1 | /*
|
---|
2 | * Copyright (C) 2006 Jakub Jermar
|
---|
3 | * All rights reserved.
|
---|
4 | *
|
---|
5 | * Redistribution and use in source and binary forms, with or without
|
---|
6 | * modification, are permitted provided that the following conditions
|
---|
7 | * are met:
|
---|
8 | *
|
---|
9 | * - Redistributions of source code must retain the above copyright
|
---|
10 | * notice, this list of conditions and the following disclaimer.
|
---|
11 | * - Redistributions in binary form must reproduce the above copyright
|
---|
12 | * notice, this list of conditions and the following disclaimer in the
|
---|
13 | * documentation and/or other materials provided with the distribution.
|
---|
14 | * - The name of the author may not be used to endorse or promote products
|
---|
15 | * derived from this software without specific prior written permission.
|
---|
16 | *
|
---|
17 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
---|
18 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
---|
19 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
---|
20 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
---|
21 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
---|
22 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
---|
23 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
---|
24 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
---|
25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
---|
26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
---|
27 | */
|
---|
28 |
|
---|
29 | /*
|
---|
30 | * This B-tree has the following properties:
|
---|
31 | * - it is a ballanced 2-3-4-5 tree (i.e. BTREE_M = 5)
|
---|
32 | * - values (i.e. pointers to values) are stored only in leaves
|
---|
33 | * - leaves are linked in a list
|
---|
34 | * - technically, it is a B+-tree (because of the previous properties)
|
---|
35 | *
|
---|
36 | * Be carefull when using these trees. They need to allocate
|
---|
37 | * and deallocate memory for their index nodes and as such
|
---|
38 | * can sleep.
|
---|
39 | */
|
---|
40 |
|
---|
41 | #include <adt/btree.h>
|
---|
42 | #include <adt/list.h>
|
---|
43 | #include <mm/slab.h>
|
---|
44 | #include <debug.h>
|
---|
45 | #include <panic.h>
|
---|
46 | #include <typedefs.h>
|
---|
47 | #include <print.h>
|
---|
48 |
|
---|
49 | static void _btree_insert(btree_t *t, __native key, void *value, btree_node_t *rsubtree, btree_node_t *node);
|
---|
50 | static void node_initialize(btree_node_t *node);
|
---|
51 | static void node_insert_key_left(btree_node_t *node, __native key, void *value, btree_node_t *rsubtree);
|
---|
52 | static void node_insert_key_right(btree_node_t *node, __native key, void *value, btree_node_t *rsubtree);
|
---|
53 | static btree_node_t *node_split(btree_node_t *node, __native key, void *value, btree_node_t *rsubtree, __native *median);
|
---|
54 | static void node_remove_key_left(btree_node_t *node, __native key);
|
---|
55 | static void node_remove_key_right(btree_node_t *node, __native key);
|
---|
56 | static index_t find_key_by_subtree(btree_node_t *node, btree_node_t *subtree, bool right);
|
---|
57 | static bool try_insert_by_left_rotation(btree_node_t *node, __native key, void *value, btree_node_t *rsubtree);
|
---|
58 | static bool try_insert_by_right_rotation(btree_node_t *node, __native key, void *value, btree_node_t *rsubtree);
|
---|
59 |
|
---|
60 | #define ROOT_NODE(n) (!(n)->parent)
|
---|
61 | #define INDEX_NODE(n) ((n)->subtree[0] != NULL)
|
---|
62 | #define LEAF_NODE(n) ((n)->subtree[0] == NULL)
|
---|
63 |
|
---|
64 | #define FILL_FACTOR ((BTREE_M-1)/2)
|
---|
65 |
|
---|
66 | #define MEDIAN_LOW_INDEX(n) (((n)->keys-1)/2)
|
---|
67 | #define MEDIAN_HIGH_INDEX(n) ((n)->keys/2)
|
---|
68 | #define MEDIAN_LOW(n) ((n)->key[MEDIAN_LOW_INDEX((n))]);
|
---|
69 | #define MEDIAN_HIGH(n) ((n)->key[MEDIAN_HIGH_INDEX((n))]);
|
---|
70 |
|
---|
71 | /** Create empty B-tree.
|
---|
72 | *
|
---|
73 | * @param t B-tree.
