source: mainline/generic/src/mm/as.c@ 040542aa

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since 040542aa was 25bf215, checked in by Jakub Jermar <jakub@…>, 19 years ago

Add used_space_insert() and used_space_remove().
These are the alpha versions of functions that
will help to map used and unused portions of address
space areas. Currently unused, but many as_area operations
will be more efficient when the used space B+tree map
is used.

  • Property mode set to 100644
File size: 36.0 KB
Line 
1/*
2 * Copyright (C) 2001-2006 Jakub Jermar
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/**
30 * @file as.c
31 * @brief Address space related functions.
32 *
33 * This file contains address space manipulation functions.
34 * Roughly speaking, this is a higher-level client of
35 * Virtual Address Translation (VAT) subsystem.
36 *
37 * Functionality provided by this file allows one to
38 * create address space and create, resize and share
39 * address space areas.
40 *
41 * @see page.c
42 *
43 */
44
45#include <mm/as.h>
46#include <arch/mm/as.h>
47#include <mm/page.h>
48#include <mm/frame.h>
49#include <mm/slab.h>
50#include <mm/tlb.h>
51#include <arch/mm/page.h>
52#include <genarch/mm/page_pt.h>
53#include <genarch/mm/page_ht.h>
54#include <mm/asid.h>
55#include <arch/mm/asid.h>
56#include <synch/spinlock.h>
57#include <synch/mutex.h>
58#include <adt/list.h>
59#include <adt/btree.h>
60#include <proc/task.h>
61#include <proc/thread.h>
62#include <arch/asm.h>
63#include <panic.h>
64#include <debug.h>
65#include <print.h>
66#include <memstr.h>
67#include <macros.h>
68#include <arch.h>
69#include <errno.h>
70#include <config.h>
71#include <align.h>
72#include <arch/types.h>
73#include <typedefs.h>
74#include <syscall/copy.h>
75#include <arch/interrupt.h>
76
77as_operations_t *as_operations = NULL;
78
79/** Address space lock. It protects inactive_as_with_asid_head. Must be acquired before as_t mutex. */
80SPINLOCK_INITIALIZE(as_lock);
81
82/**
83 * This list contains address spaces that are not active on any
84 * processor and that have valid ASID.
85 */
86LIST_INITIALIZE(inactive_as_with_asid_head);
87
88/** Kernel address space. */
89as_t *AS_KERNEL = NULL;
90
91static int area_flags_to_page_flags(int aflags);
92static int get_area_flags(as_area_t *a);
93static as_area_t *find_area_and_lock(as_t *as, __address va);
94static bool check_area_conflicts(as_t *as, __address va, size_t size, as_area_t *avoid_area);
95int used_space_insert(as_area_t *a, __address page, count_t count);
96int used_space_remove(as_area_t *a, __address page, count_t count);
97
98/** Initialize address space subsystem. */
99void as_init(void)
100{
101 as_arch_init();
102 AS_KERNEL = as_create(FLAG_AS_KERNEL);
103 if (!AS_KERNEL)
104 panic("can't create kernel address space\n");
105
106}
107
108/** Create address space.
109 *
110 * @param flags Flags that influence way in wich the address space is created.
111 */
112as_t *as_create(int flags)
113{
114 as_t *as;
115
116 as = (as_t *) malloc(sizeof(as_t), 0);
117 link_initialize(&as->inactive_as_with_asid_link);
118 mutex_initialize(&as->lock);
119 btree_create(&as->as_area_btree);
120
121 if (flags & FLAG_AS_KERNEL)
122 as->asid = ASID_KERNEL;
123 else
124 as->asid = ASID_INVALID;
125
126 as->refcount = 0;
127 as->page_table = page_table_create(flags);
128
129 return as;
130}
131
132/** Free Adress space */
133void as_free(as_t *as)
134{
135 ASSERT(as->refcount == 0);
136
137 /* TODO: free as_areas and other resources held by as */
138 /* TODO: free page table */
139 free(as);
140}
141
142/** Create address space area of common attributes.
143 *
144 * The created address space area is added to the target address space.
145 *
146 * @param as Target address space.
147 * @param flags Flags of the area memory.
148 * @param size Size of area.
149 * @param base Base address of area.
150 * @param attrs Attributes of the area.
151 *
152 * @return Address space area on success or NULL on failure.
153 */
154as_area_t *as_area_create(as_t *as, int flags, size_t size, __address base, int attrs)
155{
156 ipl_t ipl;
157 as_area_t *a;
158
159 if (base % PAGE_SIZE)
160 return NULL;
161
162 if (!size)
163 return NULL;
164
165 /* Writeable executable areas are not supported. */
166 if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
167 return NULL;
168
169 ipl = interrupts_disable();
170 mutex_lock(&as->lock);
171
172 if (!check_area_conflicts(as, base, size, NULL)) {
173 mutex_unlock(&as->lock);
174 interrupts_restore(ipl);
175 return NULL;
176 }
177
178 a = (as_area_t *) malloc(sizeof(as_area_t), 0);
179
180 mutex_initialize(&a->lock);
181
182 a->flags = flags;
183 a->attributes = attrs;
184 a->pages = SIZE2FRAMES(size);
185 a->base = base;
186 btree_create(&a->used_space);
187
188 btree_insert(&as->as_area_btree, base, (void *) a, NULL);
189
190 mutex_unlock(&as->lock);
191 interrupts_restore(ipl);
192
193 return a;
194}
195
196/** Find address space area and change it.
