source: mainline/generic/src/mm/as.c@ 56789125

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since 56789125 was 56789125, checked in by Jakub Jermar <jakub@…>, 19 years ago

Fixes of the used_space management code.
Switch as_area_destroy() and as_area_resize() to use the used_space map.
as_area_steal() not switched as it will undergo further changes.

  • Property mode set to 100644
File size: 38.0 KB
Line 
1/*
2 * Copyright (C) 2001-2006 Jakub Jermar
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/**
30 * @file as.c
31 * @brief Address space related functions.
32 *
33 * This file contains address space manipulation functions.
34 * Roughly speaking, this is a higher-level client of
35 * Virtual Address Translation (VAT) subsystem.
36 *
37 * Functionality provided by this file allows one to
38 * create address space and create, resize and share
39 * address space areas.
40 *
41 * @see page.c
42 *
43 */
44
45#include <mm/as.h>
46#include <arch/mm/as.h>
47#include <mm/page.h>
48#include <mm/frame.h>
49#include <mm/slab.h>
50#include <mm/tlb.h>
51#include <arch/mm/page.h>
52#include <genarch/mm/page_pt.h>
53#include <genarch/mm/page_ht.h>
54#include <mm/asid.h>
55#include <arch/mm/asid.h>
56#include <synch/spinlock.h>
57#include <synch/mutex.h>
58#include <adt/list.h>
59#include <adt/btree.h>
60#include <proc/task.h>
61#include <proc/thread.h>
62#include <arch/asm.h>
63#include <panic.h>
64#include <debug.h>
65#include <print.h>
66#include <memstr.h>
67#include <macros.h>
68#include <arch.h>
69#include <errno.h>
70#include <config.h>
71#include <align.h>
72#include <arch/types.h>
73#include <typedefs.h>
74#include <syscall/copy.h>
75#include <arch/interrupt.h>
76
77as_operations_t *as_operations = NULL;
78
79/** Address space lock. It protects inactive_as_with_asid_head. Must be acquired before as_t mutex. */
80SPINLOCK_INITIALIZE(as_lock);
81
82/**
83 * This list contains address spaces that are not active on any
84 * processor and that have valid ASID.
85 */
86LIST_INITIALIZE(inactive_as_with_asid_head);
87
88/** Kernel address space. */
89as_t *AS_KERNEL = NULL;
90
91static int area_flags_to_page_flags(int aflags);
92static int get_area_flags(as_area_t *a);
93static as_area_t *find_area_and_lock(as_t *as, __address va);
94static bool check_area_conflicts(as_t *as, __address va, size_t size, as_area_t *avoid_area);
95static int used_space_insert(as_area_t *a, __address page, count_t count);
96static int used_space_remove(as_area_t *a, __address page, count_t count);
97
98/** Initialize address space subsystem. */
99void as_init(void)
100{
101 as_arch_init();
102 AS_KERNEL = as_create(FLAG_AS_KERNEL);
103 if (!AS_KERNEL)
104 panic("can't create kernel address space\n");
105
106}
107
108/** Create address space.
109 *
110 * @param flags Flags that influence way in wich the address space is created.
111 */
112as_t *as_create(int flags)
113{
114 as_t *as;
115
116 as = (as_t *) malloc(sizeof(as_t), 0);
117 link_initialize(&as->inactive_as_with_asid_link);
118 mutex_initialize(&as->lock);
119 btree_create(&as->as_area_btree);
120
121 if (flags & FLAG_AS_KERNEL)
122 as->asid = ASID_KERNEL;
123 else
124 as->asid = ASID_INVALID;
125
126 as->refcount = 0;
127 as->page_table = page_table_create(flags);
128
129 return as;
130}
131
132/** Free Adress space */
133void as_free(as_t *as)
134{
135 ASSERT(as->refcount == 0);
136
137 /* TODO: free as_areas and other resources held by as */
138 /* TODO: free page table */
139 free(as);
140}
141
142/** Create address space area of common attributes.
143 *
144 * The created address space area is added to the target address space.
145 *
146 * @param as Target address space.
147 * @param flags Flags of the area memory.
148 * @param size Size of area.
149 * @param base Base address of area.
150 * @param attrs Attributes of the area.
151 *
152 * @return Address space area on success or NULL on failure.
153 */
154as_area_t *as_area_create(as_t *as, int flags, size_t size, __address base, int attrs)
155{
156 ipl_t ipl;
157 as_area_t *a;
158
159 if (base % PAGE_SIZE)
160 return NULL;
161
162 if (!size)
163 return NULL;
164
165 /* Writeable executable areas are not supported. */
166 if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
167 return NULL;
168
169 ipl = interrupts_disable();
170 mutex_lock(&as->lock);
171
172 if (!check_area_conflicts(as, base, size, NULL)) {
173 mutex_unlock(&as->lock);
174 interrupts_restore(ipl);
175 return NULL;
176 }
177
178 a = (as_area_t *) malloc(sizeof(as_area_t), 0);
179
180 mutex_initialize(&a->lock);
181
182 a->flags = flags;
183 a->attributes = attrs;
184 a->pages = SIZE2FRAMES(size);
185 a->base = base;
186 btree_create(&a->used_space);
187
188 btree_insert(&as->as_area_btree, base, (void *) a, NULL);
189
190 mutex_unlock(&as->lock);
191 interrupts_restore(ipl);
192
193 return a;
194}
195
196/** Find address space area and change it.
