[018d957e] | 1 | /*
|
---|
| 2 | * Copyright (C) 2006 Jakub Jermar
|
---|
| 3 | * All rights reserved.
|
---|
| 4 | *
|
---|
| 5 | * Redistribution and use in source and binary forms, with or without
|
---|
| 6 | * modification, are permitted provided that the following conditions
|
---|
| 7 | * are met:
|
---|
| 8 | *
|
---|
| 9 | * - Redistributions of source code must retain the above copyright
|
---|
| 10 | * notice, this list of conditions and the following disclaimer.
|
---|
| 11 | * - Redistributions in binary form must reproduce the above copyright
|
---|
| 12 | * notice, this list of conditions and the following disclaimer in the
|
---|
| 13 | * documentation and/or other materials provided with the distribution.
|
---|
| 14 | * - The name of the author may not be used to endorse or promote products
|
---|
| 15 | * derived from this software without specific prior written permission.
|
---|
| 16 | *
|
---|
| 17 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
---|
| 18 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
---|
| 19 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
---|
| 20 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
---|
| 21 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
---|
| 22 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
---|
| 23 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
---|
| 24 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
---|
| 25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
---|
| 26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
---|
| 27 | */
|
---|
| 28 |
|
---|
| 29 | /*
|
---|
| 30 | * This B-tree has the following properties:
|
---|
[296cc1b] | 31 | * - it is a ballanced 2-3-4-5 tree (i.e. BTREE_M = 5)
|
---|
[018d957e] | 32 | * - values (i.e. pointers to values) are stored only in leaves
|
---|
| 33 | * - leaves are linked in a list
|
---|
| 34 | * - technically, it is a B+-tree (because of the previous properties)
|
---|
| 35 | *
|
---|
[c715e9b] | 36 | * Be carefull when using these trees. They need to allocate
|
---|
| 37 | * and deallocate memory for their index nodes and as such
|
---|
| 38 | * can sleep.
|
---|
[018d957e] | 39 | */
|
---|
| 40 |
|
---|
| 41 | #include <adt/btree.h>
|
---|
| 42 | #include <adt/list.h>
|
---|
| 43 | #include <mm/slab.h>
|
---|
| 44 | #include <debug.h>
|
---|
| 45 | #include <panic.h>
|
---|
| 46 | #include <typedefs.h>
|
---|
| 47 | #include <print.h>
|
---|
| 48 |
|
---|
| 49 | static void _btree_insert(btree_t *t, __native key, void *value, btree_node_t *rsubtree, btree_node_t *node);
|
---|
| 50 | static void node_initialize(btree_node_t *node);
|
---|
[cc27ae48] | 51 | static void node_insert_key_left(btree_node_t *node, __native key, void *value, btree_node_t *rsubtree);
|
---|
| 52 | static void node_insert_key_right(btree_node_t *node, __native key, void *value, btree_node_t *rsubtree);
|
---|
[018d957e] | 53 | static btree_node_t *node_split(btree_node_t *node, __native key, void *value, btree_node_t *rsubtree, __native *median);
|
---|
[cc27ae48] | 54 | static void node_remove_key_left(btree_node_t *node, __native key);
|
---|
| 55 | static void node_remove_key_right(btree_node_t *node, __native key);
|
---|
| 56 | static index_t find_key_by_subtree(btree_node_t *node, btree_node_t *subtree, bool right);
|
---|
| 57 | static bool try_insert_by_left_rotation(btree_node_t *node, __native key, void *value, btree_node_t *rsubtree);
|
---|
| 58 | static bool try_insert_by_right_rotation(btree_node_t *node, __native key, void *value, btree_node_t *rsubtree);
|
---|
[018d957e] | 59 |
|
---|
| 60 | #define ROOT_NODE(n) (!(n)->parent)
|
---|
| 61 | #define INDEX_NODE(n) ((n)->subtree[0] != NULL)
|
---|
| 62 | #define LEAF_NODE(n) ((n)->subtree[0] == NULL)
|
---|
| 63 |
|
---|
[296cc1b] | 64 | #define FILL_FACTOR ((BTREE_M-1)/2)
|
---|
| 65 |
|
---|
[018d957e] | 66 | #define MEDIAN_LOW_INDEX(n) (((n)->keys-1)/2)
|
---|
| 67 | #define MEDIAN_HIGH_INDEX(n) ((n)->keys/2)
|
---|
| 68 | #define MEDIAN_LOW(n) ((n)->key[MEDIAN_LOW_INDEX((n))]);
|
---|
| 69 | #define MEDIAN_HIGH(n) ((n)->key[MEDIAN_HIGH_INDEX((n))]);
|
---|
| 70 |
|
---|
| 71 | /** Create empty B-tree.
|
---|
| 72 | *
|
---|
| 73 | * @param t B-tree.