|
---|
74 | */
|
---|
75 | void btree_create(btree_t *t)
|
---|
76 | {
|
---|
77 | list_initialize(&t->leaf_head);
|
---|
78 | t->root = (btree_node_t *) malloc(sizeof(btree_node_t), 0);
|
---|
79 | node_initialize(t->root);
|
---|
80 | list_append(&t->root->leaf_link, &t->leaf_head);
|
---|
81 | }
|
---|
82 |
|
---|
83 | /** Destroy empty B-tree. */
|
---|
84 | void btree_destroy(btree_t *t)
|
---|
85 | {
|
---|
86 | ASSERT(!t->root->keys);
|
---|
87 | free(t->root);
|
---|
88 | }
|
---|
89 |
|
---|
90 | /** Insert key-value pair into B-tree.
|
---|
91 | *
|
---|
92 | * @param t B-tree.
|
---|
93 | * @param key Key to be inserted.
|
---|
94 | * @param value Value to be inserted.
|
---|
95 | * @param leaf_node Leaf node where the insertion should begin.
|
---|
96 | */
|
---|
97 | void btree_insert(btree_t *t, __native key, void *value, btree_node_t *leaf_node)
|
---|
98 | {
|
---|
99 | btree_node_t *lnode;
|
---|
100 |
|
---|
101 | ASSERT(value);
|
---|
102 |
|
---|
103 | lnode = leaf_node;
|
---|
104 | if (!lnode) {
|
---|
105 | if (btree_search(t, key, &lnode)) {
|
---|
106 | panic("B-tree %P already contains key %d\n", t, key);
|
---|
107 | }
|
---|
108 | }
|
---|
109 |
|
---|
110 | _btree_insert(t, key, value, NULL, lnode);
|
---|
111 | }
|
---|
112 |
|
---|
113 | /** Recursively insert into B-tree.
|
---|
114 | *
|
---|
115 | * @param t B-tree.
|
---|
116 | * @param key Key to be inserted.
|
---|
117 | * @param value Value to be inserted.
|
---|
118 | * @param rsubtree Right subtree of the inserted key.
|
---|
119 | * @param node Start inserting into this node.
|
---|
120 | */
|
---|
121 | void _btree_insert(btree_t *t, __native key, void *value, btree_node_t *rsubtree, btree_node_t *node)
|
---|
122 | {
|
---|
123 | if (node->keys < BTREE_MAX_KEYS) {
|
---|
124 | /*
|
---|
125 | * Node conatins enough space, the key can be stored immediately.
|
---|
126 | */
|
---|
127 | node_insert_key_right(node, key, value, rsubtree);
|
---|
128 | } else if (try_insert_by_left_rotation(node, key, value, rsubtree)) {
|
---|
129 | /*
|
---|
130 | * The key-value-rsubtree triplet has been inserted because
|
---|
131 | * some keys could have been moved to the left sibling.
|
---|
132 | */
|
---|
133 | } else if (try_insert_by_right_rotation(node, key, value, rsubtree)) {
|
---|
134 | /*
|
---|
135 | * The key-value-rsubtree triplet has been inserted because
|
---|
136 | * some keys could have been moved to the right sibling.
|
---|
137 | */
|
---|
138 | } else {
|
---|
139 | btree_node_t *rnode;
|
---|
140 | __native median;
|
---|
141 |
|
---|
142 | /*
|
---|
143 | * Node is full and both siblings (if both exist) are full too.
|
---|
144 | * Split the node and insert the smallest key from the node containing
|
---|
145 | * bigger keys (i.e. the new node) into its parent.
|
---|
146 | */
|
---|
147 |
|
---|
148 | rnode = node_split(node, key, value, rsubtree, &median);
|
---|
149 |
|
---|
150 | if (LEAF_NODE(node)) {
|
---|
151 | list_append(&rnode->leaf_link, &node->leaf_link);
|
---|
152 | }
|
---|
153 |
|
---|
154 | if (ROOT_NODE(node)) {
|
---|
155 | /*
|
---|
156 | * We split the root node. Create new root.
|
---|
157 | */
|
---|
158 | t->root = (btree_node_t *) malloc(sizeof(btree_node_t), 0);
|
---|
159 | node->parent = t->root;
|
---|
160 | rnode->parent = t->root;
|
---|
161 | node_initialize(t->root);
|
---|
162 |
|
---|
163 | /*
|
---|
164 | * Left-hand side subtree will be the old root (i.e. node).