197 *
198 * @param as Address space.
199 * @param address Virtual address belonging to the area to be changed. Must be page-aligned.
200 * @param size New size of the virtual memory block starting at address.
201 * @param flags Flags influencing the remap operation. Currently unused.
202 *
203 * @return Zero on success or a value from @ref errno.h otherwise.
204 */
205int as_area_resize(as_t *as, __address address, size_t size, int flags)
206{
207 as_area_t *area;
208 ipl_t ipl;
209 size_t pages;
210
211 ipl = interrupts_disable();
212 mutex_lock(&as->lock);
213
214 /*
215 * Locate the area.
216 */
217 area = find_area_and_lock(as, address);
218 if (!area) {
219 mutex_unlock(&as->lock);
220 interrupts_restore(ipl);
221 return ENOENT;
222 }
223
224 if (area->flags & AS_AREA_DEVICE) {
225 /*
226 * Remapping of address space areas associated
227 * with memory mapped devices is not supported.
228 */
229 mutex_unlock(&area->lock);
230 mutex_unlock(&as->lock);
231 interrupts_restore(ipl);
232 return ENOTSUP;
233 }
234
235 pages = SIZE2FRAMES((address - area->base) + size);
236 if (!pages) {
237 /*
238 * Zero size address space areas are not allowed.
239 */
240 mutex_unlock(&area->lock);
241 mutex_unlock(&as->lock);
242 interrupts_restore(ipl);
243 return EPERM;
244 }
245
246 if (pages < area->pages) {
247 int i;
248
249 /*
250 * Shrinking the area.
251 * No need to check for overlaps.
252 */
253 for (i = pages; i < area->pages; i++) {
254 pte_t *pte;
255
256 /*
257 * Releasing physical memory.
258 * This depends on the fact that the memory was allocated using frame_alloc().
259 */
260 page_table_lock(as, false);
261 pte = page_mapping_find(as, area->base + i*PAGE_SIZE);
262 if (pte && PTE_VALID(pte)) {
263 __address frame;
264
265 ASSERT(PTE_PRESENT(pte));
266 frame = PTE_GET_FRAME(pte);
267 page_mapping_remove(as, area->base + i*PAGE_SIZE);
268 page_table_unlock(as, false);
269
270 frame_free(ADDR2PFN(frame));
271 } else {
272 page_table_unlock(as, false);
273 }
274 }
275 /*
276 * Invalidate TLB's.
277 */
278 tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
279 tlb_invalidate_pages(AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
280 tlb_shootdown_finalize();
281 } else {
282 /*
283 * Growing the area.
284 * Check for overlaps with other address space areas.
285 */
286 if (!check_area_conflicts(as, address, pages * PAGE_SIZE, area)) {
287 mutex_unlock(&area->lock);
288 mutex_unlock(&as->lock);
289 interrupts_restore(ipl);
290 return EADDRNOTAVAIL;
291 }
292 }
293
294 area->pages = pages;
295
296 mutex_unlock(&area->lock);
297 mutex_unlock(&as->lock);
298 interrupts_restore(ipl);
299
300 return 0;
301}
302
303/** Destroy address space area.
304 *
305 * @param as Address space.
306 * @param address Address withing the area to be deleted.
307 *
308 * @return Zero on success or a value from @ref errno.h on failure.
309 */
310int as_area_destroy(as_t *as, __address address)
311{
312 as_area_t *area;
313 __address base;
314 ipl_t ipl;
315 int i;
316
317 ipl = interrupts_disable();
318 mutex_lock(&as->lock);
319
320 area = find_area_and_lock(as, address);
321 if (!area) {
322 mutex_unlock(&as->lock);
323 interrupts_restore(ipl);
324 return ENOENT;
325 }
326
327 base = area->base;
328 for (i = 0; i < area->pages; i++) {
329 pte_t *pte;
330
331 /*
332 * Releasing physical memory.
333 * Areas mapping memory-mapped devices are treated differently than
334 * areas backing frame_alloc()'ed memory.
335 */
336 page_table_lock(as, false);
337 pte = page_mapping_find(as, area->base + i*PAGE_SIZE);
338 if (pte && PTE_VALID(pte)) {
339 ASSERT(PTE_PRESENT(pte));
340 page_mapping_remove(as, area->base + i*PAGE_SIZE);
341 if (area->flags & AS_AREA_DEVICE) {
342 __address frame;
343 frame = PTE_GET_FRAME(pte);
344 frame_free(ADDR2PFN(frame));
345 }
346 page_table_unlock(as, false);
347 } else {
348 page_table_unlock(as, false);
349 }
350 }
351 /*
352 * Invalidate TLB's.
