| 1 | /*
|
|---|
| 2 | * Copyright (C) 2006 Jakub Jermar
|
|---|
| 3 | * All rights reserved.
|
|---|
| 4 | *
|
|---|
| 5 | * Redistribution and use in source and binary forms, with or without
|
|---|
| 6 | * modification, are permitted provided that the following conditions
|
|---|
| 7 | * are met:
|
|---|
| 8 | *
|
|---|
| 9 | * - Redistributions of source code must retain the above copyright
|
|---|
| 10 | * notice, this list of conditions and the following disclaimer.
|
|---|
| 11 | * - Redistributions in binary form must reproduce the above copyright
|
|---|
| 12 | * notice, this list of conditions and the following disclaimer in the
|
|---|
| 13 | * documentation and/or other materials provided with the distribution.
|
|---|
| 14 | * - The name of the author may not be used to endorse or promote products
|
|---|
| 15 | * derived from this software without specific prior written permission.
|
|---|
| 16 | *
|
|---|
| 17 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|---|
| 18 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|---|
| 19 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|---|
| 20 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|---|
| 21 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|---|
| 22 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|---|
| 23 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|---|
| 24 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|---|
| 25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|---|
| 26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|---|
| 27 | */
|
|---|
| 28 |
|
|---|
| 29 | /*
|
|---|
| 30 | * This B-tree has the following properties:
|
|---|
| 31 | * - it is a ballanced 2-3-4 tree (i.e. BTREE_M = 4)
|
|---|
| 32 | * - values (i.e. pointers to values) are stored only in leaves
|
|---|
| 33 | * - leaves are linked in a list
|
|---|
| 34 | * - technically, it is a B+-tree (because of the previous properties)
|
|---|
| 35 | *
|
|---|
| 36 | * Be carefull when using these trees. They need to allocate
|
|---|
| 37 | * and deallocate memory for their index nodes and as such
|
|---|
| 38 | * can sleep.
|
|---|
| 39 | */
|
|---|
| 40 |
|
|---|
| 41 | #include <adt/btree.h>
|
|---|
| 42 | #include <adt/list.h>
|
|---|
| 43 | #include <mm/slab.h>
|
|---|
| 44 | #include <debug.h>
|
|---|
| 45 | #include <panic.h>
|
|---|
| 46 | #include <typedefs.h>
|
|---|
| 47 | #include <print.h>
|
|---|
| 48 |
|
|---|
| 49 | static void _btree_insert(btree_t *t, __native key, void *value, btree_node_t *rsubtree, btree_node_t *node);
|
|---|
| 50 | static void node_initialize(btree_node_t *node);
|
|---|
| 51 | static void node_insert_key_left(btree_node_t *node, __native key, void *value, btree_node_t *rsubtree);
|
|---|
| 52 | static void node_insert_key_right(btree_node_t *node, __native key, void *value, btree_node_t *rsubtree);
|
|---|
| 53 | static btree_node_t *node_split(btree_node_t *node, __native key, void *value, btree_node_t *rsubtree, __native *median);
|
|---|
| 54 | static void node_remove_key_left(btree_node_t *node, __native key);
|
|---|
| 55 | static void node_remove_key_right(btree_node_t *node, __native key);
|
|---|
| 56 | static index_t find_key_by_subtree(btree_node_t *node, btree_node_t *subtree, bool right);
|
|---|
| 57 | static bool try_insert_by_left_rotation(btree_node_t *node, __native key, void *value, btree_node_t *rsubtree);
|
|---|
| 58 | static bool try_insert_by_right_rotation(btree_node_t *node, __native key, void *value, btree_node_t *rsubtree);
|
|---|
| 59 |
|
|---|
| 60 | #define ROOT_NODE(n) (!(n)->parent)
|
|---|
| 61 | #define INDEX_NODE(n) ((n)->subtree[0] != NULL)
|
|---|
| 62 | #define LEAF_NODE(n) ((n)->subtree[0] == NULL)
|
|---|
| 63 |
|
|---|
| 64 | #define MEDIAN_LOW_INDEX(n) (((n)->keys-1)/2)
|
|---|
| 65 | #define MEDIAN_HIGH_INDEX(n) ((n)->keys/2)
|
|---|
| 66 | #define MEDIAN_LOW(n) ((n)->key[MEDIAN_LOW_INDEX((n))]);
|
|---|
| 67 | #define MEDIAN_HIGH(n) ((n)->key[MEDIAN_HIGH_INDEX((n))]);
|
|---|
| 68 |
|
|---|
| 69 | /** Create empty B-tree.
|
|---|
| 70 | *
|
|---|
| 71 | * @param t B-tree.
