# # Copyright (c) 2005 Jakub Jermar # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # - Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # - Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # - The name of the author may not be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR # IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES # OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. # IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT # NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF # THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_SMP #include #endif .register %g2, #scratch .register %g3, #scratch .section K_TEXT_START, "ax" #define BSP_FLAG 1 /* * 2^PHYSMEM_ADDR_SIZE is the size of the physical address space on * a given processor. */ #if defined (US) #define PHYSMEM_ADDR_SIZE 41 #elif defined (US3) #define PHYSMEM_ADDR_SIZE 43 #endif /* * Here is where the kernel is passed control from the boot loader. * * The registers are expected to be in this state: * - %o0 starting address of physical memory * + bootstrap processor flag * bits 63...1: physical memory starting address / 2 * bit 0: non-zero on BSP processor, zero on AP processors * - %o1 bootinfo structure address (BSP only) * * * Moreover, we depend on boot having established the following environment: * - TLBs are on * - identity mapping for the kernel image * */ SYMBOL(kernel_image_start) mov BSP_FLAG, %l0 and %o0, %l0, %l7 ! l7 <= bootstrap processor? andn %o0, %l0, %l6 ! l6 <= start of physical memory ! Get bits (PHYSMEM_ADDR_SIZE - 1):13 of physmem_base. srlx %l6, 13, %l5 ! l5 <= physmem_base[(PHYSMEM_ADDR_SIZE - 1):13] sllx %l5, 13 + (63 - (PHYSMEM_ADDR_SIZE - 1)), %l5 srlx %l5, 63 - (PHYSMEM_ADDR_SIZE - 1), %l5 /* * Setup basic runtime environment. */ wrpr %g0, NWINDOWS - 2, %cansave ! set maximum saveable windows wrpr %g0, 0, %canrestore ! get rid of windows we will ! never need again wrpr %g0, 0, %otherwin ! make sure the window state is ! consistent wrpr %g0, NWINDOWS - 1, %cleanwin ! prevent needless clean_window ! traps for kernel wrpr %g0, 0, %wstate ! use default spill/fill trap wrpr %g0, 0, %tl ! TL = 0, primary context ! register is used wrpr %g0, PSTATE_PRIV_BIT, %pstate ! disable interrupts and disable ! 32-bit address masking wrpr %g0, 0, %pil ! intialize %pil /* * Switch to kernel trap table. */ sethi %hi(trap_table), %g1 wrpr %g1, %lo(trap_table), %tba /* * Take over the DMMU by installing locked TTE entry identically * mapping the first 4M of memory. * * In case of DMMU, no FLUSH instructions need to be issued. Because of * that, the old DTLB contents can be demapped pretty straightforwardly * and without causing any traps. */ wr %g0, ASI_DMMU, %asi #define SET_TLB_DEMAP_CMD(r1, context_id) \ set (TLB_DEMAP_CONTEXT << TLB_DEMAP_TYPE_SHIFT) | (context_id << \ TLB_DEMAP_CONTEXT_SHIFT), %r1 ! demap context 0 SET_TLB_DEMAP_CMD(g1, TLB_DEMAP_NUCLEUS) stxa %g0, [%g1] ASI_DMMU_DEMAP membar #Sync #define SET_TLB_TAG(r1, context) \ set VMA | (context << TLB_TAG_ACCESS_CONTEXT_SHIFT), %r1 ! write DTLB tag SET_TLB_TAG(g1, MEM_CONTEXT_KERNEL) stxa %g1, [VA_DMMU_TAG_ACCESS] %asi membar #Sync #ifdef CONFIG_VIRT_IDX_DCACHE #define TTE_LOW_DATA(imm) (TTE_CP | TTE_CV | TTE_P | LMA | (imm)) #else /* CONFIG_VIRT_IDX_DCACHE */ #define TTE_LOW_DATA(imm) (TTE_CP | TTE_P | LMA | (imm)) #endif /* CONFIG_VIRT_IDX_DCACHE */ #define SET_TLB_DATA(r1, r2, imm) \ set