197 *
198 * @param as Address space.
199 * @param address Virtual address belonging to the area to be changed. Must be page-aligned.
200 * @param size New size of the virtual memory block starting at address.
201 * @param flags Flags influencing the remap operation. Currently unused.
202 *
203 * @return Zero on success or a value from @ref errno.h otherwise.
204 */
205int as_area_resize(as_t *as, __address address, size_t size, int flags)
206{
207 as_area_t *area;
208 ipl_t ipl;
209 size_t pages;
210
211 ipl = interrupts_disable();
212 mutex_lock(&as->lock);
213
214 /*
215 * Locate the area.
216 */
217 area = find_area_and_lock(as, address);
218 if (!area) {
219 mutex_unlock(&as->lock);
220 interrupts_restore(ipl);
221 return ENOENT;
222 }
223
224 if (area->flags & AS_AREA_DEVICE) {
225 /*
226 * Remapping of address space areas associated
227 * with memory mapped devices is not supported.
228 */
229 mutex_unlock(&area->lock);
230 mutex_unlock(&as->lock);
231 interrupts_restore(ipl);
232 return ENOTSUP;
233 }
234
235 pages = SIZE2FRAMES((address - area->base) + size);
236 if (!pages) {
237 /*
238 * Zero size address space areas are not allowed.
239 */
240 mutex_unlock(&area->lock);
241 mutex_unlock(&as->lock);
242 interrupts_restore(ipl);
243 return EPERM;
244 }
245
246 if (pages < area->pages) {
247 bool cond;
248 __address start_free = area->base + pages*PAGE_SIZE;
249
250 /*
251 * Shrinking the area.
252 * No need to check for overlaps.
253 */
254
255 /*
256 * Remove frames belonging to used space starting from
257 * the highest addresses downwards until an overlap with
258 * the resized address space area is found. Note that this
259 * is also the right way to remove part of the used_space
260 * B+tree leaf list.
261 */
262 for (cond = true; cond;) {
263 btree_node_t *node;
264
265 ASSERT(!list_empty(&area->used_space.leaf_head));
266 node = list_get_instance(area->used_space.leaf_head.prev, btree_node_t, leaf_link);
267 if ((cond = (bool) node->keys)) {
268 __address b = node->key[node->keys - 1];
269 count_t c = (count_t) node->value[node->keys - 1];
270 int i = 0;
271
272 if (overlaps(b, c*PAGE_SIZE, area->base, pages*PAGE_SIZE)) {
273
274 if (b + c*PAGE_SIZE <= start_free) {
275 /*
276 * The whole interval fits completely
277 * in the resized address space area.
278 */
279 break;
280 }
281
282 /*
283 * Part of the interval corresponding to b and c
284 * overlaps with the resized address space area.
285 */
286
287 cond = false; /* we are almost done */
288 i = (start_free - b) >> PAGE_WIDTH;
289 if (!used_space_remove(area, start_free, c - i))
290 panic("Could not remove used space.");
291 } else {
292 /*
293 * The interval of used space can be completely removed.
294 */
295 if (!used_space_remove(area, b, c))
296 panic("Could not remove used space.\n");
297 }
298
299 for (; i < c; i++) {
300 pte_t *pte;
301
302 page_table_lock(as, false);
303 pte = page_mapping_find(as, b + i*PAGE_SIZE);
304 ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
305 frame_free(ADDR2PFN(PTE_GET_FRAME(pte)));
306 page_mapping_remove(as, b + i*PAGE_SIZE);
307 page_table_unlock(as, false);
308 }
309 }
310 }
311 /*
312 * Invalidate TLB's.
313 */
314 tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
315 tlb_invalidate_pages(AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
316 tlb_shootdown_finalize();
317 } else {
318 /*
319 * Growing the area.
320 * Check for overlaps with other address space areas.
321 */
322 if (!check_area_conflicts(as, address, pages * PAGE_SIZE, area)) {
323 mutex_unlock(&area->lock);
324 mutex_unlock(&as->lock);
325 interrupts_restore(ipl);
326 return EADDRNOTAVAIL;
327 }
328 }
329
330 area->pages = pages;
331
332 mutex_unlock(&area->lock);
333 mutex_unlock(&as->lock);
334 interrupts_restore(ipl);
335
336 return 0;
337}
338
339/** Destroy address space area.
340 *
341 * @param as Address space.
342 * @param address Address withing the area to be deleted.
343 *
344 * @return Zero on success or a value from @ref errno.h on failure.
345 */
346int as_area_destroy(as_t *as, __address address)
347{
348 as_area_t *area;
349 __address base;
350 ipl_t ipl;
351
352 ipl = interrupts_disable();
353 mutex_lock(&as->lock);
354
355 area = find_area_and_lock(as, address);
356 if (!area) {
357 mutex_unlock(&as->lock);
358 interrupts_restore(ipl);
359 return ENOENT;
360 }
361
362 base = area->base;
363 if (!(area->flags & AS_AREA_DEVICE)) {
364 bool cond;
365
366 /*
367 * Releasing physical memory.
368 * Areas mapping memory-mapped devices are treated differently than
369 * areas backing frame_alloc()'ed memory.
370 */
371
372 /*
373 * Visit only the pages mapped by used_space B+tree.