|
---|
165 | * Right-hand side subtree will be rnode.
|
---|
166 | */
|
---|
167 | t->root->subtree[0] = node;
|
---|
168 |
|
---|
169 | t->root->depth = node->depth + 1;
|
---|
170 | }
|
---|
171 | _btree_insert(t, median, NULL, rnode, node->parent);
|
---|
172 | }
|
---|
173 |
|
---|
174 | }
|
---|
175 |
|
---|
176 | /** Remove B-tree node.
|
---|
177 | *
|
---|
178 | * @param B-tree.
|
---|
179 | * @param key Key to be removed from the B-tree along with its associated value.
|
---|
180 | * @param leaf_node If not NULL, pointer to the leaf node where the key is found.
|
---|
181 | */
|
---|
182 | void btree_remove(btree_t *t, __native key, btree_node_t *leaf_node)
|
---|
183 | {
|
---|
184 | btree_node_t *lnode;
|
---|
185 |
|
---|
186 | lnode = leaf_node;
|
---|
187 | if (!lnode) {
|
---|
188 | if (!btree_search(t, key, &lnode)) {
|
---|
189 | panic("B-tree %P does not contain key %d\n", t, key);
|
---|
190 | }
|
---|
191 | }
|
---|
192 |
|
---|
193 | /* TODO */
|
---|
194 |
|
---|
195 | }
|
---|
196 |
|
---|
197 | /** Search key in a B-tree.
|
---|
198 | *
|
---|
199 | * @param t B-tree.
|
---|
200 | * @param key Key to be searched.
|
---|
201 | * @param leaf_node Address where to put pointer to visited leaf node.
|
---|
202 | *
|
---|
203 | * @return Pointer to value or NULL if there is no such key.
|
---|
204 | */
|
---|
205 | void *btree_search(btree_t *t, __native key, btree_node_t **leaf_node)
|
---|
206 | {
|
---|
207 | btree_node_t *cur, *next;
|
---|
208 |
|
---|
209 | /*
|
---|
210 | * Iteratively descend to the leaf that can contain the searched key.
|
---|
211 | */
|
---|
212 | for (cur = t->root; cur; cur = next) {
|
---|
213 |
|
---|
214 | /* Last iteration will set this with proper leaf node address. */
|
---|
215 | *leaf_node = cur;
|
---|
216 |
|
---|
217 | /*
|
---|
218 | * The key can be in the leftmost subtree.
|
---|
219 | * Test it separately.
|
---|
220 | */
|
---|
221 | if (key < cur->key[0]) {
|
---|
222 | next = cur->subtree[0];
|
---|
223 | continue;
|
---|
224 | } else {
|
---|
225 | void *val;
|
---|
226 | int i;
|
---|
227 |
|
---|
228 | /*
|
---|
229 | * Now if the key is smaller than cur->key[i]
|
---|
230 | * it can only mean that the value is in cur->subtree[i]
|
---|
231 | * or it is not in the tree at all.
|
---|
232 | */
|
---|
233 | for (i = 1; i < cur->keys; i++) {
|
---|
234 | if (key < cur->key[i]) {
|
---|
235 | next = cur->subtree[i];
|
---|
236 | val = cur->value[i - 1];
|
---|
237 |
|
---|
238 | if (LEAF_NODE(cur))
|
---|
239 | return key == cur->key[i - 1] ? val : NULL;
|
---|
240 |
|
---|
241 | goto descend;
|
---|
242 | }
|
---|
243 | }
|
---|
244 |
|
---|
245 | /*
|
---|
246 | * Last possibility is that the key is in the rightmost subtree.
|
---|
247 | */
|
---|
248 | next = cur->subtree[i];
|
---|
249 | val = cur->value[i - 1];
|
---|
250 | if (LEAF_NODE(cur))
|
---|
251 | return key == cur->key[i - 1] ? val : NULL;
|
---|
252 | }
|
---|
253 | descend:
|
---|
254 | ;
|
---|
255 | }
|
---|
256 |
|
---|
257 | /*
|
---|
258 | * The key was not found in the *leaf_node and is smaller than any of its keys.
|
---|
259 | */
|
---|
260 | return NULL;
|
---|
261 | }
|
---|
262 |
|
---|
263 | /** Get pointer to value with the smallest key within the node.