|
|---|
| 72 | */
|
|---|
| 73 | void btree_create(btree_t *t)
|
|---|
| 74 | {
|
|---|
| 75 | list_initialize(&t->leaf_head);
|
|---|
| 76 | t->root = (btree_node_t *) malloc(sizeof(btree_node_t), 0);
|
|---|
| 77 | node_initialize(t->root);
|
|---|
| 78 | list_append(&t->root->leaf_link, &t->leaf_head);
|
|---|
| 79 | }
|
|---|
| 80 |
|
|---|
| 81 | /** Destroy empty B-tree. */
|
|---|
| 82 | void btree_destroy(btree_t *t)
|
|---|
| 83 | {
|
|---|
| 84 | ASSERT(!t->root->keys);
|
|---|
| 85 | free(t->root);
|
|---|
| 86 | }
|
|---|
| 87 |
|
|---|
| 88 | /** Insert key-value pair into B-tree.
|
|---|
| 89 | *
|
|---|
| 90 | * @param t B-tree.
|
|---|
| 91 | * @param key Key to be inserted.
|
|---|
| 92 | * @param value Value to be inserted.
|
|---|
| 93 | * @param leaf_node Leaf node where the insertion should begin.
|
|---|
| 94 | */
|
|---|
| 95 | void btree_insert(btree_t *t, __native key, void *value, btree_node_t *leaf_node)
|
|---|
| 96 | {
|
|---|
| 97 | btree_node_t *lnode;
|
|---|
| 98 |
|
|---|
| 99 | ASSERT(value);
|
|---|
| 100 |
|
|---|
| 101 | lnode = leaf_node;
|
|---|
| 102 | if (!lnode) {
|
|---|
| 103 | if (btree_search(t, key, &lnode)) {
|
|---|
| 104 | panic("B-tree %P already contains key %d\n", t, key);
|
|---|
| 105 | }
|
|---|
| 106 | }
|
|---|
| 107 |
|
|---|
| 108 | _btree_insert(t, key, value, NULL, lnode);
|
|---|
| 109 | }
|
|---|
| 110 |
|
|---|
| 111 | /** Recursively insert into B-tree.
|
|---|
| 112 | *
|
|---|
| 113 | * @param t B-tree.
|
|---|
| 114 | * @param key Key to be inserted.
|
|---|
| 115 | * @param value Value to be inserted.
|
|---|
| 116 | * @param rsubtree Right subtree of the inserted key.
|
|---|
| 117 | * @param node Start inserting into this node.
|
|---|
| 118 | */
|
|---|
| 119 | void _btree_insert(btree_t *t, __native key, void *value, btree_node_t *rsubtree, btree_node_t *node)
|
|---|
| 120 | {
|
|---|
| 121 | if (node->keys < BTREE_MAX_KEYS) {
|
|---|
| 122 | /*
|
|---|
| 123 | * Node conatins enough space, the key can be stored immediately.
|
|---|
| 124 | */
|
|---|
| 125 | node_insert_key_right(node, key, value, rsubtree);
|
|---|
| 126 | } else if (try_insert_by_left_rotation(node, key, value, rsubtree)) {
|
|---|
| 127 | /*
|
|---|
| 128 | * The key-value-rsubtree triplet has been inserted because
|
|---|
| 129 | * some keys could have been moved to the left sibling.
|
|---|
| 130 | */
|
|---|
| 131 | } else if (try_insert_by_right_rotation(node, key, value, rsubtree)) {
|
|---|
| 132 | /*
|
|---|
| 133 | * The key-value-rsubtree triplet has been inserted because
|
|---|
| 134 | * some keys could have been moved to the right sibling.
|
|---|
| 135 | */
|
|---|
| 136 | } else {
|
|---|
| 137 | btree_node_t *rnode;
|
|---|
| 138 | __native median;
|
|---|
| 139 |
|
|---|
| 140 | /*
|
|---|
| 141 | * Node is full and both siblings (if both exist) are full too.
|
|---|
| 142 | * Split the node and insert the smallest key from the node containing
|
|---|
| 143 | * bigger keys (i.e. the new node) into its parent.
|
|---|
| 144 | */
|
|---|
| 145 |
|
|---|
| 146 | rnode = node_split(node, key, value, rsubtree, &median);
|
|---|
| 147 |
|
|---|
| 148 | if (LEAF_NODE(node)) {
|
|---|
| 149 | list_append(&rnode->leaf_link, &node->leaf_link);
|
|---|
| 150 | }
|
|---|
| 151 |
|
|---|
| 152 | if (ROOT_NODE(node)) {
|
|---|
| 153 | /*
|
|---|
| 154 | * We split the root node. Create new root.
|
|---|
| 155 | */
|
|---|
| 156 | t->root = (btree_node_t *) malloc(sizeof(btree_node_t), 0);
|
|---|
| 157 | node->parent = t->root;
|
|---|
| 158 | rnode->parent = t->root;
|
|---|
| 159 | node_initialize(t->root);
|
|---|
| 160 |
|
|---|
| 161 | /*
|
|---|
| 162 | * Left-hand side subtree will be the old root (i.e. node).