374 * Note that we must be very careful when walking the tree
375 * leaf list and removing used space as the leaf list changes
376 * unpredictibly after each remove. The solution is to actually
377 * not walk the tree at all, but to remove items from the head
378 * of the leaf list until there are some keys left.
379 */
380 for (cond = true; cond;) {
381 btree_node_t *node;
382
383 ASSERT(!list_empty(&area->used_space.leaf_head));
384 node = list_get_instance(area->used_space.leaf_head.next, btree_node_t, leaf_link);
385 if ((cond = (bool) node->keys)) {
386 __address b = node->key[0];
387 count_t i;
388 pte_t *pte;
389
390 for (i = 0; i < (count_t) node->value[0]; i++) {
391 page_table_lock(as, false);
392 pte = page_mapping_find(as, b + i*PAGE_SIZE);
393 ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
394 frame_free(ADDR2PFN(PTE_GET_FRAME(pte)));
395 page_mapping_remove(as, b + i*PAGE_SIZE);
396 page_table_unlock(as, false);
397 }
398 if (!used_space_remove(area, b, i))
399 panic("Could not remove used space.\n");
400 }
401 }
402 }
403 btree_destroy(&area->used_space);
404
405 /*
406 * Invalidate TLB's.
407 */
408 tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base, area->pages);
409 tlb_invalidate_pages(AS->asid, area->base, area->pages);
410 tlb_shootdown_finalize();
411
412 area->attributes |= AS_AREA_ATTR_PARTIAL;
413 mutex_unlock(&area->lock);
414
415 /*
416 * Remove the empty area from address space.
417 */
418 btree_remove(&AS->as_area_btree, base, NULL);
419
420 free(area);
421
422 mutex_unlock(&AS->lock);
423 interrupts_restore(ipl);
424 return 0;
425}
426
427/** Steal address space area from another task.
428 *
429 * Address space area is stolen from another task
430 * Moreover, any existing mapping
431 * is copied as well, providing thus a mechanism
432 * for sharing group of pages. The source address
433 * space area and any associated mapping is preserved.
434 *
435 * @param src_task Pointer of source task
436 * @param src_base Base address of the source address space area.
437 * @param acc_size Expected size of the source area
438 * @param dst_base Target base address
439 *
440 * @return Zero on success or ENOENT if there is no such task or
441 * if there is no such address space area,
442 * EPERM if there was a problem in accepting the area or
443 * ENOMEM if there was a problem in allocating destination
444 * address space area.
445 */
446int as_area_steal(task_t *src_task, __address src_base, size_t acc_size,
447 __address dst_base)
448{
449 ipl_t ipl;
450 count_t i;
451 as_t *src_as;
452 int src_flags;
453 size_t src_size;
454 as_area_t *src_area, *dst_area;
455
456 ipl = interrupts_disable();
457 spinlock_lock(&src_task->lock);
458 src_as = src_task->as;
459
460 mutex_lock(&src_as->lock);
461 src_area = find_area_and_lock(src_as, src_base);
462 if (!src_area) {
463 /*
464 * Could not find the source address space area.
465 */
466 spinlock_unlock(&src_task->lock);
467 mutex_unlock(&src_as->lock);
468 interrupts_restore(ipl);
469 return ENOENT;
470 }
471 src_size = src_area->pages * PAGE_SIZE;
472 src_flags = src_area->flags;
473 mutex_unlock(&src_area->lock);
474 mutex_unlock(&src_as->lock);
475
476 if (src_size != acc_size) {
477 spinlock_unlock(&src_task->lock);
478 interrupts_restore(ipl);
479 return EPERM;
480 }
481 /*
482 * Create copy of the source address space area.
483 * The destination area is created with AS_AREA_ATTR_PARTIAL
484 * attribute set which prevents race condition with
485 * preliminary as_page_fault() calls.
486 */
487 dst_area = as_area_create(AS, src_flags, src_size, dst_base, AS_AREA_ATTR_PARTIAL);
488 if (!dst_area) {
489 /*
490 * Destination address space area could not be created.
491 */
492 spinlock_unlock(&src_task->lock);
493 interrupts_restore(ipl);
494 return ENOMEM;
495 }
496
497 spinlock_unlock(&src_task->lock);
498
499 /*
500 * Avoid deadlock by first locking the address space with lower address.
501 */
502 if (AS < src_as) {
503 mutex_lock(&AS->lock);
504 mutex_lock(&src_as->lock);
505 } else {
506 mutex_lock(&AS->lock);
507 mutex_lock(&src_as->lock);
508 }
509
510 for (i = 0; i < SIZE2FRAMES(src_size); i++) {
511 pte_t *pte;
512 __address frame;
513
514 page_table_lock(src_as, false);
515 pte = page_mapping_find(src_as, src_base + i*PAGE_SIZE);
516 if (pte && PTE_VALID(pte)) {
517 ASSERT(PTE_PRESENT(pte));
518 frame = PTE_GET_FRAME(pte);
519 if (!(src_flags & AS_AREA_DEVICE))
520 frame_reference_add(ADDR2PFN(frame));
521 page_table_unlock(src_as, false);
522 } else {
523 page_table_unlock(src_as, false);
524 continue;
525 }
526
527 page_table_lock(AS, false);
528 page_mapping_insert(AS, dst_base + i*PAGE_SIZE, frame, area_flags_to_page_flags(src_flags));
529 page_table_unlock(AS, false);
530 }
531
532 /*
533 * Now the destination address space area has been
534 * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
535 * attribute.
