source: mainline/kernel/arch/ia32/src/pm.c@ d6f9fff

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since d6f9fff was d6f9fff, checked in by Jakub Jermar <jakub@…>, 9 years ago

ia32: Make TLS settable from uspace

The TLS document[1] mandates that %gs[0] is the thread pointer on ia32.
That is good as it allows userspace-only TLS management for fibrils:
fibril_save/restore() simply manipulate the thread pointer in %gs:0 and
don't need to ask the kernel to modify %gs's base. The kernel treats
%gs:0 as another preserved register and preserves it across context
switches. GCC gets in the way a little bit because it by default assumes
that TLS is accessible from negative %gs offsets (which would
necessitate a kernel-assisted solution). Fortunately, there is a GCC
option to suppress this assumption.

  • Introduce the concept of virtual registers, with VREG_TP (thread pointer) being the first of them
  • Preserve VREG_TP in context_save/restore()
  • Stop using sys_tls_set() in favour of using %gs:0 as the thread pointer
  • Make GCC generate code that always goes through %gs:0 to access TLS

[1] Drepper, U.: ELF Handling For Thread-Local Storage

  • Property mode set to 100644
File size: 8.8 KB
Line 
1/*
2 * Copyright (c) 2001-2004 Jakub Jermar
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/** @addtogroup ia32
30 * @{
31 */
32/** @file
33 */
34
35#include <arch/pm.h>
36#include <config.h>
37#include <typedefs.h>
38#include <arch/interrupt.h>
39#include <arch/asm.h>
40#include <arch/context.h>
41#include <panic.h>
42#include <arch/mm/page.h>
43#include <mm/km.h>
44#include <mm/frame.h>
45#include <mm/slab.h>
46#include <memstr.h>
47#include <arch/boot/boot.h>
48#include <interrupt.h>
49
50/*
51 * Early ia32 configuration functions and data structures.
52 */
53
54/*
55 * We don't have much use for segmentation so we set up flat mode.
56 * In this mode, we use, for each privilege level, two segments spanning the
57 * whole memory. One is for code and one is for data.
58 *
59 * One special segment apart of that is for the GS register which holds
60 * a pointer to the VREG page in its base.
61 */
62descriptor_t gdt[GDT_ITEMS] = {
63 /* NULL descriptor */
64 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
65 /* KTEXT descriptor */
66 { 0xffff, 0, 0, AR_PRESENT | AR_CODE | DPL_KERNEL, 0xf, 0, 0, 1, 1, 0 },
67 /* KDATA descriptor */
68 { 0xffff, 0, 0, AR_PRESENT | AR_DATA | AR_WRITABLE | DPL_KERNEL, 0xf, 0, 0, 1, 1, 0 },
69 /* UTEXT descriptor */
70 { 0xffff, 0, 0, AR_PRESENT | AR_CODE | DPL_USER, 0xf, 0, 0, 1, 1, 0 },
71 /* UDATA descriptor */
72 { 0xffff, 0, 0, AR_PRESENT | AR_DATA | AR_WRITABLE | DPL_USER, 0xf, 0, 0, 1, 1, 0 },
73 /* TSS descriptor - set up will be completed later */
74 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
75 /* VREG descriptor - segment used for virtual registers, will be reinitialized later */
76 { 0xffff, 0 , 0, AR_PRESENT | AR_DATA | AR_WRITABLE | DPL_USER, 0xf, 0, 0, 1, 1, 0 },
77 /* VESA Init descriptor */
78#ifdef CONFIG_FB
79 { 0xffff, 0, VESA_INIT_SEGMENT >> 12, AR_PRESENT | AR_CODE | AR_READABLE | DPL_KERNEL, 0xf, 0, 0, 0, 0, 0 },
