1 | /*
|
---|
2 | * Copyright (C) 2006 Jakub Jermar
|
---|
3 | * All rights reserved.
|
---|
4 | *
|
---|
5 | * Redistribution and use in source and binary forms, with or without
|
---|
6 | * modification, are permitted provided that the following conditions
|
---|
7 | * are met:
|
---|
8 | *
|
---|
9 | * - Redistributions of source code must retain the above copyright
|
---|
10 | * notice, this list of conditions and the following disclaimer.
|
---|
11 | * - Redistributions in binary form must reproduce the above copyright
|
---|
12 | * notice, this list of conditions and the following disclaimer in the
|
---|
13 | * documentation and/or other materials provided with the distribution.
|
---|
14 | * - The name of the author may not be used to endorse or promote products
|
---|
15 | * derived from this software without specific prior written permission.
|
---|
16 | *
|
---|
17 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
---|
18 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
---|
19 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
---|
20 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
---|
21 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
---|
22 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
---|
23 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
---|
24 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
---|
25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
---|
26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
---|
27 | */
|
---|
28 |
|
---|
29 | /*
|
---|
30 | * This B-tree has the following properties:
|
---|
31 | * - it is a ballanced 2-3-4 tree (i.e. BTREE_M = 4)
|
---|
32 | * - values (i.e. pointers to values) are stored only in leaves
|
---|
33 | * - leaves are linked in a list
|
---|
34 | * - technically, it is a B+-tree (because of the previous properties)
|
---|
35 | *
|
---|
36 | * Some of the functions below take pointer to the right-hand
|
---|
37 | * side subtree pointer as parameter. Note that this is sufficient
|
---|
38 | * because:
|
---|
39 | * - New root node is passed the left-hand side subtree pointer
|
---|
40 | * directly.
|
---|
41 | * - node_split() always creates the right sibling and preserves
|
---|
42 | * the original node (which becomes the left sibling).
|
---|
43 | * There is always pointer to the left-hand side subtree
|
---|
44 | * (i.e. left sibling) in the parent node.
|
---|
45 | */
|
---|
46 |
|
---|
47 | #include <adt/btree.h>
|
---|
48 | #include <adt/list.h>
|
---|
49 | #include <mm/slab.h>
|
---|
50 | #include <debug.h>
|
---|
51 | #include <panic.h>
|
---|
52 | #include <typedefs.h>
|
---|
53 | #include <print.h>
|
---|
54 |
|
---|
55 | static void _btree_insert(btree_t *t, __native key, void *value, btree_node_t *rsubtree, btree_node_t *node);
|
---|
56 | static void node_initialize(btree_node_t *node);
|
---|
57 | static void node_insert_key(btree_node_t *node, __native key, void *value, btree_node_t *rsubtree);
|
---|
58 | static btree_node_t *node_split(btree_node_t *node, __native key, void *value, btree_node_t *rsubtree, __native *median);
|
---|
59 |
|
---|
60 | #define ROOT_NODE(n) (!(n)->parent)
|
---|
61 | #define INDEX_NODE(n) ((n)->subtree[0] != NULL)
|
---|
62 | #define LEAF_NODE(n) ((n)->subtree[0] == NULL)
|
---|
63 |
|
---|
64 | #define MEDIAN_LOW_INDEX(n) (((n)->keys-1)/2)
|
---|
65 | #define MEDIAN_HIGH_INDEX(n) ((n)->keys/2)
|
---|
66 | #define MEDIAN_LOW(n) ((n)->key[MEDIAN_LOW_INDEX((n))]);
|
---|
67 | #define MEDIAN_HIGH(n) ((n)->key[MEDIAN_HIGH_INDEX((n))]);
|
---|
68 |
|
---|
69 | /** Create empty B-tree.
|
---|
70 | *
|
---|
71 | * @param t B-tree.