|
|---|
| 163 | * Right-hand side subtree will be rnode.
|
|---|
| 164 | */
|
|---|
| 165 | t->root->subtree[0] = node;
|
|---|
| 166 |
|
|---|
| 167 | t->root->depth = node->depth + 1;
|
|---|
| 168 | }
|
|---|
| 169 | _btree_insert(t, median, NULL, rnode, node->parent);
|
|---|
| 170 | }
|
|---|
| 171 |
|
|---|
| 172 | }
|
|---|
| 173 |
|
|---|
| 174 | /* TODO */
|
|---|
| 175 | void btree_remove(btree_t *t, __native key)
|
|---|
| 176 | {
|
|---|
| 177 | }
|
|---|
| 178 |
|
|---|
| 179 | /** Search key in a B-tree.
|
|---|
| 180 | *
|
|---|
| 181 | * @param t B-tree.
|
|---|
| 182 | * @param key Key to be searched.
|
|---|
| 183 | * @param leaf_node Address where to put pointer to visited leaf node.
|
|---|
| 184 | *
|
|---|
| 185 | * @return Pointer to value or NULL if there is no such key.
|
|---|
| 186 | */
|
|---|
| 187 | void *btree_search(btree_t *t, __native key, btree_node_t **leaf_node)
|
|---|
| 188 | {
|
|---|
| 189 | btree_node_t *cur, *next;
|
|---|
| 190 |
|
|---|
| 191 | /*
|
|---|
| 192 | * Iteratively descend to the leaf that can contain the searched key.
|
|---|
| 193 | */
|
|---|
| 194 | for (cur = t->root; cur; cur = next) {
|
|---|
| 195 |
|
|---|
| 196 | /* Last iteration will set this with proper leaf node address. */
|
|---|
| 197 | *leaf_node = cur;
|
|---|
| 198 |
|
|---|
| 199 | /*
|
|---|
| 200 | * The key can be in the leftmost subtree.
|
|---|
| 201 | * Test it separately.
|
|---|
| 202 | */
|
|---|
| 203 | if (key < cur->key[0]) {
|
|---|
| 204 | next = cur->subtree[0];
|
|---|
| 205 | continue;
|
|---|
| 206 | } else {
|
|---|
| 207 | void *val;
|
|---|
| 208 | int i;
|
|---|
| 209 |
|
|---|
| 210 | /*
|
|---|
| 211 | * Now if the key is smaller than cur->key[i]
|
|---|
| 212 | * it can only mean that the value is in cur->subtree[i]
|
|---|
| 213 | * or it is not in the tree at all.
|
|---|
| 214 | */
|
|---|
| 215 | for (i = 1; i < cur->keys; i++) {
|
|---|
| 216 | if (key < cur->key[i]) {
|
|---|
| 217 | next = cur->subtree[i];
|
|---|
| 218 | val = cur->value[i - 1];
|
|---|
| 219 |
|
|---|
| 220 | if (LEAF_NODE(cur))
|
|---|
| 221 | return key == cur->key[i - 1] ? val : NULL;
|
|---|
| 222 |
|
|---|
| 223 | goto descend;
|
|---|
| 224 | }
|
|---|
| 225 | }
|
|---|
| 226 |
|
|---|
| 227 | /*
|
|---|
| 228 | * Last possibility is that the key is in the rightmost subtree.
|
|---|
| 229 | */
|
|---|
| 230 | next = cur->subtree[i];
|
|---|
| 231 | val = cur->value[i - 1];
|
|---|
| 232 | if (LEAF_NODE(cur))
|
|---|
| 233 | return key == cur->key[i - 1] ? val : NULL;
|
|---|
| 234 | }
|
|---|
| 235 | descend:
|
|---|
| 236 | ;
|
|---|
| 237 | }
|
|---|
| 238 |
|
|---|
| 239 | /*
|
|---|
| 240 | * The key was not found in the *leaf_node and is smaller than any of its keys.
|
|---|
| 241 | */
|
|---|
| 242 | return NULL;
|
|---|
| 243 | }
|
|---|
| 244 |
|
|---|
| 245 | /** Get pointer to value with the smallest key within the node.
|
|---|
| 246 | *
|
|---|
| 247 | * Can be only used on leaf-level nodes.
|
|---|
| 248 | *
|
|---|
| 249 | * @param node B-tree node.
|
|---|
| 250 | *
|
|---|
| 251 | * @return Pointer to value assiciated with the smallest key.
|
|---|
| 252 | */
|
|---|
| 253 | void *btree_node_min(btree_node_t *node)
|
|---|
| 254 | {
|
|---|
| 255 | ASSERT(LEAF_NODE(node));
|
|---|
| 256 | ASSERT(node->keys);
|
|---|
| 257 | return node->value[0];
|
|---|
| 258 | }
|
|---|
| 259 |
|
|---|
| 260 | /** Get pointer to value with the biggest key within the node.