80 { 0xffff, 0, VESA_INIT_SEGMENT >> 12, AR_PRESENT | AR_DATA | AR_WRITABLE | DPL_KERNEL, 0xf, 0, 0, 0, 0, 0 }
81#endif
82};
83
84static idescriptor_t idt[IDT_ITEMS];
85
86static tss_t tss0;
87
88tss_t *tss_p = NULL;
89
90/* gdtr is changed by kmp before next CPU is initialized */
91ptr_16_32_t gdtr = {
92 .limit = sizeof(gdt),
93 .base = (uintptr_t) gdt
94};
95
96void gdt_setbase(descriptor_t *d, uintptr_t base)
97{
98 d->base_0_15 = base & 0xffff;
99 d->base_16_23 = (base >> 16) & 0xff;
100 d->base_24_31 = (base >> 24) & 0xff;
101}
102
103void gdt_setlimit(descriptor_t *d, uint32_t limit)
104{
105 d->limit_0_15 = limit & 0xffff;
106 d->limit_16_19 = (limit >> 16) & 0xf;
107}
108
109void idt_setoffset(idescriptor_t *d, uintptr_t offset)
110{
111 /*
112 * Offset is a linear address.
113 */
114 d->offset_0_15 = offset & 0xffff;
115 d->offset_16_31 = offset >> 16;
116}
117
118void tss_initialize(tss_t *t)
119{
120 memsetb(t, sizeof(tss_t), 0);
121}
122
123/*
124 * This function takes care of proper setup of IDT and IDTR.
125 */
126void idt_init(void)
127{
128 idescriptor_t *d;
129 unsigned int i;
130
131 for (i = 0; i < IDT_ITEMS; i++) {
132 d = &idt[i];
133
134 d->unused = 0;
135 d->selector = GDT_SELECTOR(KTEXT_DES);
136
137 if (i == VECTOR_SYSCALL) {
138 /*
139 * The syscall trap gate must be callable from
140 * userland. Interrupts will remain enabled.
141 */
142 d->access = AR_PRESENT | AR_TRAP | DPL_USER;
143 } else {
144 /*
145 * Other interrupts use interrupt gates which
146 * disable interrupts.
147 */
148 d->access = AR_PRESENT | AR_INTERRUPT;
149 }
150 }
151
152 d = &idt[0];
153 idt_setoffset(d++, (uintptr_t) &int_0);
154 idt_setoffset(d++, (uintptr_t) &int_1);
155 idt_setoffset(d++, (uintptr_t) &int_2);
156 idt_setoffset(d++, (uintptr_t) &int_3);
157 idt_setoffset(d++, (uintptr_t) &int_4);
158 idt_setoffset(d++, (uintptr_t) &int_5);
159 idt_setoffset(d++, (uintptr_t) &int_6);
160 idt_setoffset(d++, (uintptr_t) &int_7);
161 idt_setoffset(d++, (uintptr_t) &int_8);
162 idt_setoffset(d++, (uintptr_t) &int_9);
163 idt_setoffset(d++, (uintptr_t) &int_10);
164 idt_setoffset(d++, (uintptr_t) &int_11);
165 idt_setoffset(d++, (uintptr_t) &int_12);
166 idt_setoffset(d++, (uintptr_t) &int_13);
167 idt_setoffset(d++, (uintptr_t) &int_14);
168 idt_setoffset(d++, (uintptr_t) &int_15);
169 idt_setoffset(d++, (uintptr_t) &int_16);
170 idt_setoffset(d++, (uintptr_t) &int_17);
171 idt_setoffset(d++, (uintptr_t) &int_18);
172 idt_setoffset(d++, (uintptr_t) &int_19);
173 idt_setoffset(d++, (uintptr_t) &int_20);
174 idt_setoffset(d++, (uintptr_t) &int_21);
175 idt_setoffset(d++, (uintptr_t) &int_22);
176 idt_setoffset(d++, (uintptr_t) &int_23);
177 idt_setoffset(d++, (uintptr_t) &int_24);
178 idt_setoffset(d++, (uintptr_t) &int_25);
179 idt_setoffset(d++, (uintptr_t) &int_26);
180 idt_setoffset(d++, (uintptr_t) &int_27);
181 idt_setoffset(d++, (uintptr_t) &int_28);
182 idt_setoffset(d++, (uintptr_t) &int_29);
183 idt_setoffset(d++, (uintptr_t) &int_30);
184 idt_setoffset(d++, (uintptr_t) &int_31);
185 idt_setoffset(d++, (uintptr_t) &int_32);
186 idt_setoffset(d++, (uintptr_t) &int_33);
187 idt_setoffset(d++, (uintptr_t) &int_34);
188 idt_setoffset(d++, (uintptr_t) &int_35);