|
---|
72 | */
|
---|
73 | void btree_create(btree_t *t)
|
---|
74 | {
|
---|
75 | list_initialize(&t->leaf_head);
|
---|
76 | t->root = (btree_node_t *) malloc(sizeof(btree_node_t), 0);
|
---|
77 | node_initialize(t->root);
|
---|
78 | list_append(&t->root->leaf_link, &t->leaf_head);
|
---|
79 | }
|
---|
80 |
|
---|
81 | /** Destroy empty B-tree. */
|
---|
82 | void btree_destroy(btree_t *t)
|
---|
83 | {
|
---|
84 | ASSERT(!t->root->keys);
|
---|
85 | free(t->root);
|
---|
86 | }
|
---|
87 |
|
---|
88 | /** Insert key-value pair into B-tree.
|
---|
89 | *
|
---|
90 | * @param t B-tree.
|
---|
91 | * @param key Key to be inserted.
|
---|
92 | * @param value Value to be inserted.
|
---|
93 | * @param leaf_node Leaf node where the insertion should begin.
|
---|
94 | */
|
---|
95 | void btree_insert(btree_t *t, __native key, void *value, btree_node_t *leaf_node)
|
---|
96 | {
|
---|
97 | btree_node_t *lnode;
|
---|
98 |
|
---|
99 | ASSERT(value);
|
---|
100 |
|
---|
101 | lnode = leaf_node;
|
---|
102 | if (!lnode) {
|
---|
103 | if (btree_search(t, key, &lnode)) {
|
---|
104 | panic("B-tree %P already contains key %d\n", t, key);
|
---|
105 | }
|
---|
106 | }
|
---|
107 |
|
---|
108 | _btree_insert(t, key, value, NULL, lnode);
|
---|
109 | }
|
---|
110 |
|
---|
111 | /** Recursively insert into B-tree.
|
---|
112 | *
|
---|
113 | * @param t B-tree.
|
---|
114 | * @param key Key to be inserted.
|
---|
115 | * @param value Value to be inserted.
|
---|
116 | * @param rsubtree Right subtree of the inserted key.
|
---|
117 | * @param node Start inserting into this node.
|
---|
118 | */
|
---|
119 | void _btree_insert(btree_t *t, __native key, void *value, btree_node_t *rsubtree, btree_node_t *node)
|
---|
120 | {
|
---|
121 | if (node->keys < BTREE_MAX_KEYS) {
|
---|
122 | /*
|
---|
123 | * Node conatins enough space, the key can be stored immediately.
|
---|
124 | */
|
---|
125 | node_insert_key(node, key, value, rsubtree);
|
---|
126 | } else {
|
---|
127 | btree_node_t *rnode;
|
---|
128 | __native median;
|
---|
129 |
|
---|
130 | /*
|
---|
131 | * Node is full.
|
---|
132 | * Split it and insert the smallest key from the node containing
|
---|
133 | * bigger keys (i.e. the original node) into its parent.
|
---|
134 | */
|
---|
135 |
|
---|
136 | rnode = node_split(node, key, value, rsubtree, &median);
|
---|
137 |
|
---|
138 | if (LEAF_NODE(node)) {
|
---|
139 | list_append(&rnode->leaf_link, &node->leaf_link);
|
---|
140 | }
|
---|
141 |
|
---|
142 | if (ROOT_NODE(node)) {
|
---|
143 | /*
|
---|
144 | * We split the root node. Create new root.
|
---|
145 | */
|
---|
146 |
|
---|
147 | t->root = (btree_node_t *) malloc(sizeof(btree_node_t), 0);
|
---|
148 | node->parent = t->root;
|
---|
149 | rnode->parent = t->root;
|
---|
150 | node_initialize(t->root);
|
---|
151 |
|
---|
152 | /*
|
---|
153 | * Left-hand side subtree will be the old root (i.e. node).
|
---|
154 | * Right-hand side subtree will be rnode.