|
|---|
| 261 | *
|
|---|
| 262 | * Can be only used on leaf-level nodes.
|
|---|
| 263 | *
|
|---|
| 264 | * @param node B-tree node.
|
|---|
| 265 | *
|
|---|
| 266 | * @return Pointer to value assiciated with the biggest key.
|
|---|
| 267 | */
|
|---|
| 268 | void *btree_node_max(btree_node_t *node)
|
|---|
| 269 | {
|
|---|
| 270 | ASSERT(LEAF_NODE(node));
|
|---|
| 271 | ASSERT(node->keys);
|
|---|
| 272 | return node->value[node->keys - 1];
|
|---|
| 273 | }
|
|---|
| 274 |
|
|---|
| 275 | /** Initialize B-tree node.
|
|---|
| 276 | *
|
|---|
| 277 | * @param node B-tree node.
|
|---|
| 278 | */
|
|---|
| 279 | void node_initialize(btree_node_t *node)
|
|---|
| 280 | {
|
|---|
| 281 | int i;
|
|---|
| 282 |
|
|---|
| 283 | node->keys = 0;
|
|---|
| 284 |
|
|---|
| 285 | /* Clean also space for the extra key. */
|
|---|
| 286 | for (i = 0; i < BTREE_MAX_KEYS + 1; i++) {
|
|---|
| 287 | node->key[i] = 0;
|
|---|
| 288 | node->value[i] = NULL;
|
|---|
| 289 | node->subtree[i] = NULL;
|
|---|
| 290 | }
|
|---|
| 291 | node->subtree[i] = NULL;
|
|---|
| 292 |
|
|---|
| 293 | node->parent = NULL;
|
|---|
| 294 |
|
|---|
| 295 | link_initialize(&node->leaf_link);
|
|---|
| 296 |
|
|---|
| 297 | link_initialize(&node->bfs_link);
|
|---|
| 298 | node->depth = 0;
|
|---|
| 299 | }
|
|---|
| 300 |
|
|---|
| 301 | /** Insert key-value-lsubtree triplet into B-tree node.
|
|---|
| 302 | *
|
|---|
| 303 | * It is actually possible to have more keys than BTREE_MAX_KEYS.
|
|---|
| 304 | * This feature is used during insert by right rotation.
|
|---|
| 305 | *
|
|---|
| 306 | * @param node B-tree node into wich the new key is to be inserted.
|
|---|
| 307 | * @param key The key to be inserted.
|
|---|
| 308 | * @param value Pointer to value to be inserted.
|
|---|
| 309 | * @param lsubtree Pointer to the left subtree.
|
|---|
| 310 | */
|
|---|
| 311 | void node_insert_key_left(btree_node_t *node, __native key, void *value, btree_node_t *lsubtree)
|
|---|
| 312 | {
|
|---|
| 313 | int i;
|
|---|
| 314 |
|
|---|
| 315 | for (i = 0; i < node->keys; i++) {
|
|---|
| 316 | if (key < node->key[i]) {
|
|---|
| 317 | int j;
|
|---|
| 318 |
|
|---|
| 319 | for (j = node->keys; j > i; j--) {
|
|---|
| 320 | node->key[j] = node->key[j - 1];
|
|---|
| 321 | node->value[j] = node->value[j - 1];
|
|---|
| 322 | node->subtree[j + 1] = node->subtree[j];
|
|---|
| 323 | }
|
|---|
| 324 | node->subtree[j + 1] = node->subtree[j];
|
|---|
| 325 | break;
|
|---|
| 326 | }
|
|---|
| 327 | }
|
|---|
| 328 | node->key[i] = key;
|
|---|
| 329 | node->value[i] = value;
|
|---|
| 330 | node->subtree[i] = lsubtree;
|
|---|
| 331 |
|
|---|
| 332 | node->keys++;
|
|---|
| 333 | }
|
|---|
| 334 |
|
|---|
| 335 |
|
|---|
| 336 | /** Insert key-value-rsubtree triplet into B-tree node.
|
|---|
| 337 | *
|
|---|
| 338 | * It is actually possible to have more keys than BTREE_MAX_KEYS.
|
|---|
| 339 | * This feature is used during splitting the node when the
|
|---|
| 340 | * number of keys is BTREE_MAX_KEYS + 1. Insert by left rotation
|
|---|
| 341 | * also makes use of this feature.
|
|---|
| 342 | *
|
|---|
| 343 | * @param node B-tree node into wich the new key is to be inserted.
|
|---|
| 344 | * @param key The key to be inserted.
|
|---|
| 345 | * @param value Pointer to value to be inserted.
|
|---|
| 346 | * @param rsubtree Pointer to the right subtree.