|
---|
264 | *
|
---|
265 | * Can be only used on leaf-level nodes.
|
---|
266 | *
|
---|
267 | * @param node B-tree node.
|
---|
268 | *
|
---|
269 | * @return Pointer to value assiciated with the smallest key.
|
---|
270 | */
|
---|
271 | void *btree_node_min(btree_node_t *node)
|
---|
272 | {
|
---|
273 | ASSERT(LEAF_NODE(node));
|
---|
274 | ASSERT(node->keys);
|
---|
275 | return node->value[0];
|
---|
276 | }
|
---|
277 |
|
---|
278 | /** Get pointer to value with the biggest key within the node.
|
---|
279 | *
|
---|
280 | * Can be only used on leaf-level nodes.
|
---|
281 | *
|
---|
282 | * @param node B-tree node.
|
---|
283 | *
|
---|
284 | * @return Pointer to value assiciated with the biggest key.
|
---|
285 | */
|
---|
286 | void *btree_node_max(btree_node_t *node)
|
---|
287 | {
|
---|
288 | ASSERT(LEAF_NODE(node));
|
---|
289 | ASSERT(node->keys);
|
---|
290 | return node->value[node->keys - 1];
|
---|
291 | }
|
---|
292 |
|
---|
293 | /** Initialize B-tree node.
|
---|
294 | *
|
---|
295 | * @param node B-tree node.
|
---|
296 | */
|
---|
297 | void node_initialize(btree_node_t *node)
|
---|
298 | {
|
---|
299 | int i;
|
---|
300 |
|
---|
301 | node->keys = 0;
|
---|
302 |
|
---|
303 | /* Clean also space for the extra key. */
|
---|
304 | for (i = 0; i < BTREE_MAX_KEYS + 1; i++) {
|
---|
305 | node->key[i] = 0;
|
---|
306 | node->value[i] = NULL;
|
---|
307 | node->subtree[i] = NULL;
|
---|
308 | }
|
---|
309 | node->subtree[i] = NULL;
|
---|
310 |
|
---|
311 | node->parent = NULL;
|
---|
312 |
|
---|
313 | link_initialize(&node->leaf_link);
|
---|
314 |
|
---|
315 | link_initialize(&node->bfs_link);
|
---|
316 | node->depth = 0;
|
---|
317 | }
|
---|
318 |
|
---|
319 | /** Insert key-value-lsubtree triplet into B-tree node.
|
---|
320 | *
|
---|
321 | * It is actually possible to have more keys than BTREE_MAX_KEYS.
|
---|
322 | * This feature is used during insert by right rotation.
|
---|
323 | *
|
---|
324 | * @param node B-tree node into wich the new key is to be inserted.
|
---|
325 | * @param key The key to be inserted.
|
---|
326 | * @param value Pointer to value to be inserted.
|
---|
327 | * @param lsubtree Pointer to the left subtree.
|
---|
328 | */
|
---|
329 | void node_insert_key_left(btree_node_t *node, __native key, void *value, btree_node_t *lsubtree)
|
---|
330 | {
|
---|
331 | int i;
|
---|
332 |
|
---|
333 | for (i = 0; i < node->keys; i++) {
|
---|
334 | if (key < node->key[i]) {
|
---|
335 | int j;
|
---|
336 |
|
---|
337 | for (j = node->keys; j > i; j--) {
|
---|
338 | node->key[j] = node->key[j - 1];
|
---|
339 | node->value[j] = node->value[j - 1];
|
---|
340 | node->subtree[j + 1] = node->subtree[j];
|
---|
341 | }
|
---|
342 | node->subtree[j + 1] = node->subtree[j];
|
---|
343 | break;
|
---|
344 | }
|
---|
345 | }
|
---|
346 | node->key[i] = key;
|
---|
347 | node->value[i] = value;
|
---|
348 | node->subtree[i] = lsubtree;
|
---|
349 |
|
---|
350 | node->keys++;
|
---|
351 | }
|
---|
352 |
|
---|
353 |
|
---|
354 | /** Insert key-value-rsubtree triplet into B-tree node.
|
---|
355 | *
|
---|
356 | * It is actually possible to have more keys than BTREE_MAX_KEYS.
