */
182bool caps_apply_to_kobject_type(task_t *task, kobject_type_t type,
183 bool (*cb)(cap_t *, void *), void *arg)
184{
185 bool done = true;
186
187 mutex_lock(&task->cap_info->lock);
188 list_foreach_safe(task->cap_info->type_list[type], cur, next) {
189 cap_t *cap = list_get_instance(cur, cap_t, type_link);
190 done = cb(cap, arg);
191 if (!done)
192 break;
193 }
194 mutex_unlock(&task->cap_info->lock);
195
196 return done;
197}
198
199/** Initialize capability and associate it with its handle
200 *
201 * @param cap Address of the capability.
202 * @param task Backling to the owning task.
203 * @param handle Capability handle.
204 */
205static void cap_initialize(cap_t *cap, task_t *task, cap_handle_t handle)
206{
207 cap->state = CAP_STATE_FREE;
208 cap->task = task;
209 cap->handle = handle;
210 link_initialize(&cap->type_link);
211}
212
213/** Get capability using capability handle
214 *
215 * @param task Task whose capability to get.
216 * @param handle Capability handle of the desired capability.
217 * @param state State in which the capability must be.
218 *
219 * @return Address of the desired capability if it exists and its state matches.
220 * @return NULL if no such capability exists or it's in a different state.
221 */
222static cap_t *cap_get(task_t *task, cap_handle_t handle, cap_state_t state)
223{
224 assert(mutex_locked(&task->cap_info->lock));
225
226 if ((handle < CAPS_START) || (handle > CAPS_LAST))
227 return NULL;
228 ht_link_t *link = hash_table_find(&task->cap_info->caps, &handle);
229 if (!link)
230 return NULL;
231 cap_t *cap = hash_table_get_inst(link, cap_t, caps_link);
232 if (cap->state != state)
233 return NULL;
234 return cap;
235}
236
237static bool cap_reclaimer(ht_link_t *link, void *arg)
238{
239 cap_t **result = (cap_t **) arg;
240 cap_t *cap = hash_table_get_inst(link, cap_t, caps_link);
241
242 if (cap->state == CAP_STATE_PUBLISHED && cap->kobject->ops->reclaim &&
243 cap->kobject->ops->reclaim(cap->kobject)) {
244 kobject_t *kobj = cap_unpublish(cap->task, cap->handle,
245 cap->kobject->type);
246 kobject_put(kobj);
247 cap_initialize(cap, cap->task, cap->handle);
248 *result = cap;
249 return false;
250 }
251
252 return true;
253}
254
255/** Allocate new capability
256 *
257 * @param task Task for which to allocate the new capability.
258 *
259 * @param[out] handle New capability handle on success.
260 *
261 * @return An error code in case of error.
262 */
263int cap_alloc(task_t *task, cap_handle_t *handle)
264{
265 cap_t *cap = NULL;
266
267 /*
268 * First of all, see if we can reclaim a capability. Note that this
269 * feature is only temporary and capability reclamaition will eventually
270 * be phased out.
271 */
272 mutex_lock(&task->cap_info->lock);
273 hash_table_apply(&task->cap_info->caps, cap_reclaimer, &cap);
274
275 /*
276 * If we don't have a capability by now, try to allocate a new one.
277 */
278 if (!cap) {
279 cap = slab_alloc(cap_cache, FRAME_ATOMIC);
280 if (!cap) {
281 mutex_unlock(&task->cap_info->lock);
282 return ENOMEM;
283 }
284 uintptr_t hbase;
285 if (!ra_alloc(task->cap_info->handles, 1, 1, &hbase)) {
286 slab_free(cap_cache, cap);
287 mutex_unlock(&task->cap_info->lock);
288 return ENOMEM;
289 }
290 cap_initialize(cap, task, (cap_handle_t) hbase);
291 hash_table_insert(&task->cap_info->caps, &cap->caps_link);
292 }
293
294 cap->state = CAP_STATE_ALLOCATED;
295 *handle = cap->handle;
296 mutex_unlock(&task->cap_info->lock);
297
298 return EOK;
299}
300
301/** Publish allocated capability
302 *
303 * The kernel object is moved into the capability. In other words, its reference
304 * is handed over to the capability. Once published, userspace can access and
305 * manipulate the capability.
306 *
307 * @param task Task in which to publish the capability.
308 * @param handle Capability handle.
309 * @param kobj Kernel object.