536 */
537 mutex_lock(&dst_area->lock);
538 dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
539 mutex_unlock(&dst_area->lock);
540
541 mutex_unlock(&AS->lock);
542 mutex_unlock(&src_as->lock);
543 interrupts_restore(ipl);
544
545 return 0;
546}
547
548/** Initialize mapping for one page of address space.
549 *
550 * This functions maps 'page' to 'frame' according
551 * to attributes of the address space area to
552 * wich 'page' belongs.
553 *
554 * @param as Target address space.
555 * @param page Virtual page within the area.
556 * @param frame Physical frame to which page will be mapped.
557 */
558void as_set_mapping(as_t *as, __address page, __address frame)
559{
560 as_area_t *area;
561 ipl_t ipl;
562
563 ipl = interrupts_disable();
564 page_table_lock(as, true);
565
566 area = find_area_and_lock(as, page);
567 if (!area) {
568 panic("Page not part of any as_area.\n");
569 }
570
571 page_mapping_insert(as, page, frame, get_area_flags(area));
572 if (!used_space_insert(area, page, 1))
573 panic("Could not insert used space.\n");
574
575 mutex_unlock(&area->lock);
576 page_table_unlock(as, true);
577 interrupts_restore(ipl);
578}
579
580/** Handle page fault within the current address space.
581 *
582 * This is the high-level page fault handler.
583 * Interrupts are assumed disabled.
584 *
585 * @param page Faulting page.
586 * @param istate Pointer to interrupted state.
587 *
588 * @return 0 on page fault, 1 on success or 2 if the fault was caused by copy_to_uspace() or copy_from_uspace().
589 */
590int as_page_fault(__address page, istate_t *istate)
591{
592 pte_t *pte;
593 as_area_t *area;
594 __address frame;
595
596 if (!THREAD)
597 return 0;
598
599 ASSERT(AS);
600
601 mutex_lock(&AS->lock);
602 area = find_area_and_lock(AS, page);
603 if (!area) {
604 /*
605 * No area contained mapping for 'page'.
606 * Signal page fault to low-level handler.
607 */
608 mutex_unlock(&AS->lock);
609 goto page_fault;
610 }
611
612 if (area->attributes & AS_AREA_ATTR_PARTIAL) {
613 /*
614 * The address space area is not fully initialized.
615 * Avoid possible race by returning error.
616 */
617 mutex_unlock(&area->lock);
618 mutex_unlock(&AS->lock);
619 goto page_fault;
620 }
621
622 ASSERT(!(area->flags & AS_AREA_DEVICE));
623
624 page_table_lock(AS, false);
625
626 /*
627 * To avoid race condition between two page faults
628 * on the same address, we need to make sure
629 * the mapping has not been already inserted.
630 */
631 if ((pte = page_mapping_find(AS, page))) {
632 if (PTE_PRESENT(pte)) {
633 page_table_unlock(AS, false);
634 mutex_unlock(&area->lock);
635 mutex_unlock(&AS->lock);
636 return 1;
637 }
638 }
639
640 /*
641 * In general, there can be several reasons that
642 * can have caused this fault.
643 *
644 * - non-existent mapping: the area is a scratch
645 * area (e.g. stack) and so far has not been
646 * allocated a frame for the faulting page
647 *
648 * - non-present mapping: another possibility,
649 * currently not implemented, would be frame
650 * reuse; when this becomes a possibility,
651 * do not forget to distinguish between
652 * the different causes
653 */
654 frame = PFN2ADDR(frame_alloc(ONE_FRAME, 0));
655 memsetb(PA2KA(frame), FRAME_SIZE, 0);
656
657 /*
658 * Map 'page' to 'frame'.
659 * Note that TLB shootdown is not attempted as only new information is being
660 * inserted into page tables.
661 */
662 page_mapping_insert(AS, page, frame, get_area_flags(area));
663 if (!used_space_insert(area, ALIGN_DOWN(page, PAGE_SIZE), 1))
664 panic("Could not insert used space.\n");
665 page_table_unlock(AS, false);
666
667 mutex_unlock(&area->lock);
668 mutex_unlock(&AS->lock);
669 return AS_PF_OK;
670
671page_fault:
672 if (!THREAD)
673 return AS_PF_FAULT;
674
675 if (THREAD->in_copy_from_uspace) {
676 THREAD->in_copy_from_uspace = false;
677 istate_set_retaddr(istate, (__address) &memcpy_from_uspace_failover_address);
678 } else if (THREAD->in_copy_to_uspace) {
679 THREAD->in_copy_to_uspace = false;
680 istate_set_retaddr(istate, (__address) &memcpy_to_uspace_failover_address);
681 } else {
682 return AS_PF_FAULT;
683 }
684
685 return AS_PF_DEFER;
686}
687
688/** Switch address spaces.
689 *
690 * Note that this function cannot sleep as it is essentially a part of
691 * the scheduling. Sleeping here would lead to deadlock on wakeup.
692 *
693 * @param old Old address space or NULL.
694 * @param new New address space.
695 */
696void as_switch(as_t *old, as_t *new)
697{
698 ipl_t ipl;
699 bool needs_asid = false;
700
701 ipl = interrupts_disable();
702 spinlock_lock(&as_lock);
703
704 /*
705 * First, take care of the old address space.