|
---|
357 | * This feature is used during splitting the node when the
|
---|
358 | * number of keys is BTREE_MAX_KEYS + 1. Insert by left rotation
|
---|
359 | * also makes use of this feature.
|
---|
360 | *
|
---|
361 | * @param node B-tree node into wich the new key is to be inserted.
|
---|
362 | * @param key The key to be inserted.
|
---|
363 | * @param value Pointer to value to be inserted.
|
---|
364 | * @param rsubtree Pointer to the right subtree.
|
---|
365 | */
|
---|
366 | void node_insert_key_right(btree_node_t *node, __native key, void *value, btree_node_t *rsubtree)
|
---|
367 | {
|
---|
368 | int i;
|
---|
369 |
|
---|
370 | for (i = 0; i < node->keys; i++) {
|
---|
371 | if (key < node->key[i]) {
|
---|
372 | int j;
|
---|
373 |
|
---|
374 | for (j = node->keys; j > i; j--) {
|
---|
375 | node->key[j] = node->key[j - 1];
|
---|
376 | node->value[j] = node->value[j - 1];
|
---|
377 | node->subtree[j + 1] = node->subtree[j];
|
---|
378 | }
|
---|
379 | break;
|
---|
380 | }
|
---|
381 | }
|
---|
382 | node->key[i] = key;
|
---|
383 | node->value[i] = value;
|
---|
384 | node->subtree[i + 1] = rsubtree;
|
---|
385 |
|
---|
386 | node->keys++;
|
---|
387 | }
|
---|
388 |
|
---|
389 | /** Split full B-tree node and insert new key-value-right-subtree triplet.
|
---|
390 | *
|
---|
391 | * This function will split a node and return pointer to a newly created
|
---|
392 | * node containing keys greater than or equal to the greater of medians
|
---|
393 | * (or median) of the old keys and the newly added key. It will also write
|
---|
394 | * the median key to a memory address supplied by the caller.
|
---|
395 | *
|
---|
396 | * If the node being split is an index node, the median will not be
|
---|
397 | * included in the new node. If the node is a leaf node,
|
---|
398 | * the median will be copied there.
|
---|
399 | *
|
---|
400 | * @param node B-tree node wich is going to be split.
|
---|
401 | * @param key The key to be inserted.
|
---|
402 | * @param value Pointer to the value to be inserted.
|
---|
403 | * @param rsubtree Pointer to the right subtree of the key being added.
|
---|
404 | * @param median Address in memory, where the median key will be stored.
|
---|
405 | *
|
---|
406 | * @return Newly created right sibling of node.
|
---|
407 | */
|
---|
408 | btree_node_t *node_split(btree_node_t *node, __native key, void *value, btree_node_t *rsubtree, __native *median)
|
---|
409 | {
|
---|
410 | btree_node_t *rnode;
|
---|
411 | int i, j;
|
---|
412 |
|
---|
413 | ASSERT(median);
|
---|
414 | ASSERT(node->keys == BTREE_MAX_KEYS);
|
---|
415 |
|
---|
416 | /*
|
---|
417 | * Use the extra space to store the extra node.
|
---|
418 | */
|
---|
419 | node_insert_key_right(node, key, value, rsubtree);
|
---|
420 |
|
---|
421 | /*
|
---|
422 | * Compute median of keys.
|
---|
423 | */
|
---|
424 | *median = MEDIAN_HIGH(node);
|
---|
425 |
|
---|
426 | /*
|
---|
427 | * Allocate and initialize new right sibling.
|
---|
428 | */
|
---|
429 | rnode = (btree_node_t *) malloc(sizeof(btree_node_t), 0);
|
---|
430 | node_initialize(rnode);
|
---|
431 | rnode->parent = node->parent;
|
---|
432 | rnode->depth = node->depth;
|
---|
433 |
|
---|
434 | /*
|
---|
435 | * Copy big keys, values and subtree pointers to the new right sibling.
|
---|
436 | * If this is an index node, do not copy the median.
|
---|
437 | */
|
---|
438 | i = (int) INDEX_NODE(node);
|
---|
439 | for (i += MEDIAN_HIGH_INDEX(node), j = 0; i < node->keys; i++, j++) {
|
---|
440 | rnode->key[j] = node->key[i];
|
---|
441 | rnode->value[j] = node->value[i];
|
---|
442 | rnode->subtree[j] = node->subtree[i];
|
---|
443 |
|
---|
444 | /*
|
---|
445 | * Fix parent links in subtrees.