|
---|
| 74 | */
|
---|
| 75 | void btree_create(btree_t *t)
|
---|
| 76 | {
|
---|
| 77 | list_initialize(&t->leaf_head);
|
---|
| 78 | t->root = (btree_node_t *) malloc(sizeof(btree_node_t), 0);
|
---|
| 79 | node_initialize(t->root);
|
---|
| 80 | list_append(&t->root->leaf_link, &t->leaf_head);
|
---|
| 81 | }
|
---|
| 82 |
|
---|
| 83 | /** Destroy empty B-tree. */
|
---|
| 84 | void btree_destroy(btree_t *t)
|
---|
| 85 | {
|
---|
| 86 | ASSERT(!t->root->keys);
|
---|
| 87 | free(t->root);
|
---|
| 88 | }
|
---|
| 89 |
|
---|
| 90 | /** Insert key-value pair into B-tree.
|
---|
| 91 | *
|
---|
| 92 | * @param t B-tree.
|
---|
| 93 | * @param key Key to be inserted.
|
---|
| 94 | * @param value Value to be inserted.
|
---|
| 95 | * @param leaf_node Leaf node where the insertion should begin.
|
---|
| 96 | */
|
---|
| 97 | void btree_insert(btree_t *t, __native key, void *value, btree_node_t *leaf_node)
|
---|
| 98 | {
|
---|
| 99 | btree_node_t *lnode;
|
---|
| 100 |
|
---|
| 101 | ASSERT(value);
|
---|
| 102 |
|
---|
| 103 | lnode = leaf_node;
|
---|
| 104 | if (!lnode) {
|
---|
| 105 | if (btree_search(t, key, &lnode)) {
|
---|
| 106 | panic("B-tree %P already contains key %d\n", t, key);
|
---|
| 107 | }
|
---|
| 108 | }
|
---|
| 109 |
|
---|
| 110 | _btree_insert(t, key, value, NULL, lnode);
|
---|
| 111 | }
|
---|
| 112 |
|
---|
| 113 | /** Recursively insert into B-tree.
|
---|
| 114 | *
|
---|
| 115 | * @param t B-tree.
|
---|
| 116 | * @param key Key to be inserted.
|
---|
| 117 | * @param value Value to be inserted.
|
---|
| 118 | * @param rsubtree Right subtree of the inserted key.
|
---|
| 119 | * @param node Start inserting into this node.
|
---|
| 120 | */
|
---|
| 121 | void _btree_insert(btree_t *t, __native key, void *value, btree_node_t *rsubtree, btree_node_t *node)
|
---|
| 122 | {
|
---|
| 123 | if (node->keys < BTREE_MAX_KEYS) {
|
---|
| 124 | /*
|
---|
| 125 | * Node conatins enough space, the key can be stored immediately.
|
---|
| 126 | */
|
---|
[cc27ae48] | 127 | node_insert_key_right(node, key, value, rsubtree);
|
---|
| 128 | } else if (try_insert_by_left_rotation(node, key, value, rsubtree)) {
|
---|
| 129 | /*
|
---|
| 130 | * The key-value-rsubtree triplet has been inserted because
|
---|
| 131 | * some keys could have been moved to the left sibling.
|
---|
| 132 | */
|
---|
| 133 | } else if (try_insert_by_right_rotation(node, key, value, rsubtree)) {
|
---|
| 134 | /*
|
---|
| 135 | * The key-value-rsubtree triplet has been inserted because
|
---|
| 136 | * some keys could have been moved to the right sibling.
|
---|
| 137 | */
|
---|
[018d957e] | 138 | } else {
|
---|
| 139 | btree_node_t *rnode;
|
---|
| 140 | __native median;
|
---|
| 141 |
|
---|
| 142 | /*
|
---|
[cc27ae48] | 143 | * Node is full and both siblings (if both exist) are full too.
|
---|
| 144 | * Split the node and insert the smallest key from the node containing
|
---|
| 145 | * bigger keys (i.e. the new node) into its parent.
|
---|
[018d957e] | 146 | */
|
---|
| 147 |
|
---|
| 148 | rnode = node_split(node, key, value, rsubtree, &median);
|
---|
| 149 |
|
---|
| 150 | if (LEAF_NODE(node)) {
|
---|
| 151 | list_append(&rnode->leaf_link, &node->leaf_link);
|
---|
| 152 | }
|
---|
| 153 |
|
---|
| 154 | if (ROOT_NODE(node)) {
|
---|
| 155 | /*
|
---|
| 156 | * We split the root node. Create new root.
|
---|
| 157 | */
|
---|
| 158 | t->root = (btree_node_t *) malloc(sizeof(btree_node_t), 0);
|
---|
| 159 | node->parent = t->root;
|
---|
| 160 | rnode->parent = t->root;
|
---|
| 161 | node_initialize(t->root);
|
---|
| 162 |
|
---|
| 163 | /*
|
---|
| 164 | * Left-hand side subtree will be the old root (i.e. node).