|
|---|
| 347 | */
|
|---|
| 348 | void node_insert_key_right(btree_node_t *node, __native key, void *value, btree_node_t *rsubtree)
|
|---|
| 349 | {
|
|---|
| 350 | int i;
|
|---|
| 351 |
|
|---|
| 352 | for (i = 0; i < node->keys; i++) {
|
|---|
| 353 | if (key < node->key[i]) {
|
|---|
| 354 | int j;
|
|---|
| 355 |
|
|---|
| 356 | for (j = node->keys; j > i; j--) {
|
|---|
| 357 | node->key[j] = node->key[j - 1];
|
|---|
| 358 | node->value[j] = node->value[j - 1];
|
|---|
| 359 | node->subtree[j + 1] = node->subtree[j];
|
|---|
| 360 | }
|
|---|
| 361 | break;
|
|---|
| 362 | }
|
|---|
| 363 | }
|
|---|
| 364 | node->key[i] = key;
|
|---|
| 365 | node->value[i] = value;
|
|---|
| 366 | node->subtree[i + 1] = rsubtree;
|
|---|
| 367 |
|
|---|
| 368 | node->keys++;
|
|---|
| 369 | }
|
|---|
| 370 |
|
|---|
| 371 | /** Split full B-tree node and insert new key-value-right-subtree triplet.
|
|---|
| 372 | *
|
|---|
| 373 | * This function will split a node and return pointer to a newly created
|
|---|
| 374 | * node containing keys greater than or equal to the greater of medians
|
|---|
| 375 | * (or median) of the old keys and the newly added key. It will also write
|
|---|
| 376 | * the median key to a memory address supplied by the caller.
|
|---|
| 377 | *
|
|---|
| 378 | * If the node being split is an index node, the median will not be
|
|---|
| 379 | * included in the new node. If the node is a leaf node,
|
|---|
| 380 | * the median will be copied there.
|
|---|
| 381 | *
|
|---|
| 382 | * @param node B-tree node wich is going to be split.
|
|---|
| 383 | * @param key The key to be inserted.
|
|---|
| 384 | * @param value Pointer to the value to be inserted.
|
|---|
| 385 | * @param rsubtree Pointer to the right subtree of the key being added.
|
|---|
| 386 | * @param median Address in memory, where the median key will be stored.
|
|---|
| 387 | *
|
|---|
| 388 | * @return Newly created right sibling of node.
|
|---|
| 389 | */
|
|---|
| 390 | btree_node_t *node_split(btree_node_t *node, __native key, void *value, btree_node_t *rsubtree, __native *median)
|
|---|
| 391 | {
|
|---|
| 392 | btree_node_t *rnode;
|
|---|
| 393 | int i, j;
|
|---|
| 394 |
|
|---|
| 395 | ASSERT(median);
|
|---|
| 396 | ASSERT(node->keys == BTREE_MAX_KEYS);
|
|---|
| 397 |
|
|---|
| 398 | /*
|
|---|
| 399 | * Use the extra space to store the extra node.
|
|---|
| 400 | */
|
|---|
| 401 | node_insert_key_right(node, key, value, rsubtree);
|
|---|
| 402 |
|
|---|
| 403 | /*
|
|---|
| 404 | * Compute median of keys.
|
|---|
| 405 | */
|
|---|
| 406 | *median = MEDIAN_HIGH(node);
|
|---|
| 407 |
|
|---|
| 408 | /*
|
|---|
| 409 | * Allocate and initialize new right sibling.
|
|---|
| 410 | */
|
|---|
| 411 | rnode = (btree_node_t *) malloc(sizeof(btree_node_t), 0);
|
|---|
| 412 | node_initialize(rnode);
|
|---|
| 413 | rnode->parent = node->parent;
|
|---|
| 414 | rnode->depth = node->depth;
|
|---|
| 415 |
|
|---|
| 416 | /*
|
|---|
| 417 | * Copy big keys, values and subtree pointers to the new right sibling.
|
|---|
| 418 | * If this is an index node, do not copy the median.
|
|---|
| 419 | */
|
|---|
| 420 | i = (int) INDEX_NODE(node);
|
|---|
| 421 | for (i += MEDIAN_HIGH_INDEX(node), j = 0; i < node->keys; i++, j++) {
|
|---|
| 422 | rnode->key[j] = node->key[i];
|
|---|
| 423 | rnode->value[j] = node->value[i];
|
|---|
| 424 | rnode->subtree[j] = node->subtree[i];
|
|---|
| 425 |
|
|---|
| 426 | /*
|
|---|
| 427 | * Fix parent links in subtrees.