TTE_LOW_DATA(imm), %r1; \ or %r1, %l5, %r1; \ mov PAGESIZE_4M, %r2; \ sllx %r2, TTE_SIZE_SHIFT, %r2; \ or %r1, %r2, %r1; \ mov 1, %r2; \ sllx %r2, TTE_V_SHIFT, %r2; \ or %r1, %r2, %r1; ! write DTLB data and install the kernel mapping SET_TLB_DATA(g1, g2, TTE_L | TTE_W) ! use non-global mapping stxa %g1, [%g0] ASI_DTLB_DATA_IN_REG membar #Sync /* * Because we cannot use global mappings (because we want to have * separate 64-bit address spaces for both the kernel and the * userspace), we prepare the identity mapping also in context 1. This * step is required by the code installing the ITLB mapping. */ ! write DTLB tag of context 1 (i.e. MEM_CONTEXT_TEMP) SET_TLB_TAG(g1, MEM_CONTEXT_TEMP) stxa %g1, [VA_DMMU_TAG_ACCESS] %asi membar #Sync ! write DTLB data and install the kernel mapping in context 1 SET_TLB_DATA(g1, g2, TTE_W) ! use non-global mapping stxa %g1, [%g0] ASI_DTLB_DATA_IN_REG membar #Sync /* * Now is time to take over the IMMU. Unfortunatelly, it cannot be done * as easily as the DMMU, because the IMMU is mapping the code it * executes. * * [ Note that brave experiments with disabling the IMMU and using the * DMMU approach failed after a dozen of desparate days with only little * success. ] * * The approach used here is inspired from OpenBSD. First, the kernel * creates IMMU mapping for itself in context 1 (MEM_CONTEXT_TEMP) and * switches to it. Context 0 (MEM_CONTEXT_KERNEL) can be demapped * afterwards and replaced with the kernel permanent mapping. Finally, * the kernel switches back to context 0 and demaps context 1. * * Moreover, the IMMU requires use of the FLUSH instructions. But that * is OK because we always use operands with addresses already mapped by * the taken over DTLB. */ set kernel_image_start, %g5 ! write ITLB tag of context 1 SET_TLB_TAG(g1, MEM_CONTEXT_TEMP) mov VA_DMMU_TAG_ACCESS, %g2 stxa %g1, [%g2] ASI_IMMU flush %g5 ! write ITLB data and install the temporary mapping in context 1 SET_TLB_DATA(g1, g2, 0) ! use non-global mapping stxa %g1, [%g0] ASI_ITLB_DATA_IN_REG flush %g5 ! switch to context 1 mov MEM_CONTEXT_TEMP, %g1 stxa %g1, [VA_PRIMARY_CONTEXT_REG] %asi ! ASI_DMMU is correct here !!! flush %g5 ! demap context 0 SET_TLB_DEMAP_CMD(g1, TLB_DEMAP_NUCLEUS) stxa %g0, [%g1] ASI_IMMU_DEMAP flush %g5 ! write ITLB tag of context 0 SET_TLB_TAG(g1, MEM_CONTEXT_KERNEL) mov VA_DMMU_TAG_ACCESS, %g2 stxa %g1, [%g2] ASI_IMMU flush %g5 ! write ITLB data and install the permanent kernel mapping in context 0 SET_TLB_DATA(g1, g2, TTE_L) ! use non-global mapping stxa %g1, [%g0] ASI_ITLB_DATA_IN_REG flush %g5 ! enter nucleus - using context 0 wrpr %g0, 1, %tl ! demap context 1 SET_TLB_DEMAP_CMD(g1, TLB_DEMAP_PRIMARY) stxa %g0, [%g1] ASI_IMMU_DEMAP flush %g5 ! set context 0 in the primary context register stxa %g0, [VA_PRIMARY_CONTEXT_REG] %asi ! ASI_DMMU is correct here !!! flush %g5 ! leave nucleus - using primary context, i.e. context 0 wrpr %g0, 0, %tl brz %l7, 1f ! skip if you are not the bootstrap CPU nop /* * Save physmem_base for use by the mm subsystem. * %l6 contains starting physical address */ sethi %hi(physmem_base), %l4 stx %l6, [%l4 + %lo(physmem_base)] /* * Precompute kernel 8K TLB data template. * %l5 contains starting physical address * bits [(PHYSMEM_ADDR_SIZE - 1):13] */ sethi %hi(kernel_8k_tlb_data_template), %l4 ldx [%l4 + %lo(kernel_8k_tlb_data_template)], %l3 or %l3, %l5, %l3 stx %l3, [%l4 + %lo(kernel_8k_tlb_data_template)] ! flush the whole