706 */
707 if (old) {
708 mutex_lock_active(&old->lock);
709 ASSERT(old->refcount);
710 if((--old->refcount == 0) && (old != AS_KERNEL)) {
711 /*
712 * The old address space is no longer active on
713 * any processor. It can be appended to the
714 * list of inactive address spaces with assigned
715 * ASID.
716 */
717 ASSERT(old->asid != ASID_INVALID);
718 list_append(&old->inactive_as_with_asid_link, &inactive_as_with_asid_head);
719 }
720 mutex_unlock(&old->lock);
721 }
722
723 /*
724 * Second, prepare the new address space.
725 */
726 mutex_lock_active(&new->lock);
727 if ((new->refcount++ == 0) && (new != AS_KERNEL)) {
728 if (new->asid != ASID_INVALID)
729 list_remove(&new->inactive_as_with_asid_link);
730 else
731 needs_asid = true; /* defer call to asid_get() until new->lock is released */
732 }
733 SET_PTL0_ADDRESS(new->page_table);
734 mutex_unlock(&new->lock);
735
736 if (needs_asid) {
737 /*
738 * Allocation of new ASID was deferred
739 * until now in order to avoid deadlock.
740 */
741 asid_t asid;
742
743 asid = asid_get();
744 mutex_lock_active(&new->lock);
745 new->asid = asid;
746 mutex_unlock(&new->lock);
747 }
748 spinlock_unlock(&as_lock);
749 interrupts_restore(ipl);
750
751 /*
752 * Perform architecture-specific steps.
753 * (e.g. write ASID to hardware register etc.)
754 */
755 as_install_arch(new);
756
757 AS = new;
758}
759
760/** Convert address space area flags to page flags.
761 *
762 * @param aflags Flags of some address space area.
763 *
764 * @return Flags to be passed to page_mapping_insert().
765 */
766int area_flags_to_page_flags(int aflags)
767{
768 int flags;
769
770 flags = PAGE_USER | PAGE_PRESENT;
771
772 if (aflags & AS_AREA_READ)
773 flags |= PAGE_READ;
774
775 if (aflags & AS_AREA_WRITE)
776 flags |= PAGE_WRITE;
777
778 if (aflags & AS_AREA_EXEC)
779 flags |= PAGE_EXEC;
780
781 if (!(aflags & AS_AREA_DEVICE))
782 flags |= PAGE_CACHEABLE;
783
784 return flags;
785}
786
787/** Compute flags for virtual address translation subsytem.
788 *
789 * The address space area must be locked.
790 * Interrupts must be disabled.
791 *
792 * @param a Address space area.
793 *
794 * @return Flags to be used in page_mapping_insert().
795 */
796int get_area_flags(as_area_t *a)
797{
798 return area_flags_to_page_flags(a->flags);
799}
800
801/** Create page table.
802 *
803 * Depending on architecture, create either address space
804 * private or global page table.
805 *
806 * @param flags Flags saying whether the page table is for kernel address space.
807 *
808 * @return First entry of the page table.
809 */
810pte_t *page_table_create(int flags)
811{
812 ASSERT(as_operations);
813 ASSERT(as_operations->page_table_create);
814
815 return as_operations->page_table_create(flags);
816}
817
818/** Lock page table.
819 *
820 * This function should be called before any page_mapping_insert(),
821 * page_mapping_remove() and page_mapping_find().
822 *
823 * Locking order is such that address space areas must be locked
824 * prior to this call. Address space can be locked prior to this
825 * call in which case the lock argument is false.
826 *
827 * @param as Address space.
828 * @param lock If false, do not attempt to lock as->lock.
829 */
830void page_table_lock(as_t *as, bool lock)
831{
832 ASSERT(as_operations);
833 ASSERT(as_operations->page_table_lock);
834
835 as_operations->page_table_lock(as, lock);
836}
837
838/** Unlock page table.
839 *
840 * @param as Address space.
841 * @param unlock If false, do not attempt to unlock as->lock.
842 */
843void page_table_unlock(as_t *as, bool unlock)
844{
845 ASSERT(as_operations);
846 ASSERT(as_operations->page_table_unlock);
847
848 as_operations->page_table_unlock(as, unlock);
849}
850
851
852/** Find address space area and lock it.
853 *
854 * The address space must be locked and interrupts must be disabled.
855 *
856 * @param as Address space.
857 * @param va Virtual address.
858 *
859 * @return Locked address space area containing va on success or NULL on failure.
860 */
861as_area_t *find_area_and_lock(as_t *as, __address va)
862{
863 as_area_t *a;
864 btree_node_t *leaf, *lnode;
865 int i;
866
867 a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
868 if (a) {
869 /* va is the base address of an address space area */
870 mutex_lock(&a->lock);
871 return a;
872 }
873
874 /*
875 * Search the leaf node and the righmost record of its left neighbour
876 * to find out whether this is a miss or va belongs to an address
877 * space area found there.
878 */
879
880 /* First, search the leaf node itself. */
881 for (i = 0; i < leaf->keys; i++) {
882 a = (as_area_t *) leaf->value[i];
883 mutex_lock(&a->lock);
884 if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
885 return a;
886 }
887 mutex_unlock(&a->lock);
888 }
889
890 /*
891 * Second, locate the left neighbour and test its last record.