|
|---|
| 428 | */
|
|---|
| 429 | if (rnode->subtree[j])
|
|---|
| 430 | rnode->subtree[j]->parent = rnode;
|
|---|
| 431 |
|
|---|
| 432 | }
|
|---|
| 433 | rnode->subtree[j] = node->subtree[i];
|
|---|
| 434 | if (rnode->subtree[j])
|
|---|
| 435 | rnode->subtree[j]->parent = rnode;
|
|---|
| 436 |
|
|---|
| 437 | rnode->keys = j; /* Set number of keys of the new node. */
|
|---|
| 438 | node->keys /= 2; /* Shrink the old node. */
|
|---|
| 439 |
|
|---|
| 440 | return rnode;
|
|---|
| 441 | }
|
|---|
| 442 |
|
|---|
| 443 | /** Remove key and its left subtree pointer from B-tree node.
|
|---|
| 444 | *
|
|---|
| 445 | * Remove the key and eliminate gaps in node->key array.
|
|---|
| 446 | * Note that the value pointer and the left subtree pointer
|
|---|
| 447 | * is removed from the node as well.
|
|---|
| 448 | *
|
|---|
| 449 | * @param node B-tree node.
|
|---|
| 450 | * @param key Key to be removed.
|
|---|
| 451 | */
|
|---|
| 452 | void node_remove_key_left(btree_node_t *node, __native key)
|
|---|
| 453 | {
|
|---|
| 454 | int i, j;
|
|---|
| 455 |
|
|---|
| 456 | for (i = 0; i < node->keys; i++) {
|
|---|
| 457 | if (key == node->key[i]) {
|
|---|
| 458 | for (j = i + 1; j < node->keys; j++) {
|
|---|
| 459 | node->key[j - 1] = node->key[j];
|
|---|
| 460 | node->value[j - 1] = node->value[j];
|
|---|
| 461 | node->subtree[j - 1] = node->subtree[j];
|
|---|
| 462 | }
|
|---|
| 463 | node->subtree[j - 1] = node->subtree[j];
|
|---|
| 464 | node->keys--;
|
|---|
| 465 | return;
|
|---|
| 466 | }
|
|---|
| 467 | }
|
|---|
| 468 | panic("node %P does not contain key %d\n", node, key);
|
|---|
| 469 | }
|
|---|
| 470 |
|
|---|
| 471 | /** Remove key and its right subtree pointer from B-tree node.
|
|---|
| 472 | *
|
|---|
| 473 | * Remove the key and eliminate gaps in node->key array.
|
|---|
| 474 | * Note that the value pointer and the right subtree pointer
|
|---|
| 475 | * is removed from the node as well.
|
|---|
| 476 | *
|
|---|
| 477 | * @param node B-tree node.
|
|---|
| 478 | * @param key Key to be removed.
|
|---|
| 479 | */
|
|---|
| 480 | void node_remove_key_right(btree_node_t *node, __native key)
|
|---|
| 481 | {
|
|---|
| 482 | int i, j;
|
|---|
| 483 |
|
|---|
| 484 | for (i = 0; i < node->keys; i++) {
|
|---|
| 485 | if (key == node->key[i]) {
|
|---|
| 486 | for (j = i + 1; j < node->keys; j++) {
|
|---|
| 487 | node->key[j - 1] = node->key[j];
|
|---|
| 488 | node->value[j - 1] = node->value[j];
|
|---|
| 489 | node->subtree[j] = node->subtree[j + 1];
|
|---|
| 490 | }
|
|---|
| 491 | node->keys--;
|
|---|
| 492 | return;
|
|---|
| 493 | }
|
|---|
| 494 | }
|
|---|
| 495 | panic("node %P does not contain key %d\n", node, key);
|
|---|
| 496 | }
|
|---|
| 497 |
|
|---|
| 498 | /** Find key by its left or right subtree.
|
|---|
| 499 | *
|
|---|
| 500 | * @param node B-tree node.
|
|---|
| 501 | * @param subtree Left or right subtree of a key found in node.
|
|---|
| 502 | * @param right If true, subtree is a right subtree. If false, subtree is a left subtree.
|
|---|
| 503 | *
|
|---|
| 504 | * @return Index of the key associated with the subtree.
|
|---|
| 505 | */
|
|---|
| 506 | index_t find_key_by_subtree(btree_node_t *node, btree_node_t *subtree, bool right)
|
|---|
| 507 | {
|
|---|
| 508 | int i;
|
|---|
| 509 |
|
|---|
| 510 | for (i = 0; i < node->keys + 1; i++) {
|
|---|
| 511 | if (subtree == node->subtree[i])
|
|---|
| 512 | return i - (int) (right != false);
|
|---|
| 513 | }
|
|---|
| 514 | panic("node %P does not contain subtree %P\n", node, subtree);
|
|---|
| 515 | }
|
|---|
| 516 |
|
|---|
| 517 | /** Insert key-value-rsubtree triplet and rotate the node to the left, if this operation can be done.
|
|---|
| 518 | *
|
|---|
| 519 | * Left sibling of the node (if it exists) is checked for free space.