353 */
354 tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base, area->pages);
355 tlb_invalidate_pages(AS->asid, area->base, area->pages);
356 tlb_shootdown_finalize();
357
358 area->attributes |= AS_AREA_ATTR_PARTIAL;
359 mutex_unlock(&area->lock);
360
361 /*
362 * Remove the empty area from address space.
363 */
364 btree_remove(&AS->as_area_btree, base, NULL);
365
366 free(area);
367
368 mutex_unlock(&AS->lock);
369 interrupts_restore(ipl);
370 return 0;
371}
372
373/** Steal address space area from another task.
374 *
375 * Address space area is stolen from another task
376 * Moreover, any existing mapping
377 * is copied as well, providing thus a mechanism
378 * for sharing group of pages. The source address
379 * space area and any associated mapping is preserved.
380 *
381 * @param src_task Pointer of source task
382 * @param src_base Base address of the source address space area.
383 * @param acc_size Expected size of the source area
384 * @param dst_base Target base address
385 *
386 * @return Zero on success or ENOENT if there is no such task or
387 * if there is no such address space area,
388 * EPERM if there was a problem in accepting the area or
389 * ENOMEM if there was a problem in allocating destination
390 * address space area.
391 */
392int as_area_steal(task_t *src_task, __address src_base, size_t acc_size,
393 __address dst_base)
394{
395 ipl_t ipl;
396 count_t i;
397 as_t *src_as;
398 int src_flags;
399 size_t src_size;
400 as_area_t *src_area, *dst_area;
401
402 ipl = interrupts_disable();
403 spinlock_lock(&src_task->lock);
404 src_as = src_task->as;
405
406 mutex_lock(&src_as->lock);
407 src_area = find_area_and_lock(src_as, src_base);
408 if (!src_area) {
409 /*
410 * Could not find the source address space area.
411 */
412 spinlock_unlock(&src_task->lock);
413 mutex_unlock(&src_as->lock);
414 interrupts_restore(ipl);
415 return ENOENT;
416 }
417 src_size = src_area->pages * PAGE_SIZE;
418 src_flags = src_area->flags;
419 mutex_unlock(&src_area->lock);
420 mutex_unlock(&src_as->lock);
421
422
423 if (src_size != acc_size) {
424 spinlock_unlock(&src_task->lock);
425 interrupts_restore(ipl);
426 return EPERM;
427 }
428 /*
429 * Create copy of the source address space area.
430 * The destination area is created with AS_AREA_ATTR_PARTIAL
431 * attribute set which prevents race condition with
432 * preliminary as_page_fault() calls.
433 */
434 dst_area = as_area_create(AS, src_flags, src_size, dst_base, AS_AREA_ATTR_PARTIAL);
435 if (!dst_area) {
436 /*
437 * Destination address space area could not be created.
438 */
439 spinlock_unlock(&src_task->lock);
440 interrupts_restore(ipl);
441 return ENOMEM;
442 }
443
444 spinlock_unlock(&src_task->lock);
445
446 /*
447 * Avoid deadlock by first locking the address space with lower address.
448 */
449 if (AS < src_as) {
450 mutex_lock(&AS->lock);
451 mutex_lock(&src_as->lock);
452 } else {
453 mutex_lock(&AS->lock);
454 mutex_lock(&src_as->lock);
455 }
456
457 for (i = 0; i < SIZE2FRAMES(src_size); i++) {
458 pte_t *pte;
459 __address frame;
460
461 page_table_lock(src_as, false);
462 pte = page_mapping_find(src_as, src_base + i*PAGE_SIZE);
463 if (pte && PTE_VALID(pte)) {
464 ASSERT(PTE_PRESENT(pte));
465 frame = PTE_GET_FRAME(pte);
466 if (!(src_flags & AS_AREA_DEVICE))
467 frame_reference_add(ADDR2PFN(frame));
468 page_table_unlock(src_as, false);
469 } else {
470 page_table_unlock(src_as, false);
471 continue;
472 }
473
474 page_table_lock(AS, false);
475 page_mapping_insert(AS, dst_base + i*PAGE_SIZE, frame, area_flags_to_page_flags(src_flags));
476 page_table_unlock(AS, false);
477 }
478
479 /*
480 * Now the destination address space area has been
481 * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
482 * attribute.
483 */
484 mutex_lock(&dst_area->lock);
485 dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
486 mutex_unlock(&dst_area->lock);
487
488 mutex_unlock(&AS->lock);
489 mutex_unlock(&src_as->lock);
490 interrupts_restore(ipl);
491
492 return 0;
493}
494
495/** Initialize mapping for one page of address space.
496 *
497 * This functions maps 'page' to 'frame' according
498 * to attributes of the address space area to
499 * wich 'page' belongs.
500 *
501 * @param as Target address space.
502 * @param page Virtual page within the area.
503 * @param frame Physical frame to which page will be mapped.