892 * Because of its position in the B+tree, it must have base < va.
893 */
894 if ((lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
895 a = (as_area_t *) lnode->value[lnode->keys - 1];
896 mutex_lock(&a->lock);
897 if (va < a->base + a->pages * PAGE_SIZE) {
898 return a;
899 }
900 mutex_unlock(&a->lock);
901 }
902
903 return NULL;
904}
905
906/** Check area conflicts with other areas.
907 *
908 * The address space must be locked and interrupts must be disabled.
909 *
910 * @param as Address space.
911 * @param va Starting virtual address of the area being tested.
912 * @param size Size of the area being tested.
913 * @param avoid_area Do not touch this area.
914 *
915 * @return True if there is no conflict, false otherwise.
916 */
917bool check_area_conflicts(as_t *as, __address va, size_t size, as_area_t *avoid_area)
918{
919 as_area_t *a;
920 btree_node_t *leaf, *node;
921 int i;
922
923 /*
924 * We don't want any area to have conflicts with NULL page.
925 */
926 if (overlaps(va, size, NULL, PAGE_SIZE))
927 return false;
928
929 /*
930 * The leaf node is found in O(log n), where n is proportional to
931 * the number of address space areas belonging to as.
932 * The check for conflicts is then attempted on the rightmost
933 * record in the left neighbour, the leftmost record in the right
934 * neighbour and all records in the leaf node itself.
935 */
936
937 if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
938 if (a != avoid_area)
939 return false;
940 }
941
942 /* First, check the two border cases. */
943 if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
944 a = (as_area_t *) node->value[node->keys - 1];
945 mutex_lock(&a->lock);
946 if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
947 mutex_unlock(&a->lock);
948 return false;
949 }
950 mutex_unlock(&a->lock);
951 }
952 if ((node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf))) {
953 a = (as_area_t *) node->value[0];
954 mutex_lock(&a->lock);
955 if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
956 mutex_unlock(&a->lock);
957 return false;
958 }
959 mutex_unlock(&a->lock);
960 }
961
962 /* Second, check the leaf node. */
963 for (i = 0; i < leaf->keys; i++) {
964 a = (as_area_t *) leaf->value[i];
965
966 if (a == avoid_area)
967 continue;
968
969 mutex_lock(&a->lock);
970 if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
971 mutex_unlock(&a->lock);
972 return false;
973 }
974 mutex_unlock(&a->lock);
975 }
976
977 /*
978 * So far, the area does not conflict with other areas.
979 * Check if it doesn't conflict with kernel address space.
980 */
981 if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
982 return !overlaps(va, size,
983 KERNEL_ADDRESS_SPACE_START, KERNEL_ADDRESS_SPACE_END-KERNEL_ADDRESS_SPACE_START);
984 }
985
986 return true;
987}
988
989/** Return size of the address space area with given base. */
990size_t as_get_size(__address base)
991{
992 ipl_t ipl;
993 as_area_t *src_area;
994 size_t size;
995
996 ipl = interrupts_disable();
997 src_area = find_area_and_lock(AS, base);
998 if (src_area){
999 size = src_area->pages * PAGE_SIZE;
1000 mutex_unlock(&src_area->lock);
1001 } else {
1002 size = 0;
1003 }
1004 interrupts_restore(ipl);
1005 return size;
1006}
1007
1008/** Mark portion of address space area as used.
1009 *
1010 * The address space area must be already locked.
1011 *
1012 * @param a Address space area.
1013 * @param page First page to be marked.
1014 * @param count Number of page to be marked.
1015 *
1016 * @return 0 on failure and 1 on success.
1017 */
1018int used_space_insert(as_area_t *a, __address page, count_t count)
1019{
1020 btree_node_t *leaf, *node;
1021 count_t pages;
1022 int i;
1023
1024 ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1025 ASSERT(count);
1026
1027 pages = (count_t) btree_search(&a->used_space, page, &leaf);
1028 if (pages) {
1029 /*
1030 * We hit the beginning of some used space.
1031 */
1032 return 0;
1033 }
1034
1035 node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1036 if (node) {
1037 __address left_pg = node->key[node->keys - 1], right_pg = leaf->key[0];
1038 count_t left_cnt = (count_t) node->value[node->keys - 1], right_cnt = (count_t) leaf->value[0];
1039
1040 /*
1041 * Examine the possibility that the interval fits
1042 * somewhere between the rightmost interval of
1043 * the left neigbour and the first interval of the leaf.
1044 */
1045
1046 if (page >= right_pg) {
1047 /* Do nothing. */
1048 } else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1049 /* The interval intersects with the left interval. */
1050 return 0;
1051 } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1052 /* The interval intersects with the right interval. */
1053 return 0;
1054 } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1055 /* The interval can be added by merging the two already present intervals. */
1056 node->value[node->keys - 1] += count + right_cnt;
1057 btree_remove(&a->used_space, right_pg, leaf);
1058 return 1;
1059 } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1060 /* The interval can be added by simply growing the left interval. */
1061 node->value[node->keys - 1] += count;
1062 return 1;
1063 } else if (page + count*PAGE_SIZE == right_pg) {
1064 /*
1065 * The interval can be addded by simply moving base of the right
1066 * interval down and increasing its size accordingly.