|
|---|
| 520 | * If there is free space, the key is inserted and the smallest key of
|
|---|
| 521 | * the node is moved there. The index node which is the parent of both
|
|---|
| 522 | * nodes is fixed.
|
|---|
| 523 | *
|
|---|
| 524 | * @param node B-tree node.
|
|---|
| 525 | * @param inskey Key to be inserted.
|
|---|
| 526 | * @param insvalue Value to be inserted.
|
|---|
| 527 | * @param rsubtree Right subtree of inskey.
|
|---|
| 528 | *
|
|---|
| 529 | * @return True if the rotation was performed, false otherwise.
|
|---|
| 530 | */
|
|---|
| 531 | bool try_insert_by_left_rotation(btree_node_t *node, __native inskey, void *insvalue, btree_node_t *rsubtree)
|
|---|
| 532 | {
|
|---|
| 533 | index_t idx;
|
|---|
| 534 | btree_node_t *lnode;
|
|---|
| 535 |
|
|---|
| 536 | /*
|
|---|
| 537 | * If this is root node, the rotation can not be done.
|
|---|
| 538 | */
|
|---|
| 539 | if (ROOT_NODE(node))
|
|---|
| 540 | return false;
|
|---|
| 541 |
|
|---|
| 542 | idx = find_key_by_subtree(node->parent, node, true);
|
|---|
| 543 | if ((int) idx == -1) {
|
|---|
| 544 | /*
|
|---|
| 545 | * If this node is the leftmost subtree of its parent,
|
|---|
| 546 | * the rotation can not be done.
|
|---|
| 547 | */
|
|---|
| 548 | return false;
|
|---|
| 549 | }
|
|---|
| 550 |
|
|---|
| 551 | lnode = node->parent->subtree[idx];
|
|---|
| 552 |
|
|---|
| 553 | if (lnode->keys < BTREE_MAX_KEYS) {
|
|---|
| 554 | __native key;
|
|---|
| 555 |
|
|---|
| 556 | /*
|
|---|
| 557 | * The rotaion can be done. The left sibling has free space.
|
|---|
| 558 | */
|
|---|
| 559 |
|
|---|
| 560 | node_insert_key_right(node, inskey, insvalue, rsubtree);
|
|---|
| 561 | key = node->key[0];
|
|---|
| 562 |
|
|---|
| 563 | if (LEAF_NODE(node)) {
|
|---|
| 564 | void *value;
|
|---|
| 565 |
|
|---|
| 566 | value = node->value[0];
|
|---|
| 567 | node_remove_key_left(node, key);
|
|---|
| 568 | node_insert_key_right(lnode, key, value, NULL);
|
|---|
| 569 | node->parent->key[idx] = node->key[0];
|
|---|
| 570 | } else {
|
|---|
| 571 | btree_node_t *lsubtree;
|
|---|
| 572 |
|
|---|
| 573 | lsubtree = node->subtree[0];
|
|---|
| 574 | node_remove_key_left(node, key);
|
|---|
| 575 | node_insert_key_right(lnode, node->parent->key[idx], NULL, lsubtree);
|
|---|
| 576 | node->parent->key[idx] = key;
|
|---|
| 577 |
|
|---|
| 578 | /* Fix parent link of the reconnected left subtree. */
|
|---|
| 579 | lsubtree->parent = lnode;
|
|---|
| 580 | }
|
|---|
| 581 | return true;
|
|---|
| 582 | }
|
|---|
| 583 |
|
|---|
| 584 | return false;
|
|---|
| 585 | }
|
|---|
| 586 |
|
|---|
| 587 | /** Insert key-value-rsubtree triplet and rotate the node to the right, if this operation can be done.
|
|---|
| 588 | *
|
|---|
| 589 | * Right sibling of the node (if it exists) is checked for free space.
|
|---|
| 590 | * If there is free space, the key is inserted and the biggest key of
|
|---|
| 591 | * the node is moved there. The index node which is the parent of both
|
|---|
| 592 | * nodes is fixed.
|
|---|
| 593 | *
|
|---|
| 594 | * @param node B-tree node.
|
|---|
| 595 | * @param inskey Key to be inserted.
|
|---|
| 596 | * @param insvalue Value to be inserted.
|
|---|
| 597 | * @param rsubtree Right subtree of inskey.
|
|---|
| 598 | *
|
|---|
| 599 | * @return True if the rotation was performed, false otherwise.
|
|---|
| 600 | */
|
|---|
| 601 | bool try_insert_by_right_rotation(btree_node_t *node, __native inskey, void *insvalue, btree_node_t *rsubtree)
|
|---|
| 602 | {
|
|---|
| 603 | index_t idx;
|
|---|
| 604 | btree_node_t *rnode;
|
|---|
| 605 |
|
|---|
| 606 | /*
|
|---|
| 607 | * If this is root node, the rotation can not be done.