|
---|
| 165 | * Right-hand side subtree will be rnode.
|
---|
| 166 | */
|
---|
| 167 | t->root->subtree[0] = node;
|
---|
| 168 |
|
---|
| 169 | t->root->depth = node->depth + 1;
|
---|
| 170 | }
|
---|
| 171 | _btree_insert(t, median, NULL, rnode, node->parent);
|
---|
| 172 | }
|
---|
| 173 |
|
---|
| 174 | }
|
---|
| 175 |
|
---|
[296cc1b] | 176 | /** Remove B-tree node.
|
---|
| 177 | *
|
---|
| 178 | * @param B-tree.
|
---|
| 179 | * @param key Key to be removed from the B-tree along with its associated value.
|
---|
| 180 | * @param leaf_node If not NULL, pointer to the leaf node where the key is found.
|
---|
| 181 | */
|
---|
| 182 | void btree_remove(btree_t *t, __native key, btree_node_t *leaf_node)
|
---|
[018d957e] | 183 | {
|
---|
[296cc1b] | 184 | btree_node_t *lnode;
|
---|
| 185 |
|
---|
| 186 | lnode = leaf_node;
|
---|
| 187 | if (!lnode) {
|
---|
| 188 | if (!btree_search(t, key, &lnode)) {
|
---|
| 189 | panic("B-tree %P does not contain key %d\n", t, key);
|
---|
| 190 | }
|
---|
| 191 | }
|
---|
| 192 |
|
---|
| 193 | /* TODO */
|
---|
| 194 |
|
---|
[018d957e] | 195 | }
|
---|
| 196 |
|
---|
| 197 | /** Search key in a B-tree.
|
---|
| 198 | *
|
---|
| 199 | * @param t B-tree.
|
---|
| 200 | * @param key Key to be searched.
|
---|
| 201 | * @param leaf_node Address where to put pointer to visited leaf node.
|
---|
| 202 | *
|
---|
| 203 | * @return Pointer to value or NULL if there is no such key.
|
---|
| 204 | */
|
---|
| 205 | void *btree_search(btree_t *t, __native key, btree_node_t **leaf_node)
|
---|
| 206 | {
|
---|
| 207 | btree_node_t *cur, *next;
|
---|
| 208 |
|
---|
| 209 | /*
|
---|
[c715e9b] | 210 | * Iteratively descend to the leaf that can contain the searched key.
|
---|
[018d957e] | 211 | */
|
---|
| 212 | for (cur = t->root; cur; cur = next) {
|
---|
[c715e9b] | 213 |
|
---|
[018d957e] | 214 | /* Last iteration will set this with proper leaf node address. */
|
---|
| 215 | *leaf_node = cur;
|
---|
[c715e9b] | 216 |
|
---|
| 217 | /*
|
---|
| 218 | * The key can be in the leftmost subtree.
|
---|
| 219 | * Test it separately.
|
---|
| 220 | */
|
---|
| 221 | if (key < cur->key[0]) {
|
---|
| 222 | next = cur->subtree[0];
|
---|
| 223 | continue;
|
---|
| 224 | } else {
|
---|
| 225 | void *val;
|
---|
| 226 | int i;
|
---|
| 227 |
|
---|
| 228 | /*
|
---|
| 229 | * Now if the key is smaller than cur->key[i]
|
---|
| 230 | * it can only mean that the value is in cur->subtree[i]
|
---|
| 231 | * or it is not in the tree at all.
|
---|
| 232 | */
|
---|
| 233 | for (i = 1; i < cur->keys; i++) {
|
---|
| 234 | if (key < cur->key[i]) {
|
---|
| 235 | next = cur->subtree[i];
|
---|
| 236 | val = cur->value[i - 1];
|
---|
| 237 |
|
---|
| 238 | if (LEAF_NODE(cur))
|
---|
| 239 | return key == cur->key[i - 1] ? val : NULL;
|
---|
| 240 |
|
---|
| 241 | goto descend;
|
---|
| 242 | }
|
---|
[018d957e] | 243 | }
|
---|
[c715e9b] | 244 |
|
---|
| 245 | /*
|
---|
| 246 | * Last possibility is that the key is in the rightmost subtree.
|
---|
| 247 | */
|
---|
| 248 | next = cur->subtree[i];
|
---|
| 249 | val = cur->value[i - 1];
|
---|
| 250 | if (LEAF_NODE(cur))
|
---|
| 251 | return key == cur->key[i - 1] ? val : NULL;
|
---|
[018d957e] | 252 | }
|
---|
[c715e9b] | 253 | descend:
|
---|
| 254 | ;
|
---|
[018d957e] | 255 | }
|
---|
| 256 |
|
---|
| 257 | /*
|
---|
[c715e9b] | 258 | * The key was not found in the *leaf_node and is smaller than any of its keys.