|
---|
446 | */
|
---|
447 | if (rnode->subtree[j])
|
---|
448 | rnode->subtree[j]->parent = rnode;
|
---|
449 |
|
---|
450 | }
|
---|
451 | rnode->subtree[j] = node->subtree[i];
|
---|
452 | if (rnode->subtree[j])
|
---|
453 | rnode->subtree[j]->parent = rnode;
|
---|
454 |
|
---|
455 | rnode->keys = j; /* Set number of keys of the new node. */
|
---|
456 | node->keys /= 2; /* Shrink the old node. */
|
---|
457 |
|
---|
458 | return rnode;
|
---|
459 | }
|
---|
460 |
|
---|
461 | /** Remove key and its left subtree pointer from B-tree node.
|
---|
462 | *
|
---|
463 | * Remove the key and eliminate gaps in node->key array.
|
---|
464 | * Note that the value pointer and the left subtree pointer
|
---|
465 | * is removed from the node as well.
|
---|
466 | *
|
---|
467 | * @param node B-tree node.
|
---|
468 | * @param key Key to be removed.
|
---|
469 | */
|
---|
470 | void node_remove_key_left(btree_node_t *node, __native key)
|
---|
471 | {
|
---|
472 | int i, j;
|
---|
473 |
|
---|
474 | for (i = 0; i < node->keys; i++) {
|
---|
475 | if (key == node->key[i]) {
|
---|
476 | for (j = i + 1; j < node->keys; j++) {
|
---|
477 | node->key[j - 1] = node->key[j];
|
---|
478 | node->value[j - 1] = node->value[j];
|
---|
479 | node->subtree[j - 1] = node->subtree[j];
|
---|
480 | }
|
---|
481 | node->subtree[j - 1] = node->subtree[j];
|
---|
482 | node->keys--;
|
---|
483 | return;
|
---|
484 | }
|
---|
485 | }
|
---|
486 | panic("node %P does not contain key %d\n", node, key);
|
---|
487 | }
|
---|
488 |
|
---|
489 | /** Remove key and its right subtree pointer from B-tree node.
|
---|
490 | *
|
---|
491 | * Remove the key and eliminate gaps in node->key array.
|
---|
492 | * Note that the value pointer and the right subtree pointer
|
---|
493 | * is removed from the node as well.
|
---|
494 | *
|
---|
495 | * @param node B-tree node.
|
---|
496 | * @param key Key to be removed.
|
---|
497 | */
|
---|
498 | void node_remove_key_right(btree_node_t *node, __native key)
|
---|
499 | {
|
---|
500 | int i, j;
|
---|
501 |
|
---|
502 | for (i = 0; i < node->keys; i++) {
|
---|
503 | if (key == node->key[i]) {
|
---|
504 | for (j = i + 1; j < node->keys; j++) {
|
---|
505 | node->key[j - 1] = node->key[j];
|
---|
506 | node->value[j - 1] = node->value[j];
|
---|
507 | node->subtree[j] = node->subtree[j + 1];
|
---|
508 | }
|
---|
509 | node->keys--;
|
---|
510 | return;
|
---|
511 | }
|
---|
512 | }
|
---|
513 | panic("node %P does not contain key %d\n", node, key);
|
---|
514 | }
|
---|
515 |
|
---|
516 | /** Find key by its left or right subtree.
|
---|
517 | *
|
---|
518 | * @param node B-tree node.
|
---|
519 | * @param subtree Left or right subtree of a key found in node.
|
---|
520 | * @param right If true, subtree is a right subtree. If false, subtree is a left subtree.
|
---|
521 | *
|
---|
522 | * @return Index of the key associated with the subtree.
|
---|
523 | */
|
---|
524 | index_t find_key_by_subtree(btree_node_t *node, btree_node_t *subtree, bool right)
|
---|
525 | {
|
---|
526 | int i;
|
---|
527 |
|
---|
528 | for (i = 0; i < node->keys + 1; i++) {
|
---|
529 | if (subtree == node->subtree[i])
|
---|
530 | return i - (int) (right != false);
|
---|
531 | }
|
---|
532 | panic("node %P does not contain subtree %P\n", node, subtree);
|
---|
533 | }
|
---|
534 |
|
---|
535 | /** Insert key-value-rsubtree triplet and rotate the node to the left, if this operation can be done.