1067 */
1068 leaf->value[0] += count;
1069 leaf->key[0] = page;
1070 return 1;
1071 } else {
1072 /*
1073 * The interval is between both neigbouring intervals,
1074 * but cannot be merged with any of them.
1075 */
1076 btree_insert(&a->used_space, page, (void *) count, leaf);
1077 return 1;
1078 }
1079 } else if (page < leaf->key[0]) {
1080 __address right_pg = leaf->key[0];
1081 count_t right_cnt = (count_t) leaf->value[0];
1082
1083 /*
1084 * Investigate the border case in which the left neighbour does not
1085 * exist but the interval fits from the left.
1086 */
1087
1088 if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1089 /* The interval intersects with the right interval. */
1090 return 0;
1091 } else if (page + count*PAGE_SIZE == right_pg) {
1092 /*
1093 * The interval can be added by moving the base of the right interval down
1094 * and increasing its size accordingly.
1095 */
1096 leaf->key[0] = page;
1097 leaf->value[0] += count;
1098 return 1;
1099 } else {
1100 /*
1101 * The interval doesn't adjoin with the right interval.
1102 * It must be added individually.
1103 */
1104 btree_insert(&a->used_space, page, (void *) count, leaf);
1105 return 1;
1106 }
1107 }
1108
1109 node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1110 if (node) {
1111 __address left_pg = leaf->key[leaf->keys - 1], right_pg = node->key[0];
1112 count_t left_cnt = (count_t) leaf->value[leaf->keys - 1], right_cnt = (count_t) node->value[0];
1113
1114 /*
1115 * Examine the possibility that the interval fits
1116 * somewhere between the leftmost interval of
1117 * the right neigbour and the last interval of the leaf.
1118 */
1119
1120 if (page < left_pg) {
1121 /* Do nothing. */
1122 } else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1123 /* The interval intersects with the left interval. */
1124 return 0;
1125 } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1126 /* The interval intersects with the right interval. */
1127 return 0;
1128 } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1129 /* The interval can be added by merging the two already present intervals. */
1130 leaf->value[leaf->keys - 1] += count + right_cnt;
1131 btree_remove(&a->used_space, right_pg, node);
1132 return 1;
1133 } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1134 /* The interval can be added by simply growing the left interval. */
1135 leaf->value[leaf->keys - 1] += count;
1136 return 1;
1137 } else if (page + count*PAGE_SIZE == right_pg) {
1138 /*
1139 * The interval can be addded by simply moving base of the right
1140 * interval down and increasing its size accordingly.
1141 */
1142 node->value[0] += count;
1143 node->key[0] = page;
1144 return 1;
1145 } else {
1146 /*
1147 * The interval is between both neigbouring intervals,
1148 * but cannot be merged with any of them.
1149 */
1150 btree_insert(&a->used_space, page, (void *) count, leaf);
1151 return 1;
1152 }
1153 } else if (page >= leaf->key[leaf->keys - 1]) {
1154 __address left_pg = leaf->key[leaf->keys - 1];
1155 count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1156
1157 /*
1158 * Investigate the border case in which the right neighbour does not
1159 * exist but the interval fits from the right.
1160 */
1161
1162 if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1163 /* The interval intersects with the left interval. */
1164 return 0;
1165 } else if (left_pg + left_cnt*PAGE_SIZE == page) {
1166 /* The interval can be added by growing the left interval. */
1167 leaf->value[leaf->keys - 1] += count;
1168 return 1;
1169 } else {
1170 /*
1171 * The interval doesn't adjoin with the left interval.
1172 * It must be added individually.
1173 */
1174 btree_insert(&a->used_space, page, (void *) count, leaf);
1175 return 1;
1176 }
1177 }
1178
1179 /*
1180 * Note that if the algorithm made it thus far, the interval can fit only
1181 * between two other intervals of the leaf. The two border cases were already
1182 * resolved.
1183 */
1184 for (i = 1; i < leaf->keys; i++) {
1185 if (page < leaf->key[i]) {
1186 __address left_pg = leaf->key[i - 1], right_pg = leaf->key[i];
1187 count_t left_cnt = (count_t) leaf->value[i - 1], right_cnt = (count_t) leaf->value[i];
1188
1189 /*
1190 * The interval fits between left_pg and right_pg.
1191 */
1192
1193 if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1194 /* The interval intersects with the left interval. */
1195 return 0;
1196 } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1197 /* The interval intersects with the right interval. */
1198 return 0;
1199 } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1200 /* The interval can be added by merging the two already present intervals. */
1201 leaf->value[i - 1] += count + right_cnt;
1202 btree_remove(&a->used_space, right_pg, leaf);
1203 return 1;
1204 } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1205 /* The interval can be added by simply growing the left interval. */
1206 leaf->value[i - 1] += count;
1207 return 1;
1208 } else if (page + count*PAGE_SIZE == right_pg) {
1209 /*
1210 * The interval can be addded by simply moving base of the right
1211 * interval down and increasing its size accordingly.
1212 */
1213 leaf->value[i] += count;
1214 leaf->key[i] = page;
1215 return 1;
1216 } else {
1217 /*
1218 * The interval is between both neigbouring intervals,
1219 * but cannot be merged with any of them.