|
---|
[018d957e] | 259 | */
|
---|
| 260 | return NULL;
|
---|
| 261 | }
|
---|
| 262 |
|
---|
| 263 | /** Get pointer to value with the smallest key within the node.
|
---|
| 264 | *
|
---|
| 265 | * Can be only used on leaf-level nodes.
|
---|
| 266 | *
|
---|
| 267 | * @param node B-tree node.
|
---|
| 268 | *
|
---|
| 269 | * @return Pointer to value assiciated with the smallest key.
|
---|
| 270 | */
|
---|
| 271 | void *btree_node_min(btree_node_t *node)
|
---|
| 272 | {
|
---|
| 273 | ASSERT(LEAF_NODE(node));
|
---|
| 274 | ASSERT(node->keys);
|
---|
| 275 | return node->value[0];
|
---|
| 276 | }
|
---|
| 277 |
|
---|
| 278 | /** Get pointer to value with the biggest key within the node.
|
---|
| 279 | *
|
---|
| 280 | * Can be only used on leaf-level nodes.
|
---|
| 281 | *
|
---|
| 282 | * @param node B-tree node.
|
---|
| 283 | *
|
---|
| 284 | * @return Pointer to value assiciated with the biggest key.
|
---|
| 285 | */
|
---|
| 286 | void *btree_node_max(btree_node_t *node)
|
---|
| 287 | {
|
---|
| 288 | ASSERT(LEAF_NODE(node));
|
---|
| 289 | ASSERT(node->keys);
|
---|
| 290 | return node->value[node->keys - 1];
|
---|
| 291 | }
|
---|
| 292 |
|
---|
| 293 | /** Initialize B-tree node.
|
---|
| 294 | *
|
---|
| 295 | * @param node B-tree node.
|
---|
| 296 | */
|
---|
| 297 | void node_initialize(btree_node_t *node)
|
---|
| 298 | {
|
---|
| 299 | int i;
|
---|
| 300 |
|
---|
| 301 | node->keys = 0;
|
---|
| 302 |
|
---|
| 303 | /* Clean also space for the extra key. */
|
---|
| 304 | for (i = 0; i < BTREE_MAX_KEYS + 1; i++) {
|
---|
| 305 | node->key[i] = 0;
|
---|
| 306 | node->value[i] = NULL;
|
---|
| 307 | node->subtree[i] = NULL;
|
---|
| 308 | }
|
---|
| 309 | node->subtree[i] = NULL;
|
---|
| 310 |
|
---|
| 311 | node->parent = NULL;
|
---|
| 312 |
|
---|
| 313 | link_initialize(&node->leaf_link);
|
---|
| 314 |
|
---|
| 315 | link_initialize(&node->bfs_link);
|
---|
| 316 | node->depth = 0;
|
---|
| 317 | }
|
---|
| 318 |
|
---|
[cc27ae48] | 319 | /** Insert key-value-lsubtree triplet into B-tree node.
|
---|
| 320 | *
|
---|
| 321 | * It is actually possible to have more keys than BTREE_MAX_KEYS.
|
---|
| 322 | * This feature is used during insert by right rotation.
|
---|
| 323 | *
|
---|
| 324 | * @param node B-tree node into wich the new key is to be inserted.
|
---|
| 325 | * @param key The key to be inserted.
|
---|
| 326 | * @param value Pointer to value to be inserted.
|
---|
| 327 | * @param lsubtree Pointer to the left subtree.
|
---|
| 328 | */
|
---|
| 329 | void node_insert_key_left(btree_node_t *node, __native key, void *value, btree_node_t *lsubtree)
|
---|
| 330 | {
|
---|
| 331 | int i;
|
---|
| 332 |
|
---|
| 333 | for (i = 0; i < node->keys; i++) {
|
---|
| 334 | if (key < node->key[i]) {
|
---|
| 335 | int j;
|
---|
| 336 |
|
---|
| 337 | for (j = node->keys; j > i; j--) {
|
---|
| 338 | node->key[j] = node->key[j - 1];
|
---|
| 339 | node->value[j] = node->value[j - 1];
|
---|
| 340 | node->subtree[j + 1] = node->subtree[j];
|
---|
| 341 | }
|
---|
| 342 | node->subtree[j + 1] = node->subtree[j];
|
---|
| 343 | break;
|
---|
| 344 | }
|
---|
| 345 | }
|
---|
| 346 | node->key[i] = key;
|
---|
| 347 | node->value[i] = value;
|
---|
| 348 | node->subtree[i] = lsubtree;
|
---|
| 349 |
|
---|
| 350 | node->keys++;
|
---|
| 351 | }
|
---|
| 352 |
|
---|
| 353 |
|
---|
| 354 | /** Insert key-value-rsubtree triplet into B-tree node.
|
---|
[018d957e] | 355 | *
|
---|
| 356 | * It is actually possible to have more keys than BTREE_MAX_KEYS.