504 */
505void as_set_mapping(as_t *as, __address page, __address frame)
506{
507 as_area_t *area;
508 ipl_t ipl;
509
510 ipl = interrupts_disable();
511 page_table_lock(as, true);
512
513 area = find_area_and_lock(as, page);
514 if (!area) {
515 panic("page not part of any as_area\n");
516 }
517
518 page_mapping_insert(as, page, frame, get_area_flags(area));
519
520 mutex_unlock(&area->lock);
521 page_table_unlock(as, true);
522 interrupts_restore(ipl);
523}
524
525/** Handle page fault within the current address space.
526 *
527 * This is the high-level page fault handler.
528 * Interrupts are assumed disabled.
529 *
530 * @param page Faulting page.
531 * @param istate Pointer to interrupted state.
532 *
533 * @return 0 on page fault, 1 on success or 2 if the fault was caused by copy_to_uspace() or copy_from_uspace().
534 */
535int as_page_fault(__address page, istate_t *istate)
536{
537 pte_t *pte;
538 as_area_t *area;
539 __address frame;
540
541 if (!THREAD)
542 return 0;
543
544 ASSERT(AS);
545
546 mutex_lock(&AS->lock);
547 area = find_area_and_lock(AS, page);
548 if (!area) {
549 /*
550 * No area contained mapping for 'page'.
551 * Signal page fault to low-level handler.
552 */
553 mutex_unlock(&AS->lock);
554 goto page_fault;
555 }
556
557 if (area->attributes & AS_AREA_ATTR_PARTIAL) {
558 /*
559 * The address space area is not fully initialized.
560 * Avoid possible race by returning error.
561 */
562 mutex_unlock(&area->lock);
563 mutex_unlock(&AS->lock);
564 goto page_fault;
565 }
566
567 ASSERT(!(area->flags & AS_AREA_DEVICE));
568
569 page_table_lock(AS, false);
570
571 /*
572 * To avoid race condition between two page faults
573 * on the same address, we need to make sure
574 * the mapping has not been already inserted.
575 */
576 if ((pte = page_mapping_find(AS, page))) {
577 if (PTE_PRESENT(pte)) {
578 page_table_unlock(AS, false);
579 mutex_unlock(&area->lock);
580 mutex_unlock(&AS->lock);
581 return 1;
582 }
583 }
584
585 /*
586 * In general, there can be several reasons that
587 * can have caused this fault.
588 *
589 * - non-existent mapping: the area is a scratch
590 * area (e.g. stack) and so far has not been
591 * allocated a frame for the faulting page
592 *
593 * - non-present mapping: another possibility,
594 * currently not implemented, would be frame
595 * reuse; when this becomes a possibility,
596 * do not forget to distinguish between
597 * the different causes
598 */
599 frame = PFN2ADDR(frame_alloc(ONE_FRAME, 0));
600 memsetb(PA2KA(frame), FRAME_SIZE, 0);
601
602 /*
603 * Map 'page' to 'frame'.
604 * Note that TLB shootdown is not attempted as only new information is being
605 * inserted into page tables.
606 */
607 page_mapping_insert(AS, page, frame, get_area_flags(area));
608 page_table_unlock(AS, false);
609
610 mutex_unlock(&area->lock);
611 mutex_unlock(&AS->lock);
612 return AS_PF_OK;
613
614page_fault:
615 if (!THREAD)
616 return AS_PF_FAULT;
617
618 if (THREAD->in_copy_from_uspace) {
619 THREAD->in_copy_from_uspace = false;
620 istate_set_retaddr(istate, (__address) &memcpy_from_uspace_failover_address);
621 } else if (THREAD->in_copy_to_uspace) {
622 THREAD->in_copy_to_uspace = false;
623 istate_set_retaddr(istate, (__address) &memcpy_to_uspace_failover_address);
624 } else {
625 return AS_PF_FAULT;
626 }
627
628 return AS_PF_DEFER;
629}
630
631/** Switch address spaces.
632 *
633 * Note that this function cannot sleep as it is essentially a part of
634 * the scheduling. Sleeping here would lead to deadlock on wakeup.
635 *
636 * @param old Old address space or NULL.
637 * @param new New address space.
638 */
639void as_switch(as_t *old, as_t *new)
640{
641 ipl_t ipl;
642 bool needs_asid = false;
643
644 ipl = interrupts_disable();
645 spinlock_lock(&as_lock);
646
647 /*
648 * First, take care of the old address space.
649 */
650 if (old) {
651 mutex_lock_active(&old->lock);
652 ASSERT(old->refcount);
653 if((--old->refcount == 0) && (old != AS_KERNEL)) {
654 /*
655 * The old address space is no longer active on
656 * any processor. It can be appended to the
657 * list of inactive address spaces with assigned
658 * ASID.
659 */
660 ASSERT(old->asid != ASID_INVALID);
661 list_append(&old->inactive_as_with_asid_link, &inactive_as_with_asid_head);
662 }
663 mutex_unlock(&old->lock);
664 }
665
666 /*
667 * Second, prepare the new address space.
668 */
669 mutex_lock_active(&new->lock);
670 if ((new->refcount++ == 0) && (new != AS_KERNEL)) {
671 if (new->asid != ASID_INVALID)
672 list_remove(&new->inactive_as_with_asid_link);
673 else
674 needs_asid = true; /* defer call to asid_get() until new->lock is released */
675 }
676 SET_PTL0_ADDRESS(new->page_table);
677 mutex_unlock(&new->lock);
678
679 if (needs_asid) {
680 /*
681 * Allocation of new ASID was deferred
682 * until now in order to avoid deadlock.