|
|---|
| 608 | */
|
|---|
| 609 | if (ROOT_NODE(node))
|
|---|
| 610 | return false;
|
|---|
| 611 |
|
|---|
| 612 | idx = find_key_by_subtree(node->parent, node, false);
|
|---|
| 613 | if (idx == node->parent->keys) {
|
|---|
| 614 | /*
|
|---|
| 615 | * If this node is the rightmost subtree of its parent,
|
|---|
| 616 | * the rotation can not be done.
|
|---|
| 617 | */
|
|---|
| 618 | return false;
|
|---|
| 619 | }
|
|---|
| 620 |
|
|---|
| 621 | rnode = node->parent->subtree[idx + 1];
|
|---|
| 622 |
|
|---|
| 623 | if (rnode->keys < BTREE_MAX_KEYS) {
|
|---|
| 624 | __native key;
|
|---|
| 625 |
|
|---|
| 626 | /*
|
|---|
| 627 | * The rotaion can be done. The right sibling has free space.
|
|---|
| 628 | */
|
|---|
| 629 |
|
|---|
| 630 | node_insert_key_right(node, inskey, insvalue, rsubtree);
|
|---|
| 631 | key = node->key[node->keys - 1];
|
|---|
| 632 |
|
|---|
| 633 | if (LEAF_NODE(node)) {
|
|---|
| 634 | void *value;
|
|---|
| 635 |
|
|---|
| 636 | value = node->value[node->keys - 1];
|
|---|
| 637 | node_remove_key_right(node, key);
|
|---|
| 638 | node_insert_key_left(rnode, key, value, NULL);
|
|---|
| 639 | node->parent->key[idx] = key;
|
|---|
| 640 | } else {
|
|---|
| 641 | btree_node_t *rsubt;
|
|---|
| 642 |
|
|---|
| 643 | rsubt = node->subtree[node->keys];
|
|---|
| 644 | node_remove_key_right(node, key);
|
|---|
| 645 | node_insert_key_left(rnode, node->parent->key[idx], NULL, rsubt);
|
|---|
| 646 | node->parent->key[idx] = key;
|
|---|
| 647 |
|
|---|
| 648 | /* Fix parent link of the reconnected right subtree. */
|
|---|
| 649 | rsubt->parent = rnode;
|
|---|
| 650 | }
|
|---|
| 651 | return true;
|
|---|
| 652 | }
|
|---|
| 653 |
|
|---|
| 654 | return false;
|
|---|
| 655 | }
|
|---|
| 656 |
|
|---|
| 657 | /** Print B-tree.
|
|---|
| 658 | *
|
|---|
| 659 | * @param t Print out B-tree.
|
|---|
| 660 | */
|
|---|
| 661 | void btree_print(btree_t *t)
|
|---|
| 662 | {
|
|---|
| 663 | int i, depth = t->root->depth;
|
|---|
| 664 | link_t head;
|
|---|
| 665 |
|
|---|
| 666 | list_initialize(&head);
|
|---|
| 667 | list_append(&t->root->bfs_link, &head);
|
|---|
| 668 |
|
|---|
| 669 | /*
|
|---|
| 670 | * Use BFS search to print out the tree.
|
|---|
| 671 | * Levels are distinguished from one another by node->depth.
|
|---|
| 672 | */
|
|---|
| 673 | while (!list_empty(&head)) {
|
|---|
| 674 | link_t *hlp;
|
|---|
| 675 | btree_node_t *node;
|
|---|
| 676 |
|
|---|
| 677 | hlp = head.next;
|
|---|
| 678 | ASSERT(hlp != &head);
|
|---|
| 679 | node = list_get_instance(hlp, btree_node_t, bfs_link);
|
|---|
| 680 | list_remove(hlp);
|
|---|
| 681 |
|
|---|
| 682 | ASSERT(node);
|
|---|
| 683 |
|
|---|
| 684 | if (node->depth != depth) {
|
|---|
| 685 | printf("\n");
|
|---|
| 686 | depth = node->depth;
|
|---|
| 687 | }
|
|---|
| 688 |
|
|---|
| 689 | printf("(");
|
|---|
| 690 | for (i = 0; i < node->keys; i++) {
|
|---|
| 691 | printf("%d,", node->key[i]);
|
|---|
| 692 | if (node->depth && node->subtree[i]) {
|
|---|
| 693 | list_append(&node->subtree[i]->bfs_link, &head);
|
|---|
| 694 | }
|
|---|
| 695 | }
|
|---|
| 696 | if (node->depth && node->subtree[i]) {
|
|---|
| 697 | list_append(&node->subtree[i]->bfs_link, &head);
|
|---|
| 698 | }
|
|---|
| 699 | printf(")");
|
|---|
| 700 | }
|
|---|
| 701 | printf("\n");
|
|---|
| 702 | }
|
|---|