310 */
311void
312cap_publish(task_t *task, cap_handle_t handle, kobject_t *kobj)
313{
314 mutex_lock(&task->cap_info->lock);
315 cap_t *cap = cap_get(task, handle, CAP_STATE_ALLOCATED);
316 assert(cap);
317 cap->state = CAP_STATE_PUBLISHED;
318 /* Hand over kobj's reference to cap */
319 cap->kobject = kobj;
320 list_append(&cap->type_link, &task->cap_info->type_list[kobj->type]);
321 mutex_unlock(&task->cap_info->lock);
322}
323
324/** Unpublish published capability
325 *
326 * The kernel object is moved out of the capability. In other words, the
327 * capability's reference to the objects is handed over to the kernel object
328 * pointer returned by this function. Once unpublished, the capability does not
329 * refer to any kernel object anymore.
330 *
331 * @param task Task in which to unpublish the capability.
332 * @param handle Capability handle.
333 * @param type Kernel object type of the object associated with the
334 * capability.
335 */
336kobject_t *cap_unpublish(task_t *task, cap_handle_t handle, kobject_type_t type)
337{
338 kobject_t *kobj = NULL;
339
340 mutex_lock(&task->cap_info->lock);
341 cap_t *cap = cap_get(task, handle, CAP_STATE_PUBLISHED);
342 if (cap) {
343 if (cap->kobject->type == type) {
344 /* Hand over cap's reference to kobj */
345 kobj = cap->kobject;
346 cap->kobject = NULL;
347 list_remove(&cap->type_link);
348 cap->state = CAP_STATE_ALLOCATED;
349 }
350 }
351 mutex_unlock(&task->cap_info->lock);
352
353 return kobj;
354}
355
356/** Free allocated capability
357 *
358 * @param task Task in which to free the capability.
359 * @param handle Capability handle.
360 */
361void cap_free(task_t *task, cap_handle_t handle)
362{
363 assert(handle >= CAPS_START);
364 assert(handle <= CAPS_LAST);
365
366 mutex_lock(&task->cap_info->lock);
367 cap_t *cap = cap_get(task, handle, CAP_STATE_ALLOCATED);
368
369 assert(cap);
370
371 hash_table_remove_item(&task->cap_info->caps, &cap->caps_link);
372 ra_free(task->cap_info->handles, handle, 1);
373 slab_free(cap_cache, cap);
374 mutex_unlock(&task->cap_info->lock);
375}
376
377/** Initialize kernel object
378 *
379 * @param kobj Kernel object to initialize.
380 * @param type Type of the kernel object.
381 * @param raw Raw pointer to the encapsulated object.
382 * @param ops Pointer to kernel object operations for the respective type.
383 */
384void kobject_initialize(kobject_t *kobj, kobject_type_t type, void *raw,
385 kobject_ops_t *ops)
386{
387 atomic_set(&kobj->refcnt, 1);
388 kobj->type = type;
389 kobj->raw = raw;
390 kobj->ops = ops;
391}
392
393/** Get new reference to kernel object from capability
394 *
395 * @param task Task from which to get the reference.
396 * @param handle Capability handle.
397 * @param type Kernel object type of the object associated with the
398 * capability referenced by handle.
399 *
400 * @return Kernel object with incremented reference count on success.
401 * @return NULL if there is no matching capability or kernel object.
402 */
403kobject_t *
404kobject_get(struct task *task, cap_handle_t handle, kobject_type_t type)
405{
406 kobject_t *kobj = NULL;
407
408 mutex_lock(&task->cap_info->lock);
409 cap_t *cap = cap_get(task, handle, CAP_STATE_PUBLISHED);
410 if (cap) {
411 if (cap->kobject->type == type) {
412 kobj = cap->kobject;
413 atomic_inc(&kobj->refcnt);
414 }
415 }
416 mutex_unlock(&task->cap_info->lock);
417
418 return kobj;
419}
420
421/** Record new reference
422 *
423 * @param kobj Kernel object from which the new reference is created.
424 */
425void kobject_add_ref(kobject_t *kobj)
426{
427 atomic_inc(&kobj->refcnt);
428}
429
430/** Drop reference to kernel object
431 *
432 * The encapsulated object and the kobject_t wrapper are both destroyed when the
433 * last reference is dropped.
434 *
435 * @param kobj Kernel object whose reference to drop.
436 */
437void kobject_put(kobject_t *kobj)
438{
439 if (atomic_postdec(&kobj->refcnt) == 1) {
440 kobj->ops->destroy(kobj->raw);
441 free(kobj);
442 }
443}
444
445/** @}
446 */
Note: See TracBrowser for help on using the repository browser.