683 */
684 asid_t asid;
685
686 asid = asid_get();
687 mutex_lock_active(&new->lock);
688 new->asid = asid;
689 mutex_unlock(&new->lock);
690 }
691 spinlock_unlock(&as_lock);
692 interrupts_restore(ipl);
693
694 /*
695 * Perform architecture-specific steps.
696 * (e.g. write ASID to hardware register etc.)
697 */
698 as_install_arch(new);
699
700 AS = new;
701}
702
703/** Convert address space area flags to page flags.
704 *
705 * @param aflags Flags of some address space area.
706 *
707 * @return Flags to be passed to page_mapping_insert().
708 */
709int area_flags_to_page_flags(int aflags)
710{
711 int flags;
712
713 flags = PAGE_USER | PAGE_PRESENT;
714
715 if (aflags & AS_AREA_READ)
716 flags |= PAGE_READ;
717
718 if (aflags & AS_AREA_WRITE)
719 flags |= PAGE_WRITE;
720
721 if (aflags & AS_AREA_EXEC)
722 flags |= PAGE_EXEC;
723
724 if (!(aflags & AS_AREA_DEVICE))
725 flags |= PAGE_CACHEABLE;
726
727 return flags;
728}
729
730/** Compute flags for virtual address translation subsytem.
731 *
732 * The address space area must be locked.
733 * Interrupts must be disabled.
734 *
735 * @param a Address space area.
736 *
737 * @return Flags to be used in page_mapping_insert().
738 */
739int get_area_flags(as_area_t *a)
740{
741 return area_flags_to_page_flags(a->flags);
742}
743
744/** Create page table.
745 *
746 * Depending on architecture, create either address space
747 * private or global page table.
748 *
749 * @param flags Flags saying whether the page table is for kernel address space.
750 *
751 * @return First entry of the page table.
752 */
753pte_t *page_table_create(int flags)
754{
755 ASSERT(as_operations);
756 ASSERT(as_operations->page_table_create);
757
758 return as_operations->page_table_create(flags);
759}
760
761/** Lock page table.
762 *
763 * This function should be called before any page_mapping_insert(),
764 * page_mapping_remove() and page_mapping_find().
765 *
766 * Locking order is such that address space areas must be locked
767 * prior to this call. Address space can be locked prior to this
768 * call in which case the lock argument is false.
769 *
770 * @param as Address space.
771 * @param lock If false, do not attempt to lock as->lock.
772 */
773void page_table_lock(as_t *as, bool lock)
774{
775 ASSERT(as_operations);
776 ASSERT(as_operations->page_table_lock);
777
778 as_operations->page_table_lock(as, lock);
779}
780
781/** Unlock page table.
782 *
783 * @param as Address space.
784 * @param unlock If false, do not attempt to unlock as->lock.
785 */
786void page_table_unlock(as_t *as, bool unlock)
787{
788 ASSERT(as_operations);
789 ASSERT(as_operations->page_table_unlock);
790
791 as_operations->page_table_unlock(as, unlock);
792}
793
794
795/** Find address space area and lock it.
796 *
797 * The address space must be locked and interrupts must be disabled.
798 *
799 * @param as Address space.
800 * @param va Virtual address.
801 *
802 * @return Locked address space area containing va on success or NULL on failure.
803 */
804as_area_t *find_area_and_lock(as_t *as, __address va)
805{
806 as_area_t *a;
807 btree_node_t *leaf, *lnode;
808 int i;
809
810 a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
811 if (a) {
812 /* va is the base address of an address space area */
813 mutex_lock(&a->lock);
814 return a;
815 }
816
817 /*
818 * Search the leaf node and the righmost record of its left neighbour
819 * to find out whether this is a miss or va belongs to an address
820 * space area found there.
821 */
822
823 /* First, search the leaf node itself. */
824 for (i = 0; i < leaf->keys; i++) {
825 a = (as_area_t *) leaf->value[i];
826 mutex_lock(&a->lock);
827 if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
828 return a;
829 }
830 mutex_unlock(&a->lock);
831 }
832
833 /*
834 * Second, locate the left neighbour and test its last record.
835 * Because of its position in the B+tree, it must have base < va.
836 */
837 if ((lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
838 a = (as_area_t *) lnode->value[lnode->keys - 1];
839 mutex_lock(&a->lock);
840 if (va < a->base + a->pages * PAGE_SIZE) {
841 return a;
842 }
843 mutex_unlock(&a->lock);
844 }
845
846 return NULL;
847}
848
849/** Check area conflicts with other areas.
850 *
851 * The address space must be locked and interrupts must be disabled.
852 *
853 * @param as Address space.
854 * @param va Starting virtual address of the area being tested.
855 * @param size Size of the area being tested.
856 * @param avoid_area Do not touch this area.
857 *
858 * @return True if there is no conflict, false otherwise.