|
---|
| 357 | * This feature is used during splitting the node when the
|
---|
[cc27ae48] | 358 | * number of keys is BTREE_MAX_KEYS + 1. Insert by left rotation
|
---|
| 359 | * also makes use of this feature.
|
---|
[018d957e] | 360 | *
|
---|
| 361 | * @param node B-tree node into wich the new key is to be inserted.
|
---|
| 362 | * @param key The key to be inserted.
|
---|
| 363 | * @param value Pointer to value to be inserted.
|
---|
| 364 | * @param rsubtree Pointer to the right subtree.
|
---|
| 365 | */
|
---|
[cc27ae48] | 366 | void node_insert_key_right(btree_node_t *node, __native key, void *value, btree_node_t *rsubtree)
|
---|
[018d957e] | 367 | {
|
---|
| 368 | int i;
|
---|
| 369 |
|
---|
| 370 | for (i = 0; i < node->keys; i++) {
|
---|
| 371 | if (key < node->key[i]) {
|
---|
| 372 | int j;
|
---|
| 373 |
|
---|
| 374 | for (j = node->keys; j > i; j--) {
|
---|
| 375 | node->key[j] = node->key[j - 1];
|
---|
| 376 | node->value[j] = node->value[j - 1];
|
---|
| 377 | node->subtree[j + 1] = node->subtree[j];
|
---|
| 378 | }
|
---|
| 379 | break;
|
---|
| 380 | }
|
---|
| 381 | }
|
---|
| 382 | node->key[i] = key;
|
---|
| 383 | node->value[i] = value;
|
---|
| 384 | node->subtree[i + 1] = rsubtree;
|
---|
| 385 |
|
---|
| 386 | node->keys++;
|
---|
| 387 | }
|
---|
| 388 |
|
---|
[c715e9b] | 389 | /** Split full B-tree node and insert new key-value-right-subtree triplet.
|
---|
[018d957e] | 390 | *
|
---|
| 391 | * This function will split a node and return pointer to a newly created
|
---|
[c715e9b] | 392 | * node containing keys greater than or equal to the greater of medians
|
---|
| 393 | * (or median) of the old keys and the newly added key. It will also write
|
---|
| 394 | * the median key to a memory address supplied by the caller.
|
---|
[018d957e] | 395 | *
|
---|
[c715e9b] | 396 | * If the node being split is an index node, the median will not be
|
---|
| 397 | * included in the new node. If the node is a leaf node,
|
---|
| 398 | * the median will be copied there.
|
---|
[018d957e] | 399 | *
|
---|
| 400 | * @param node B-tree node wich is going to be split.
|
---|
| 401 | * @param key The key to be inserted.
|
---|
| 402 | * @param value Pointer to the value to be inserted.
|
---|
| 403 | * @param rsubtree Pointer to the right subtree of the key being added.
|
---|
| 404 | * @param median Address in memory, where the median key will be stored.
|
---|
| 405 | *
|
---|
| 406 | * @return Newly created right sibling of node.
|
---|
| 407 | */
|
---|
| 408 | btree_node_t *node_split(btree_node_t *node, __native key, void *value, btree_node_t *rsubtree, __native *median)
|
---|
| 409 | {
|
---|
| 410 | btree_node_t *rnode;
|
---|
| 411 | int i, j;
|
---|
| 412 |
|
---|
| 413 | ASSERT(median);
|
---|
| 414 | ASSERT(node->keys == BTREE_MAX_KEYS);
|
---|
[cc27ae48] | 415 |
|
---|
[018d957e] | 416 | /*
|
---|
| 417 | * Use the extra space to store the extra node.
|
---|
| 418 | */
|
---|
[cc27ae48] | 419 | node_insert_key_right(node, key, value, rsubtree);
|
---|
[018d957e] | 420 |
|
---|
| 421 | /*
|
---|
| 422 | * Compute median of keys.
|
---|
| 423 | */
|
---|
[c715e9b] | 424 | *median = MEDIAN_HIGH(node);
|
---|
[018d957e] | 425 |
|
---|
[c715e9b] | 426 | /*
|
---|
| 427 | * Allocate and initialize new right sibling.
|
---|
| 428 | */
|
---|
[018d957e] | 429 | rnode = (btree_node_t *) malloc(sizeof(btree_node_t), 0);
|
---|
| 430 | node_initialize(rnode);
|
---|
| 431 | rnode->parent = node->parent;
|
---|
| 432 | rnode->depth = node->depth;
|
---|
| 433 |
|
---|
| 434 | /*
|
---|
| 435 | * Copy big keys, values and subtree pointers to the new right sibling.
|
---|
[c715e9b] | 436 | * If this is an index node, do not copy the median.