D-cache set (DCACHE_SIZE - DCACHE_LINE_SIZE), %g1 stxa %g0, [%g1] ASI_DCACHE_TAG 0: membar #Sync subcc %g1, DCACHE_LINE_SIZE, %g1 bnz,pt %xcc, 0b stxa %g0, [%g1] ASI_DCACHE_TAG membar #Sync /* * So far, we have not touched the stack. * It is a good idea to set the kernel stack to a known state now. */ sethi %hi(temporary_boot_stack), %sp or %sp, %lo(temporary_boot_stack), %sp sub %sp, STACK_BIAS, %sp /* * Call sparc64_pre_main(bootinfo) */ call sparc64_pre_main mov %o1, %o0 /* * Create the first stack frame. */ save %sp, -(STACK_WINDOW_SAVE_AREA_SIZE + STACK_ARG_SAVE_AREA_SIZE), %sp flushw add %g0, -STACK_BIAS, %fp call main_bsp nop /* Not reached. */ 0: ba,a %xcc, 0b 1: #ifdef CONFIG_SMP /* * Determine the width of the MID and save its mask to %g3. The width * is * * 5 for US and US-IIIi, * * 10 for US3 except US-IIIi. */ #if defined(US) mov 0x1f, %g3 #elif defined(US3) mov 0x3ff, %g3 rdpr %ver, %g2 sllx %g2, 16, %g2 srlx %g2, 48, %g2 cmp %g2, IMPL_ULTRASPARCIII_I move %xcc, 0x1f, %g3 #endif /* * Read MID from the processor. */ ldxa [%g0] ASI_ICBUS_CONFIG, %g1 srlx %g1, ICBUS_CONFIG_MID_SHIFT, %g1 and %g1, %g3, %g1 /* * Active loop for APs until the BSP picks them up. A processor cannot * leave the loop until the global variable 'waking_up_mid' equals its * MID. */ set waking_up_mid, %g2 2: ldx [%g2], %g3 cmp %g3, %g1 bne %xcc, 2b nop /* * Configure stack for the AP. * The AP is expected to use the stack saved * in the ctx global variable. */ set bootstrap_stack_top, %g1 ldx [%g1], %o6 /* * Create the first stack frame. */ save %sp, -(STACK_WINDOW_SAVE_AREA_SIZE + STACK_ARG_SAVE_AREA_SIZE), %sp flushw add %g0, -STACK_BIAS, %fp call main_ap nop /* Not reached. */ #endif 0: ba,a %xcc, 0b .section K_DATA_START, "aw", @progbits /* * Create small stack to be used by the bootstrap processor. It is going to be * used only for a very limited period of time, but we switch to it anyway, * just to be sure we are properly initialized. */ #define INITIAL_STACK_SIZE 1024 .align STACK_ALIGNMENT .space INITIAL_STACK_SIZE .align STACK_ALIGNMENT temporary_boot_stack: .space STACK_WINDOW_SAVE_AREA_SIZE .data .align 8 SYMBOL(physmem_base) ! copy of the physical memory base address .quad 0 /* * The fast_data_access_mmu_miss_data_hi label, the end_of_identity, * kernel_8k_tlb_data_template and tlb_tag_access_context_mask variables * are meant to stay together, aligned on a 32B boundary. */ .align 32 /* * This label is used by the fast_data_access_MMU_miss trap handler. */ SYMBOL(fast_data_access_mmu_miss_data_hi) /* * This variable is used by the fast_data_access_MMU_miss trap handler. * In runtime, it is modified to contain the address of the end of physical * memory. */ SYMBOL(end_of_identity) .quad -1 /* * This variable is used by the fast_data_access_MMU_miss trap handler. * In runtime, it is further modified to reflect the starting address of * physical memory. */ SYMBOL(kernel_8k_tlb_data_template) #ifdef CONFIG_VIRT_IDX_DCACHE .quad ((1 << TTE_V_SHIFT) | (PAGESIZE_8K << TTE_SIZE_SHIFT) | TTE_CP | \ TTE_CV | TTE_P | TTE_W) #else /* CONFIG_VIRT_IDX_DCACHE */ .quad ((1 << TTE_V_SHIFT) | (PAGESIZE_8K << TTE_SIZE_SHIFT) | TTE_CP | \ TTE_P | TTE_W) #endif /* CONFIG_VIRT_IDX_DCACHE */ /* * This variable is used by the fast_data_access_MMU_miss trap handler. * It allows us to save one precious instruction slot of this handler. */ SYMBOL(tlb_tag_access_context_mask) .quad TLB_TAG_ACCESS_CONTEXT_MASK