859 */
860bool check_area_conflicts(as_t *as, __address va, size_t size, as_area_t *avoid_area)
861{
862 as_area_t *a;
863 btree_node_t *leaf, *node;
864 int i;
865
866 /*
867 * We don't want any area to have conflicts with NULL page.
868 */
869 if (overlaps(va, size, NULL, PAGE_SIZE))
870 return false;
871
872 /*
873 * The leaf node is found in O(log n), where n is proportional to
874 * the number of address space areas belonging to as.
875 * The check for conflicts is then attempted on the rightmost
876 * record in the left neighbour, the leftmost record in the right
877 * neighbour and all records in the leaf node itself.
878 */
879
880 if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
881 if (a != avoid_area)
882 return false;
883 }
884
885 /* First, check the two border cases. */
886 if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
887 a = (as_area_t *) node->value[node->keys - 1];
888 mutex_lock(&a->lock);
889 if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
890 mutex_unlock(&a->lock);
891 return false;
892 }
893 mutex_unlock(&a->lock);
894 }
895 if ((node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf))) {
896 a = (as_area_t *) node->value[0];
897 mutex_lock(&a->lock);
898 if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
899 mutex_unlock(&a->lock);
900 return false;
901 }
902 mutex_unlock(&a->lock);
903 }
904
905 /* Second, check the leaf node. */
906 for (i = 0; i < leaf->keys; i++) {
907 a = (as_area_t *) leaf->value[i];
908
909 if (a == avoid_area)
910 continue;
911
912 mutex_lock(&a->lock);
913 if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
914 mutex_unlock(&a->lock);
915 return false;
916 }
917 mutex_unlock(&a->lock);
918 }
919
920 /*
921 * So far, the area does not conflict with other areas.
922 * Check if it doesn't conflict with kernel address space.
923 */
924 if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
925 return !overlaps(va, size,
926 KERNEL_ADDRESS_SPACE_START, KERNEL_ADDRESS_SPACE_END-KERNEL_ADDRESS_SPACE_START);
927 }
928
929 return true;
930}
931
932/** Return size of the address space area with given base. */
933size_t as_get_size(__address base)
934{
935 ipl_t ipl;
936 as_area_t *src_area;
937 size_t size;
938
939 ipl = interrupts_disable();
940 src_area = find_area_and_lock(AS, base);
941 if (src_area){
942 size = src_area->pages * PAGE_SIZE;
943 mutex_unlock(&src_area->lock);
944 } else {
945 size = 0;
946 }
947 interrupts_restore(ipl);
948 return size;
949}
950
951/** Mark portion of address space area as used.
952 *
953 * The address space area must be already locked.
954 *
955 * @param a Address space area.
956 * @param page First page to be marked.
957 * @param count Number of page to be marked.
958 *
959 * @return 0 on failure and 1 on success.
960 */
961int used_space_insert(as_area_t *a, __address page, count_t count)
962{
963 btree_node_t *leaf, *node;
964 count_t pages;
965 int i;
966
967 ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
968 ASSERT(count);
969
970 pages = (count_t) btree_search(&a->used_space, page, &leaf);
971 if (pages) {
972 /*
973 * We hit the beginning of some used space.
974 */
975 return 0;
976 }
977
978 node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
979 if (node) {
980 __address left_pg = node->key[node->keys - 1], right_pg = leaf->key[0];
981 count_t left_cnt = (count_t) node->value[node->keys - 1], right_cnt = (count_t) leaf->value[0];
982
983 /*
984 * Examine the possibility that the interval fits
985 * somewhere between the rightmost interval of
986 * the left neigbour and the first interval of the leaf.
987 */
988
989 if (page >= right_pg) {
990 /* Do nothing. */
991 } else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
992 /* The interval intersects with the left interval. */
993 return 0;
994 } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
995 /* The interval intersects with the right interval. */
996 return 0;
997 } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
998 /* The interval can be added by merging the two already present intervals. */
999 node->value[node->keys - 1] += (count_t) count + right_cnt;
1000 btree_remove(&a->used_space, right_pg, leaf);
1001 return 1;
1002 } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1003 /* The interval can be added by simply growing the left interval. */
1004 node->value[node->keys - 1] += (count_t) count;
1005 return 1;
1006 } else if (page + count*PAGE_SIZE == right_pg) {
1007 /*
1008 * The interval can be addded by simply moving base of the right
1009 * interval down and increasing its size accordingly.
1010 */
1011 leaf->value[0] += (count_t) count;
1012 leaf->key[0] = page;
1013 return 1;
1014 } else {
1015 /*
1016 * The interval is between both neigbouring intervals,
1017 * but cannot be merged with any of them.
1018 */
1019 btree_insert(&a->used_space, page, (void *) count, leaf);
1020 return 1;
1021 }
1022 } else if (page < leaf->key[0]) {
1023 __address right_pg = leaf->key[0];
1024 count_t right_cnt = (count_t) leaf->value[0];
1025
1026 /*
1027 * Investigate the border case in which the left neighbour does not
1028 * exist but the interval fits from the left.