|
---|
[018d957e] | 437 | */
|
---|
[c715e9b] | 438 | i = (int) INDEX_NODE(node);
|
---|
| 439 | for (i += MEDIAN_HIGH_INDEX(node), j = 0; i < node->keys; i++, j++) {
|
---|
[018d957e] | 440 | rnode->key[j] = node->key[i];
|
---|
| 441 | rnode->value[j] = node->value[i];
|
---|
| 442 | rnode->subtree[j] = node->subtree[i];
|
---|
| 443 |
|
---|
| 444 | /*
|
---|
| 445 | * Fix parent links in subtrees.
|
---|
| 446 | */
|
---|
| 447 | if (rnode->subtree[j])
|
---|
| 448 | rnode->subtree[j]->parent = rnode;
|
---|
| 449 |
|
---|
| 450 | }
|
---|
| 451 | rnode->subtree[j] = node->subtree[i];
|
---|
| 452 | if (rnode->subtree[j])
|
---|
| 453 | rnode->subtree[j]->parent = rnode;
|
---|
[c715e9b] | 454 |
|
---|
| 455 | rnode->keys = j; /* Set number of keys of the new node. */
|
---|
| 456 | node->keys /= 2; /* Shrink the old node. */
|
---|
[018d957e] | 457 |
|
---|
| 458 | return rnode;
|
---|
| 459 | }
|
---|
| 460 |
|
---|
[cc27ae48] | 461 | /** Remove key and its left subtree pointer from B-tree node.
|
---|
| 462 | *
|
---|
| 463 | * Remove the key and eliminate gaps in node->key array.
|
---|
| 464 | * Note that the value pointer and the left subtree pointer
|
---|
| 465 | * is removed from the node as well.
|
---|
[c715e9b] | 466 | *
|
---|
| 467 | * @param node B-tree node.
|
---|
| 468 | * @param key Key to be removed.
|
---|
| 469 | */
|
---|
[cc27ae48] | 470 | void node_remove_key_left(btree_node_t *node, __native key)
|
---|
| 471 | {
|
---|
| 472 | int i, j;
|
---|
| 473 |
|
---|
| 474 | for (i = 0; i < node->keys; i++) {
|
---|
| 475 | if (key == node->key[i]) {
|
---|
| 476 | for (j = i + 1; j < node->keys; j++) {
|
---|
| 477 | node->key[j - 1] = node->key[j];
|
---|
| 478 | node->value[j - 1] = node->value[j];
|
---|
| 479 | node->subtree[j - 1] = node->subtree[j];
|
---|
| 480 | }
|
---|
| 481 | node->subtree[j - 1] = node->subtree[j];
|
---|
| 482 | node->keys--;
|
---|
| 483 | return;
|
---|
| 484 | }
|
---|
| 485 | }
|
---|
| 486 | panic("node %P does not contain key %d\n", node, key);
|
---|
| 487 | }
|
---|
| 488 |
|
---|
| 489 | /** Remove key and its right subtree pointer from B-tree node.
|
---|
| 490 | *
|
---|
| 491 | * Remove the key and eliminate gaps in node->key array.
|
---|
| 492 | * Note that the value pointer and the right subtree pointer
|
---|
| 493 | * is removed from the node as well.
|
---|
| 494 | *
|
---|
| 495 | * @param node B-tree node.
|
---|
| 496 | * @param key Key to be removed.
|
---|
| 497 | */
|
---|
| 498 | void node_remove_key_right(btree_node_t *node, __native key)
|
---|
| 499 | {
|
---|
| 500 | int i, j;
|
---|
| 501 |
|
---|
| 502 | for (i = 0; i < node->keys; i++) {
|
---|
| 503 | if (key == node->key[i]) {
|
---|
| 504 | for (j = i + 1; j < node->keys; j++) {
|
---|
| 505 | node->key[j - 1] = node->key[j];
|
---|
| 506 | node->value[j - 1] = node->value[j];
|
---|
| 507 | node->subtree[j] = node->subtree[j + 1];
|
---|
| 508 | }
|
---|
| 509 | node->keys--;
|
---|
| 510 | return;
|
---|
| 511 | }
|
---|
| 512 | }
|
---|
| 513 | panic("node %P does not contain key %d\n", node, key);
|
---|
| 514 | }
|
---|
| 515 |
|
---|
| 516 | /** Find key by its left or right subtree.
|
---|
| 517 | *
|
---|
| 518 | * @param node B-tree node.
|
---|
| 519 | * @param subtree Left or right subtree of a key found in node.
|
---|
| 520 | * @param right If true, subtree is a right subtree. If false, subtree is a left subtree.
|
---|
| 521 | *
|
---|
| 522 | * @return Index of the key associated with the subtree.