|
---|
155 | */
|
---|
156 | t->root->subtree[0] = node;
|
---|
157 |
|
---|
158 | t->root->depth = node->depth + 1;
|
---|
159 | }
|
---|
160 | _btree_insert(t, median, NULL, rnode, node->parent);
|
---|
161 | }
|
---|
162 |
|
---|
163 | }
|
---|
164 |
|
---|
165 | /* TODO */
|
---|
166 | void btree_remove(btree_t *t, __native key)
|
---|
167 | {
|
---|
168 | }
|
---|
169 |
|
---|
170 | /** Search key in a B-tree.
|
---|
171 | *
|
---|
172 | * @param t B-tree.
|
---|
173 | * @param key Key to be searched.
|
---|
174 | * @param leaf_node Address where to put pointer to visited leaf node.
|
---|
175 | *
|
---|
176 | * @return Pointer to value or NULL if there is no such key.
|
---|
177 | */
|
---|
178 | void *btree_search(btree_t *t, __native key, btree_node_t **leaf_node)
|
---|
179 | {
|
---|
180 | btree_node_t *cur, *next;
|
---|
181 | void *val = NULL;
|
---|
182 |
|
---|
183 | /*
|
---|
184 | * Iteratively descend to the leaf that can contain searched key.
|
---|
185 | */
|
---|
186 | for (cur = t->root; cur; cur = next) {
|
---|
187 | int i;
|
---|
188 |
|
---|
189 | /* Last iteration will set this with proper leaf node address. */
|
---|
190 | *leaf_node = cur;
|
---|
191 | for (i = 0; i < cur->keys; i++) {
|
---|
192 | if (key <= cur->key[i]) {
|
---|
193 | val = cur->value[i];
|
---|
194 | next = cur->subtree[i];
|
---|
195 |
|
---|
196 | /*
|
---|
197 | * Check if there is anywhere to descend.
|
---|
198 | */
|
---|
199 | if (!next) {
|
---|
200 | /*
|
---|
201 | * Leaf-level.
|
---|
202 | */
|
---|
203 | return (key == cur->key[i]) ? val : NULL;
|
---|
204 | }
|
---|
205 | goto descend;
|
---|
206 | }
|
---|
207 | }
|
---|
208 | next = cur->subtree[i];
|
---|
209 | descend:
|
---|
210 | ;
|
---|
211 | }
|
---|
212 |
|
---|
213 | /*
|
---|
214 | * The key was not found in the *leaf_node and is greater than any of its keys.
|
---|
215 | */
|
---|
216 | return NULL;
|
---|
217 | }
|
---|
218 |
|
---|
219 | /** Get pointer to value with the smallest key within the node.
|
---|
220 | *
|
---|
221 | * Can be only used on leaf-level nodes.
|
---|
222 | *
|
---|
223 | * @param node B-tree node.
|
---|
224 | *
|
---|
225 | * @return Pointer to value assiciated with the smallest key.
|
---|
226 | */
|
---|
227 | void *btree_node_min(btree_node_t *node)
|
---|
228 | {
|
---|
229 | ASSERT(LEAF_NODE(node));
|
---|
230 | ASSERT(node->keys);
|
---|
231 | return node->value[0];
|
---|
232 | }
|
---|
233 |
|
---|
234 | /** Get pointer to value with the biggest key within the node.
|
---|
235 | *
|
---|
236 | * Can be only used on leaf-level nodes.
|
---|
237 | *
|
---|
238 | * @param node B-tree node.
|
---|
239 | *
|
---|
240 | * @return Pointer to value assiciated with the biggest key.
|
---|
241 | */
|
---|
242 | void *btree_node_max(btree_node_t *node)
|
---|
243 | {
|
---|
244 | ASSERT(LEAF_NODE(node));
|
---|
245 | ASSERT(node->keys);
|
---|
246 | return node->value[node->keys - 1];
|
---|
247 | }
|
---|
248 |
|
---|
249 | /** Initialize B-tree node.
|
---|
250 | *
|
---|
251 | * @param node B-tree node.