1220 */
1221 btree_insert(&a->used_space, page, (void *) count, leaf);
1222 return 1;
1223 }
1224 }
1225 }
1226
1227 panic("Inconsistency detected while adding %d pages of used space at %P.\n", count, page);
1228}
1229
1230/** Mark portion of address space area as unused.
1231 *
1232 * The address space area must be already locked.
1233 *
1234 * @param a Address space area.
1235 * @param page First page to be marked.
1236 * @param count Number of page to be marked.
1237 *
1238 * @return 0 on failure and 1 on success.
1239 */
1240int used_space_remove(as_area_t *a, __address page, count_t count)
1241{
1242 btree_node_t *leaf, *node;
1243 count_t pages;
1244 int i;
1245
1246 ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1247 ASSERT(count);
1248
1249 pages = (count_t) btree_search(&a->used_space, page, &leaf);
1250 if (pages) {
1251 /*
1252 * We are lucky, page is the beginning of some interval.
1253 */
1254 if (count > pages) {
1255 return 0;
1256 } else if (count == pages) {
1257 btree_remove(&a->used_space, page, leaf);
1258 return 1;
1259 } else {
1260 /*
1261 * Find the respective interval.
1262 * Decrease its size and relocate its start address.
1263 */
1264 for (i = 0; i < leaf->keys; i++) {
1265 if (leaf->key[i] == page) {
1266 leaf->key[i] += count*PAGE_SIZE;
1267 leaf->value[i] -= count;
1268 return 1;
1269 }
1270 }
1271 goto error;
1272 }
1273 }
1274
1275 node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1276 if (node && page < leaf->key[0]) {
1277 __address left_pg = node->key[node->keys - 1];
1278 count_t left_cnt = (count_t) node->value[node->keys - 1];
1279
1280 if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1281 if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1282 /*
1283 * The interval is contained in the rightmost interval
1284 * of the left neighbour and can be removed by
1285 * updating the size of the bigger interval.
1286 */
1287 node->value[node->keys - 1] -= count;
1288 return 1;
1289 } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1290 count_t new_cnt;
1291
1292 /*
1293 * The interval is contained in the rightmost interval
1294 * of the left neighbour but its removal requires
1295 * both updating the size of the original interval and
1296 * also inserting a new interval.
1297 */
1298 new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1299 node->value[node->keys - 1] -= count + new_cnt;
1300 btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1301 return 1;
1302 }
1303 }
1304 return 0;
1305 } else if (page < leaf->key[0]) {
1306 return 0;
1307 }
1308
1309 if (page > leaf->key[leaf->keys - 1]) {
1310 __address left_pg = leaf->key[leaf->keys - 1];
1311 count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1312
1313 if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1314 if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1315 /*
1316 * The interval is contained in the rightmost interval
1317 * of the leaf and can be removed by updating the size
1318 * of the bigger interval.
1319 */
1320 leaf->value[leaf->keys - 1] -= count;
1321 return 1;
1322 } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1323 count_t new_cnt;
1324
1325 /*
1326 * The interval is contained in the rightmost interval
1327 * of the leaf but its removal requires both updating
1328 * the size of the original interval and
1329 * also inserting a new interval.
1330 */
1331 new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1332 leaf->value[leaf->keys - 1] -= count + new_cnt;
1333 btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1334 return 1;
1335 }
1336 }
1337 return 0;
1338 }
1339
1340 /*
1341 * The border cases have been already resolved.
1342 * Now the interval can be only between intervals of the leaf.
1343 */
1344 for (i = 1; i < leaf->keys - 1; i++) {
1345 if (page < leaf->key[i]) {
1346 __address left_pg = leaf->key[i - 1];
1347 count_t left_cnt = (count_t) leaf->value[i - 1];
1348
1349 /*
1350 * Now the interval is between intervals corresponding to (i - 1) and i.
1351 */
1352 if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1353 if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1354 /*
1355 * The interval is contained in the interval (i - 1)
1356 * of the leaf and can be removed by updating the size
1357 * of the bigger interval.
1358 */
1359 leaf->value[i - 1] -= count;
1360 return 1;
1361 } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1362 count_t new_cnt;
1363
1364 /*
1365 * The interval is contained in the interval (i - 1)
1366 * of the leaf but its removal requires both updating
1367 * the size of the original interval and
1368 * also inserting a new interval.
1369 */
1370 new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1371 leaf->value[i - 1] -= count + new_cnt;
1372 btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1373 return 1;
1374 }
1375 }
1376 return 0;
1377 }
1378 }
1379
1380error:
1381 panic("Inconsistency detected while removing %d pages of used space from %P.\n", count, page);
1382}
1383
1384/*
1385 * Address space related syscalls.
1386 */
1387
1388/** Wrapper for as_area_create(). */
1389__native sys_as_area_create(__address address, size_t size, int flags)
1390{
1391 if (as_area_create(AS, flags, size, address, AS_AREA_ATTR_NONE))
1392 return (__native) address;
1393 else
1394 return (__native) -1;
1395}
1396
1397/** Wrapper for as_area_resize. */
1398__native sys_as_area_resize(__address address, size_t size, int flags)
1399{
1400 return (__native) as_area_resize(AS, address, size, 0);
1401}
1402
1403/** Wrapper for as_area_destroy. */
1404__native sys_as_area_destroy(__address address)
1405{
1406 return (__native) as_area_destroy(AS, address);
1407}
Note: See TracBrowser for help on using the repository browser.