|
---|
| 523 | */
|
---|
| 524 | index_t find_key_by_subtree(btree_node_t *node, btree_node_t *subtree, bool right)
|
---|
[c715e9b] | 525 | {
|
---|
[cc27ae48] | 526 | int i;
|
---|
| 527 |
|
---|
| 528 | for (i = 0; i < node->keys + 1; i++) {
|
---|
| 529 | if (subtree == node->subtree[i])
|
---|
| 530 | return i - (int) (right != false);
|
---|
| 531 | }
|
---|
| 532 | panic("node %P does not contain subtree %P\n", node, subtree);
|
---|
| 533 | }
|
---|
| 534 |
|
---|
| 535 | /** Insert key-value-rsubtree triplet and rotate the node to the left, if this operation can be done.
|
---|
| 536 | *
|
---|
| 537 | * Left sibling of the node (if it exists) is checked for free space.
|
---|
| 538 | * If there is free space, the key is inserted and the smallest key of
|
---|
| 539 | * the node is moved there. The index node which is the parent of both
|
---|
| 540 | * nodes is fixed.
|
---|
| 541 | *
|
---|
| 542 | * @param node B-tree node.
|
---|
| 543 | * @param inskey Key to be inserted.
|
---|
| 544 | * @param insvalue Value to be inserted.
|
---|
| 545 | * @param rsubtree Right subtree of inskey.
|
---|
| 546 | *
|
---|
| 547 | * @return True if the rotation was performed, false otherwise.
|
---|
| 548 | */
|
---|
| 549 | bool try_insert_by_left_rotation(btree_node_t *node, __native inskey, void *insvalue, btree_node_t *rsubtree)
|
---|
| 550 | {
|
---|
| 551 | index_t idx;
|
---|
| 552 | btree_node_t *lnode;
|
---|
| 553 |
|
---|
| 554 | /*
|
---|
| 555 | * If this is root node, the rotation can not be done.
|
---|
| 556 | */
|
---|
| 557 | if (ROOT_NODE(node))
|
---|
| 558 | return false;
|
---|
| 559 |
|
---|
| 560 | idx = find_key_by_subtree(node->parent, node, true);
|
---|
| 561 | if ((int) idx == -1) {
|
---|
| 562 | /*
|
---|
| 563 | * If this node is the leftmost subtree of its parent,
|
---|
| 564 | * the rotation can not be done.
|
---|
| 565 | */
|
---|
| 566 | return false;
|
---|
| 567 | }
|
---|
| 568 |
|
---|
| 569 | lnode = node->parent->subtree[idx];
|
---|
| 570 |
|
---|
| 571 | if (lnode->keys < BTREE_MAX_KEYS) {
|
---|
| 572 | __native key;
|
---|
| 573 |
|
---|
| 574 | /*
|
---|
| 575 | * The rotaion can be done. The left sibling has free space.
|
---|
| 576 | */
|
---|
| 577 |
|
---|
| 578 | node_insert_key_right(node, inskey, insvalue, rsubtree);
|
---|
| 579 | key = node->key[0];
|
---|
| 580 |
|
---|
| 581 | if (LEAF_NODE(node)) {
|
---|
| 582 | void *value;
|
---|
| 583 |
|
---|
| 584 | value = node->value[0];
|
---|
| 585 | node_remove_key_left(node, key);
|
---|
| 586 | node_insert_key_right(lnode, key, value, NULL);
|
---|
| 587 | node->parent->key[idx] = node->key[0];
|
---|
| 588 | } else {
|
---|
| 589 | btree_node_t *lsubtree;
|
---|
| 590 |
|
---|
| 591 | lsubtree = node->subtree[0];
|
---|
| 592 | node_remove_key_left(node, key);
|
---|
| 593 | node_insert_key_right(lnode, node->parent->key[idx], NULL, lsubtree);
|
---|
| 594 | node->parent->key[idx] = key;
|
---|
| 595 |
|
---|
| 596 | /* Fix parent link of the reconnected left subtree. */
|
---|
| 597 | lsubtree->parent = lnode;
|
---|
| 598 | }
|
---|
| 599 | return true;
|
---|
| 600 | }
|
---|
| 601 |
|
---|
| 602 | return false;
|
---|
| 603 | }
|
---|
| 604 |
|
---|
| 605 | /** Insert key-value-rsubtree triplet and rotate the node to the right, if this operation can be done.
|
---|
| 606 | *
|
---|
| 607 | * Right sibling of the node (if it exists) is checked for free space.
|
---|
| 608 | * If there is free space, the key is inserted and the biggest key of
|
---|
| 609 | * the node is moved there. The index node which is the parent of both
|
---|
| 610 | * nodes is fixed.
|
---|
| 611 | *
|
---|
| 612 | * @param node B-tree node.
|
---|
| 613 | * @param inskey Key to be inserted.
|
---|
| 614 | * @param insvalue Value to be inserted.
|
---|
| 615 | * @param rsubtree Right subtree of inskey.
|
---|
| 616 | *
|
---|
| 617 | * @return True if the rotation was performed, false otherwise.