1029 */
1030
1031 if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1032 /* The interval intersects with the right interval. */
1033 return 0;
1034 } else if (page + count*PAGE_SIZE == right_pg) {
1035 /*
1036 * The interval can be added by moving the base of the right interval down
1037 * and increasing its size accordingly.
1038 */
1039 leaf->key[0] = page;
1040 leaf->value[0] += (count_t) count;
1041 return 1;
1042 } else {
1043 /*
1044 * The interval doesn't adjoin with the right interval.
1045 * It must be added individually.
1046 */
1047 btree_insert(&a->used_space, page, (void *) count, leaf);
1048 return 1;
1049 }
1050 }
1051
1052 node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1053 if (node) {
1054 __address left_pg = leaf->key[leaf->keys - 1], right_pg = node->key[0];
1055 count_t left_cnt = (count_t) leaf->value[leaf->keys - 1], right_cnt = (count_t) node->value[0];
1056
1057 /*
1058 * Examine the possibility that the interval fits
1059 * somewhere between the leftmost interval of
1060 * the right neigbour and the last interval of the leaf.
1061 */
1062
1063 if (page < left_pg) {
1064 /* Do nothing. */
1065 } else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1066 /* The interval intersects with the left interval. */
1067 return 0;
1068 } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1069 /* The interval intersects with the right interval. */
1070 return 0;
1071 } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1072 /* The interval can be added by merging the two already present intervals. */
1073 leaf->value[leaf->keys - 1] += (count_t) count + right_cnt;
1074 btree_remove(&a->used_space, right_pg, node);
1075 return 1;
1076 } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1077 /* The interval can be added by simply growing the left interval. */
1078 leaf->value[leaf->keys - 1] += (count_t) count;
1079 return 1;
1080 } else if (page + count*PAGE_SIZE == right_pg) {
1081 /*
1082 * The interval can be addded by simply moving base of the right
1083 * interval down and increasing its size accordingly.
1084 */
1085 node->value[0] += (count_t) count;
1086 node->key[0] = page;
1087 return 1;
1088 } else {
1089 /*
1090 * The interval is between both neigbouring intervals,
1091 * but cannot be merged with any of them.
1092 */
1093 btree_insert(&a->used_space, page, (void *) count, leaf);
1094 return 1;
1095 }
1096 } else if (page >= leaf->key[leaf->keys - 1]) {
1097 __address left_pg = leaf->key[leaf->keys - 1];
1098 count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1099
1100 /*
1101 * Investigate the border case in which the right neighbour does not
1102 * exist but the interval fits from the right.
1103 */
1104
1105 if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1106 /* The interval intersects with the right interval. */
1107 return 0;
1108 } else if (left_pg + left_cnt*PAGE_SIZE == page) {
1109 /* The interval can be added by growing the left interval. */
1110 leaf->value[leaf->keys - 1] += (count_t) count;
1111 return 1;
1112 } else {
1113 /*
1114 * The interval doesn't adjoin with the left interval.
1115 * It must be added individually.
1116 */
1117 btree_insert(&a->used_space, page, (void *) count, leaf);
1118 return 1;
1119 }
1120 }
1121
1122 /*
1123 * Note that if the algorithm made it thus far, the interval can fit only
1124 * between two other intervals of the leaf. The two border cases were already
1125 * resolved.
1126 */
1127 for (i = 1; i < leaf->keys; i++) {
1128 if (page < leaf->key[i]) {
1129 __address left_pg = leaf->key[i - 1], right_pg = leaf->key[i];
1130 count_t left_cnt = (count_t) leaf->value[i - 1], right_cnt = (count_t) leaf->value[i];
1131
1132 /*
1133 * The interval fits between left_pg and right_pg.
1134 */
1135
1136 if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1137 /* The interval intersects with the left interval. */
1138 return 0;
1139 } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1140 /* The interval intersects with the right interval. */
1141 return 0;
1142 } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1143 /* The interval can be added by merging the two already present intervals. */
1144 leaf->value[i - 1] += (count_t) count + right_cnt;
1145 btree_remove(&a->used_space, right_pg, leaf);
1146 return 1;
1147 } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1148 /* The interval can be added by simply growing the left interval. */
1149 leaf->value[i - 1] += (count_t) count;
1150 return 1;
1151 } else if (page + count*PAGE_SIZE == right_pg) {
1152 /*
1153 * The interval can be addded by simply moving base of the right
1154 * interval down and increasing its size accordingly.
1155 */
1156 leaf->value[i] += (count_t) count;
1157 leaf->key[i] = page;
1158 return 1;
1159 } else {
1160 /*
1161 * The interval is between both neigbouring intervals,
1162 * but cannot be merged with any of them.
1163 */
1164 btree_insert(&a->used_space, page, (void *) count, leaf);
1165 return 1;
1166 }
1167 }
1168 }
1169
1170 panic("Inconsistency detected while adding %d pages of used space at %P.\n", count, page);
1171}
1172
1173/** Mark portion of address space area as unused.
1174 *
1175 * The address space area must be already locked.
1176 *
1177 * @param a Address space area.
1178 * @param page First page to be marked.