|
---|
536 | *
|
---|
537 | * Left sibling of the node (if it exists) is checked for free space.
|
---|
538 | * If there is free space, the key is inserted and the smallest key of
|
---|
539 | * the node is moved there. The index node which is the parent of both
|
---|
540 | * nodes is fixed.
|
---|
541 | *
|
---|
542 | * @param node B-tree node.
|
---|
543 | * @param inskey Key to be inserted.
|
---|
544 | * @param insvalue Value to be inserted.
|
---|
545 | * @param rsubtree Right subtree of inskey.
|
---|
546 | *
|
---|
547 | * @return True if the rotation was performed, false otherwise.
|
---|
548 | */
|
---|
549 | bool try_insert_by_left_rotation(btree_node_t *node, __native inskey, void *insvalue, btree_node_t *rsubtree)
|
---|
550 | {
|
---|
551 | index_t idx;
|
---|
552 | btree_node_t *lnode;
|
---|
553 |
|
---|
554 | /*
|
---|
555 | * If this is root node, the rotation can not be done.
|
---|
556 | */
|
---|
557 | if (ROOT_NODE(node))
|
---|
558 | return false;
|
---|
559 |
|
---|
560 | idx = find_key_by_subtree(node->parent, node, true);
|
---|
561 | if ((int) idx == -1) {
|
---|
562 | /*
|
---|
563 | * If this node is the leftmost subtree of its parent,
|
---|
564 | * the rotation can not be done.
|
---|
565 | */
|
---|
566 | return false;
|
---|
567 | }
|
---|
568 |
|
---|
569 | lnode = node->parent->subtree[idx];
|
---|
570 |
|
---|
571 | if (lnode->keys < BTREE_MAX_KEYS) {
|
---|
572 | __native key;
|
---|
573 |
|
---|
574 | /*
|
---|
575 | * The rotaion can be done. The left sibling has free space.
|
---|
576 | */
|
---|
577 |
|
---|
578 | node_insert_key_right(node, inskey, insvalue, rsubtree);
|
---|
579 | key = node->key[0];
|
---|
580 |
|
---|
581 | if (LEAF_NODE(node)) {
|
---|
582 | void *value;
|
---|
583 |
|
---|
584 | value = node->value[0];
|
---|
585 | node_remove_key_left(node, key);
|
---|
586 | node_insert_key_right(lnode, key, value, NULL);
|
---|
587 | node->parent->key[idx] = node->key[0];
|
---|
588 | } else {
|
---|
589 | btree_node_t *lsubtree;
|
---|
590 |
|
---|
591 | lsubtree = node->subtree[0];
|
---|
592 | node_remove_key_left(node, key);
|
---|
593 | node_insert_key_right(lnode, node->parent->key[idx], NULL, lsubtree);
|
---|
594 | node->parent->key[idx] = key;
|
---|
595 |
|
---|
596 | /* Fix parent link of the reconnected left subtree. */
|
---|
597 | lsubtree->parent = lnode;
|
---|
598 | }
|
---|
599 | return true;
|
---|
600 | }
|
---|
601 |
|
---|
602 | return false;
|
---|
603 | }
|
---|
604 |
|
---|
605 | /** Insert key-value-rsubtree triplet and rotate the node to the right, if this operation can be done.
|
---|
606 | *
|
---|
607 | * Right sibling of the node (if it exists) is checked for free space.
|
---|
608 | * If there is free space, the key is inserted and the biggest key of
|
---|
609 | * the node is moved there. The index node which is the parent of both
|
---|
610 | * nodes is fixed.
|
---|
611 | *
|
---|
612 | * @param node B-tree node.
|
---|
613 | * @param inskey Key to be inserted.
|
---|
614 | * @param insvalue Value to be inserted.
|
---|
615 | * @param rsubtree Right subtree of inskey.
|
---|
616 | *
|
---|
617 | * @return True if the rotation was performed, false otherwise.
|
---|
618 | */
|
---|
619 | bool try_insert_by_right_rotation(btree_node_t *node, __native inskey, void *insvalue, btree_node_t *rsubtree)
|
---|
620 | {
|
---|
621 | index_t idx;
|
---|
622 | btree_node_t *rnode;
|
---|
623 |
|
---|
624 | /*
|
---|
625 | * If this is root node, the rotation can not be done.