189 idt_setoffset(d++, (uintptr_t) &int_36);
190 idt_setoffset(d++, (uintptr_t) &int_37);
191 idt_setoffset(d++, (uintptr_t) &int_38);
192 idt_setoffset(d++, (uintptr_t) &int_39);
193 idt_setoffset(d++, (uintptr_t) &int_40);
194 idt_setoffset(d++, (uintptr_t) &int_41);
195 idt_setoffset(d++, (uintptr_t) &int_42);
196 idt_setoffset(d++, (uintptr_t) &int_43);
197 idt_setoffset(d++, (uintptr_t) &int_44);
198 idt_setoffset(d++, (uintptr_t) &int_45);
199 idt_setoffset(d++, (uintptr_t) &int_46);
200 idt_setoffset(d++, (uintptr_t) &int_47);
201 idt_setoffset(d++, (uintptr_t) &int_48);
202 idt_setoffset(d++, (uintptr_t) &int_49);
203 idt_setoffset(d++, (uintptr_t) &int_50);
204 idt_setoffset(d++, (uintptr_t) &int_51);
205 idt_setoffset(d++, (uintptr_t) &int_52);
206 idt_setoffset(d++, (uintptr_t) &int_53);
207 idt_setoffset(d++, (uintptr_t) &int_54);
208 idt_setoffset(d++, (uintptr_t) &int_55);
209 idt_setoffset(d++, (uintptr_t) &int_56);
210 idt_setoffset(d++, (uintptr_t) &int_57);
211 idt_setoffset(d++, (uintptr_t) &int_58);
212 idt_setoffset(d++, (uintptr_t) &int_59);
213 idt_setoffset(d++, (uintptr_t) &int_60);
214 idt_setoffset(d++, (uintptr_t) &int_61);
215 idt_setoffset(d++, (uintptr_t) &int_62);
216 idt_setoffset(d++, (uintptr_t) &int_63);
217
218 idt_setoffset(&idt[VECTOR_SYSCALL], (uintptr_t) &int_syscall);
219}
220
221/* Clean IOPL(12,13) and NT(14) flags in EFLAGS register */
222static void clean_IOPL_NT_flags(void)
223{
224 asm volatile (
225 "pushfl\n"
226 "pop %%eax\n"
227 "and $0xffff8fff, %%eax\n"
228 "push %%eax\n"
229 "popfl\n"
230 ::: "eax"
231 );
232}
233
234/* Clean AM(18) flag in CR0 register */
235static void clean_AM_flag(void)
236{
237 asm volatile (
238 "mov %%cr0, %%eax\n"
239 "and $0xfffbffff, %%eax\n"
240 "mov %%eax, %%cr0\n"
241 ::: "eax"
242 );
243}
244
245void pm_init(void)
246{
247 descriptor_t *gdt_p = (descriptor_t *) gdtr.base;
248 ptr_16_32_t idtr;
249
250 /*
251 * Update addresses in GDT and IDT to their virtual counterparts.
252 */
253 idtr.limit = sizeof(idt);
254 idtr.base = (uintptr_t) idt;
255 gdtr_load(&gdtr);
256 idtr_load(&idtr);
257
258 /*
259 * Each CPU has its private GDT and TSS.
260 * All CPUs share one IDT.
261 */
262
263 if (config.cpu_active == 1) {
264 idt_init();
265 /*
266 * NOTE: bootstrap CPU has statically allocated TSS, because
267 * the heap hasn't been initialized so far.
268 */
269 tss_p = &tss0;
270 } else {
271 tss_p = (tss_t *) malloc(sizeof(tss_t), FRAME_ATOMIC);
272 if (!tss_p)
273 panic("Cannot allocate TSS.");
274 }
275
276 tss_initialize(tss_p);
277
278 gdt_p[TSS_DES].access = AR_PRESENT | AR_TSS | DPL_KERNEL;
279 gdt_p[TSS_DES].special = 1;
280 gdt_p[TSS_DES].granularity = 0;
281
282 gdt_setbase(&gdt_p[TSS_DES], (uintptr_t) tss_p);
283 gdt_setlimit(&gdt_p[TSS_DES], TSS_BASIC_SIZE - 1);
284
285 /*
286 * As of this moment, the current CPU has its own GDT pointing
287 * to its own TSS. We just need to load the TR register.
288 */
289 tr_load(GDT_SELECTOR(TSS_DES));
290
291 clean_IOPL_NT_flags(); /* Disable I/O on nonprivileged levels and clear NT flag. */
292 clean_AM_flag(); /* Disable alignment check */
293}
294
295/** @}
296 */
Note: See TracBrowser for help on using the repository browser.