1179 * @param count Number of page to be marked.
1180 *
1181 * @return 0 on failure and 1 on success.
1182 */
1183int used_space_remove(as_area_t *a, __address page, count_t count)
1184{
1185 btree_node_t *leaf, *node;
1186 count_t pages;
1187 int i;
1188
1189 ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1190 ASSERT(count);
1191
1192 pages = (count_t) btree_search(&a->used_space, page, &leaf);
1193 if (pages) {
1194 /*
1195 * We are lucky, page is the beginning of some interval.
1196 */
1197 if (count > pages) {
1198 return 0;
1199 } else if (count == pages) {
1200 btree_remove(&a->used_space, page, leaf);
1201 } else {
1202 /*
1203 * Find the respective interval.
1204 * Decrease its size and relocate its start address.
1205 */
1206 for (i = 0; i < leaf->keys; i++) {
1207 if (leaf->key[i] == page) {
1208 leaf->key[i] += count*PAGE_SIZE;
1209 leaf->value[i] -= (count_t) count;
1210 return 1;
1211 }
1212 }
1213 goto error;
1214 }
1215 }
1216
1217 node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1218 if (node && page < leaf->key[0]) {
1219 __address left_pg = node->key[node->keys - 1];
1220 count_t left_cnt = (count_t) node->value[node->keys - 1];
1221
1222 if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1223 if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1224 /*
1225 * The interval is contained in the rightmost interval
1226 * of the left neighbour and can be removed by
1227 * updating the size of the bigger interval.
1228 */
1229 node->value[node->keys - 1] -= (count_t) count;
1230 return 1;
1231 } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1232 count_t new_cnt = (left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE);
1233
1234 /*
1235 * The interval is contained in the rightmost interval
1236 * of the left neighbour but its removal requires
1237 * both updating the size of the original interval and
1238 * also inserting a new interval.
1239 */
1240 node->value[node->keys - 1] -= (count_t) count + new_cnt;
1241 btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1242 return 1;
1243 }
1244 }
1245 return 0;
1246 } else if (page < leaf->key[0]) {
1247 return 0;
1248 }
1249
1250 if (page > leaf->key[leaf->keys - 1]) {
1251 __address left_pg = leaf->key[leaf->keys - 1];
1252 count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1253
1254 if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1255 if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1256 /*
1257 * The interval is contained in the rightmost interval
1258 * of the leaf and can be removed by updating the size
1259 * of the bigger interval.
1260 */
1261 leaf->value[leaf->keys - 1] -= (count_t) count;
1262 return 1;
1263 } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1264 count_t new_cnt = (left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE);
1265
1266 /*
1267 * The interval is contained in the rightmost interval
1268 * of the leaf but its removal requires both updating
1269 * the size of the original interval and
1270 * also inserting a new interval.
1271 */
1272 leaf->value[leaf->keys - 1] -= (count_t) count + new_cnt;
1273 btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1274 return 1;
1275 }
1276 }
1277 return 0;
1278 }
1279
1280 /*
1281 * The border cases have been already resolved.
1282 * Now the interval can be only between intervals of the leaf.
1283 */
1284 for (i = 1; i < leaf->keys - 1; i++) {
1285 if (page < leaf->key[i]) {
1286 __address left_pg = leaf->key[i - 1];
1287 count_t left_cnt = (count_t) leaf->value[i - 1];
1288
1289 /*
1290 * Now the interval is between intervals corresponding to (i - 1) and i.
1291 */
1292 if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1293 if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1294 /*
1295 * The interval is contained in the interval (i - 1)
1296 * of the leaf and can be removed by updating the size
1297 * of the bigger interval.
1298 */
1299 leaf->value[i - 1] -= (count_t) count;
1300 return 1;
1301 } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1302 count_t new_cnt = (left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE);
1303
1304 /*
1305 * The interval is contained in the interval (i - 1)
1306 * of the leaf but its removal requires both updating
1307 * the size of the original interval and
1308 * also inserting a new interval.
1309 */
1310 leaf->value[i - 1] -= (count_t) count + new_cnt;
1311 btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1312 return 1;
1313 }
1314 }
1315 return 0;
1316 }
1317 }
1318
1319error:
1320 panic("Inconsistency detected while removing %d pages of used space from %P.\n", count, page);
1321}
1322
1323/*
1324 * Address space related syscalls.
1325 */
1326
1327/** Wrapper for as_area_create(). */
1328__native sys_as_area_create(__address address, size_t size, int flags)
1329{
1330 if (as_area_create(AS, flags, size, address, AS_AREA_ATTR_NONE))
1331 return (__native) address;
1332 else
1333 return (__native) -1;
1334}
1335
1336/** Wrapper for as_area_resize. */
1337__native sys_as_area_resize(__address address, size_t size, int flags)
1338{
1339 return (__native) as_area_resize(AS, address, size, 0);
1340}
1341
1342/** Wrapper for as_area_destroy. */
1343__native sys_as_area_destroy(__address address)
1344{
1345 return (__native) as_area_destroy(AS, address);
1346}
Note: See TracBrowser for help on using the repository browser.