|
---|
626 | */
|
---|
627 | if (ROOT_NODE(node))
|
---|
628 | return false;
|
---|
629 |
|
---|
630 | idx = find_key_by_subtree(node->parent, node, false);
|
---|
631 | if (idx == node->parent->keys) {
|
---|
632 | /*
|
---|
633 | * If this node is the rightmost subtree of its parent,
|
---|
634 | * the rotation can not be done.
|
---|
635 | */
|
---|
636 | return false;
|
---|
637 | }
|
---|
638 |
|
---|
639 | rnode = node->parent->subtree[idx + 1];
|
---|
640 |
|
---|
641 | if (rnode->keys < BTREE_MAX_KEYS) {
|
---|
642 | __native key;
|
---|
643 |
|
---|
644 | /*
|
---|
645 | * The rotaion can be done. The right sibling has free space.
|
---|
646 | */
|
---|
647 |
|
---|
648 | node_insert_key_right(node, inskey, insvalue, rsubtree);
|
---|
649 | key = node->key[node->keys - 1];
|
---|
650 |
|
---|
651 | if (LEAF_NODE(node)) {
|
---|
652 | void *value;
|
---|
653 |
|
---|
654 | value = node->value[node->keys - 1];
|
---|
655 | node_remove_key_right(node, key);
|
---|
656 | node_insert_key_left(rnode, key, value, NULL);
|
---|
657 | node->parent->key[idx] = key;
|
---|
658 | } else {
|
---|
659 | btree_node_t *rsubt;
|
---|
660 |
|
---|
661 | rsubt = node->subtree[node->keys];
|
---|
662 | node_remove_key_right(node, key);
|
---|
663 | node_insert_key_left(rnode, node->parent->key[idx], NULL, rsubt);
|
---|
664 | node->parent->key[idx] = key;
|
---|
665 |
|
---|
666 | /* Fix parent link of the reconnected right subtree. */
|
---|
667 | rsubt->parent = rnode;
|
---|
668 | }
|
---|
669 | return true;
|
---|
670 | }
|
---|
671 |
|
---|
672 | return false;
|
---|
673 | }
|
---|
674 |
|
---|
675 | /** Print B-tree.
|
---|
676 | *
|
---|
677 | * @param t Print out B-tree.
|
---|
678 | */
|
---|
679 | void btree_print(btree_t *t)
|
---|
680 | {
|
---|
681 | int i, depth = t->root->depth;
|
---|
682 | link_t head;
|
---|
683 |
|
---|
684 | list_initialize(&head);
|
---|
685 | list_append(&t->root->bfs_link, &head);
|
---|
686 |
|
---|
687 | /*
|
---|
688 | * Use BFS search to print out the tree.
|
---|
689 | * Levels are distinguished from one another by node->depth.
|
---|
690 | */
|
---|
691 | while (!list_empty(&head)) {
|
---|
692 | link_t *hlp;
|
---|
693 | btree_node_t *node;
|
---|
694 |
|
---|
695 | hlp = head.next;
|
---|
696 | ASSERT(hlp != &head);
|
---|
697 | node = list_get_instance(hlp, btree_node_t, bfs_link);
|
---|
698 | list_remove(hlp);
|
---|
699 |
|
---|
700 | ASSERT(node);
|
---|
701 |
|
---|
702 | if (node->depth != depth) {
|
---|
703 | printf("\n");
|
---|
704 | depth = node->depth;
|
---|
705 | }
|
---|
706 |
|
---|
707 | printf("(");
|
---|
708 | for (i = 0; i < node->keys; i++) {
|
---|
709 | printf("%d,", node->key[i]);
|
---|
710 | if (node->depth && node->subtree[i]) {
|
---|
711 | list_append(&node->subtree[i]->bfs_link, &head);
|
---|
712 | }
|
---|
713 | }
|
---|
714 | if (node->depth && node->subtree[i]) {
|
---|
715 | list_append(&node->subtree[i]->bfs_link, &head);
|
---|
716 | }
|
---|
717 | printf(")");
|
---|
718 | }
|
---|
719 | printf("\n");
|
---|
720 | }
|
---|