|
---|
252 | */
|
---|
253 | void node_initialize(btree_node_t *node)
|
---|
254 | {
|
---|
255 | int i;
|
---|
256 |
|
---|
257 | node->keys = 0;
|
---|
258 |
|
---|
259 | /* Clean also space for the extra key. */
|
---|
260 | for (i = 0; i < BTREE_MAX_KEYS + 1; i++) {
|
---|
261 | node->key[i] = 0;
|
---|
262 | node->value[i] = NULL;
|
---|
263 | node->subtree[i] = NULL;
|
---|
264 | }
|
---|
265 | node->subtree[i] = NULL;
|
---|
266 |
|
---|
267 | node->parent = NULL;
|
---|
268 |
|
---|
269 | link_initialize(&node->leaf_link);
|
---|
270 |
|
---|
271 | link_initialize(&node->bfs_link);
|
---|
272 | node->depth = 0;
|
---|
273 | }
|
---|
274 |
|
---|
275 | /** Insert key-value-left-subtree triplet into B-tree non-full node.
|
---|
276 | *
|
---|
277 | * It is actually possible to have more keys than BTREE_MAX_KEYS.
|
---|
278 | * This feature is used during splitting the node when the
|
---|
279 | * number of keys is BTREE_MAX_KEYS + 1.
|
---|
280 | *
|
---|
281 | * @param node B-tree node into wich the new key is to be inserted.
|
---|
282 | * @param key The key to be inserted.
|
---|
283 | * @param value Pointer to value to be inserted.
|
---|
284 | * @param rsubtree Pointer to the right subtree.
|
---|
285 | */
|
---|
286 | void node_insert_key(btree_node_t *node, __native key, void *value, btree_node_t *rsubtree)
|
---|
287 | {
|
---|
288 | int i;
|
---|
289 |
|
---|
290 | for (i = 0; i < node->keys; i++) {
|
---|
291 | if (key < node->key[i]) {
|
---|
292 | int j;
|
---|
293 |
|
---|
294 | for (j = node->keys; j > i; j--) {
|
---|
295 | node->key[j] = node->key[j - 1];
|
---|
296 | node->value[j] = node->value[j - 1];
|
---|
297 | node->subtree[j + 1] = node->subtree[j];
|
---|
298 | }
|
---|
299 | break;
|
---|
300 | }
|
---|
301 | }
|
---|
302 |
|
---|
303 | node->key[i] = key;
|
---|
304 | node->value[i] = value;
|
---|
305 | node->subtree[i + 1] = rsubtree;
|
---|
306 |
|
---|
307 | node->keys++;
|
---|
308 | }
|
---|
309 |
|
---|
310 | /** Split full B-tree node and insert new key-value-left-subtree triplet.
|
---|
311 | *
|
---|
312 | * This function will split a node and return pointer to a newly created
|
---|
313 | * node containing keys greater than the lesser of medians (or median)
|
---|
314 | * of the old keys and the newly added key. It will also write the
|
---|
315 | * median key to a memory address supplied by the caller.
|
---|
316 | *
|
---|
317 | * If the node being split is an index node, the median will be
|
---|
318 | * removed from the original node. If the node is a leaf node,
|
---|
319 | * the median will be preserved.
|
---|
320 | *
|
---|
321 | * @param node B-tree node wich is going to be split.
|
---|
322 | * @param key The key to be inserted.
|
---|
323 | * @param value Pointer to the value to be inserted.
|
---|
324 | * @param rsubtree Pointer to the right subtree of the key being added.
|
---|
325 | * @param median Address in memory, where the median key will be stored.
|
---|
326 | *
|
---|
327 | * @return Newly created right sibling of node.
|
---|
328 | */
|
---|
329 | btree_node_t *node_split(btree_node_t *node, __native key, void *value, btree_node_t *rsubtree, __native *median)
|
---|
330 | {
|
---|
331 | btree_node_t *rnode;
|
---|
332 | int i, j;
|
---|
333 |
|
---|
334 | ASSERT(median);
|
---|
335 | ASSERT(node->keys == BTREE_MAX_KEYS);
|
---|
336 |
|
---|
337 | /*
|
---|
338 | * Use the extra space to store the extra node.