|
---|
| 618 | */
|
---|
| 619 | bool try_insert_by_right_rotation(btree_node_t *node, __native inskey, void *insvalue, btree_node_t *rsubtree)
|
---|
| 620 | {
|
---|
| 621 | index_t idx;
|
---|
| 622 | btree_node_t *rnode;
|
---|
| 623 |
|
---|
| 624 | /*
|
---|
| 625 | * If this is root node, the rotation can not be done.
|
---|
| 626 | */
|
---|
| 627 | if (ROOT_NODE(node))
|
---|
| 628 | return false;
|
---|
| 629 |
|
---|
| 630 | idx = find_key_by_subtree(node->parent, node, false);
|
---|
| 631 | if (idx == node->parent->keys) {
|
---|
| 632 | /*
|
---|
| 633 | * If this node is the rightmost subtree of its parent,
|
---|
| 634 | * the rotation can not be done.
|
---|
| 635 | */
|
---|
| 636 | return false;
|
---|
| 637 | }
|
---|
| 638 |
|
---|
| 639 | rnode = node->parent->subtree[idx + 1];
|
---|
| 640 |
|
---|
| 641 | if (rnode->keys < BTREE_MAX_KEYS) {
|
---|
| 642 | __native key;
|
---|
| 643 |
|
---|
| 644 | /*
|
---|
| 645 | * The rotaion can be done. The right sibling has free space.
|
---|
| 646 | */
|
---|
| 647 |
|
---|
| 648 | node_insert_key_right(node, inskey, insvalue, rsubtree);
|
---|
| 649 | key = node->key[node->keys - 1];
|
---|
| 650 |
|
---|
| 651 | if (LEAF_NODE(node)) {
|
---|
| 652 | void *value;
|
---|
| 653 |
|
---|
| 654 | value = node->value[node->keys - 1];
|
---|
| 655 | node_remove_key_right(node, key);
|
---|
| 656 | node_insert_key_left(rnode, key, value, NULL);
|
---|
| 657 | node->parent->key[idx] = key;
|
---|
| 658 | } else {
|
---|
| 659 | btree_node_t *rsubt;
|
---|
| 660 |
|
---|
| 661 | rsubt = node->subtree[node->keys];
|
---|
| 662 | node_remove_key_right(node, key);
|
---|
| 663 | node_insert_key_left(rnode, node->parent->key[idx], NULL, rsubt);
|
---|
| 664 | node->parent->key[idx] = key;
|
---|
| 665 |
|
---|
| 666 | /* Fix parent link of the reconnected right subtree. */
|
---|
| 667 | rsubt->parent = rnode;
|
---|
| 668 | }
|
---|
| 669 | return true;
|
---|
| 670 | }
|
---|
| 671 |
|
---|
| 672 | return false;
|
---|
[c715e9b] | 673 | }
|
---|
| 674 |
|
---|
[018d957e] | 675 | /** Print B-tree.
|
---|
| 676 | *
|
---|
| 677 | * @param t Print out B-tree.
|
---|
| 678 | */
|
---|
| 679 | void btree_print(btree_t *t)
|
---|
| 680 | {
|
---|
| 681 | int i, depth = t->root->depth;
|
---|
| 682 | link_t head;
|
---|
| 683 |
|
---|
| 684 | list_initialize(&head);
|
---|
| 685 | list_append(&t->root->bfs_link, &head);
|
---|
| 686 |
|
---|
| 687 | /*
|
---|
| 688 | * Use BFS search to print out the tree.
|
---|
| 689 | * Levels are distinguished from one another by node->depth.
|
---|
| 690 | */
|
---|
| 691 | while (!list_empty(&head)) {
|
---|
| 692 | link_t *hlp;
|
---|
| 693 | btree_node_t *node;
|
---|
| 694 |
|
---|
| 695 | hlp = head.next;
|
---|
| 696 | ASSERT(hlp != &head);
|
---|
| 697 | node = list_get_instance(hlp, btree_node_t, bfs_link);
|
---|
| 698 | list_remove(hlp);
|
---|
| 699 |
|
---|
| 700 | ASSERT(node);
|
---|
| 701 |
|
---|
| 702 | if (node->depth != depth) {
|
---|
| 703 | printf("\n");
|
---|
| 704 | depth = node->depth;
|
---|
| 705 | }
|
---|
| 706 |
|
---|
| 707 | printf("(");
|
---|
| 708 | for (i = 0; i < node->keys; i++) {
|
---|
| 709 | printf("%d,", node->key[i]);
|
---|
| 710 | if (node->depth && node->subtree[i]) {
|
---|
| 711 | list_append(&node->subtree[i]->bfs_link, &head);
|
---|
| 712 | }
|
---|
| 713 | }
|
---|
| 714 | if (node->depth && node->subtree[i]) {
|
---|
| 715 | list_append(&node->subtree[i]->bfs_link, &head);
|
---|
| 716 | }
|
---|
| 717 | printf(")");
|
---|
| 718 | }
|
---|
| 719 | printf("\n");
|
---|
| 720 | }
|
---|