|
---|
339 | */
|
---|
340 | node_insert_key(node, key, value, rsubtree);
|
---|
341 |
|
---|
342 | /*
|
---|
343 | * Compute median of keys.
|
---|
344 | */
|
---|
345 | *median = MEDIAN_LOW(node);
|
---|
346 |
|
---|
347 | rnode = (btree_node_t *) malloc(sizeof(btree_node_t), 0);
|
---|
348 | node_initialize(rnode);
|
---|
349 | rnode->parent = node->parent;
|
---|
350 | rnode->depth = node->depth;
|
---|
351 |
|
---|
352 | /*
|
---|
353 | * Copy big keys, values and subtree pointers to the new right sibling.
|
---|
354 | */
|
---|
355 | for (i = MEDIAN_LOW_INDEX(node) + 1, j = 0; i < node->keys; i++, j++) {
|
---|
356 | rnode->key[j] = node->key[i];
|
---|
357 | rnode->value[j] = node->value[i];
|
---|
358 | rnode->subtree[j] = node->subtree[i];
|
---|
359 |
|
---|
360 | /*
|
---|
361 | * Fix parent links in subtrees.
|
---|
362 | */
|
---|
363 | if (rnode->subtree[j])
|
---|
364 | rnode->subtree[j]->parent = rnode;
|
---|
365 |
|
---|
366 | }
|
---|
367 | rnode->subtree[j] = node->subtree[i];
|
---|
368 | if (rnode->subtree[j])
|
---|
369 | rnode->subtree[j]->parent = rnode;
|
---|
370 | rnode->keys = j;
|
---|
371 |
|
---|
372 | /*
|
---|
373 | * Shrink the old node.
|
---|
374 | * If this is an index node, remove the median.
|
---|
375 | */
|
---|
376 | node->keys = MEDIAN_LOW_INDEX(node) + 1;
|
---|
377 | if (INDEX_NODE(node))
|
---|
378 | node->keys--;
|
---|
379 |
|
---|
380 | return rnode;
|
---|
381 | }
|
---|
382 |
|
---|
383 | /** Print B-tree.
|
---|
384 | *
|
---|
385 | * @param t Print out B-tree.
|
---|
386 | */
|
---|
387 | void btree_print(btree_t *t)
|
---|
388 | {
|
---|
389 | int i, depth = t->root->depth;
|
---|
390 | link_t head;
|
---|
391 |
|
---|
392 | list_initialize(&head);
|
---|
393 | list_append(&t->root->bfs_link, &head);
|
---|
394 |
|
---|
395 | /*
|
---|
396 | * Use BFS search to print out the tree.
|
---|
397 | * Levels are distinguished from one another by node->depth.
|
---|
398 | */
|
---|
399 | while (!list_empty(&head)) {
|
---|
400 | link_t *hlp;
|
---|
401 | btree_node_t *node;
|
---|
402 |
|
---|
403 | hlp = head.next;
|
---|
404 | ASSERT(hlp != &head);
|
---|
405 | node = list_get_instance(hlp, btree_node_t, bfs_link);
|
---|
406 | list_remove(hlp);
|
---|
407 |
|
---|
408 | ASSERT(node);
|
---|
409 |
|
---|
410 | if (node->depth != depth) {
|
---|
411 | printf("\n");
|
---|
412 | depth = node->depth;
|
---|
413 | }
|
---|
414 |
|
---|
415 | printf("(");
|
---|
416 | for (i = 0; i < node->keys; i++) {
|
---|
417 | printf("%d,", node->key[i]);
|
---|
418 | if (node->depth && node->subtree[i]) {
|
---|
419 | list_append(&node->subtree[i]->bfs_link, &head);
|
---|
420 | }
|
---|
421 | }
|
---|
422 | if (node->depth && node->subtree[i]) {
|
---|
423 | list_append(&node->subtree[i]->bfs_link, &head);
|
---|
424 | }
|
---|
425 | printf(")");
|
---|
426 | }
|
---|
427 | printf("\n");
|
---|
428 | }
|
---|