Changes in uspace/srv/net/il/ip/ip.c [fd8e8e1:14f1db0] in mainline
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
uspace/srv/net/il/ip/ip.c
rfd8e8e1 r14f1db0 28 28 29 29 /** @addtogroup ip 30 * @{30 * @{ 31 31 */ 32 32 33 33 /** @file 34 * IP module implementation. 35 * @see arp.h 36 */ 37 38 #include "ip.h" 39 #include "ip_module.h" 34 * IP module implementation. 35 * @see arp.h 36 */ 40 37 41 38 #include <async.h> 42 39 #include <errno.h> 43 #include <err.h>44 40 #include <fibril_synch.h> 45 41 #include <stdio.h> … … 47 43 #include <ipc/ipc.h> 48 44 #include <ipc/services.h> 49 #include <ipc/net.h>50 #include <ipc/nil.h>51 #include <ipc/il.h>52 #include <ipc/ip.h>53 45 #include <sys/types.h> 54 #include <byteorder.h> 55 56 #include <adt/measured_strings.h> 57 #include <adt/module_map.h> 58 59 #include <packet_client.h> 60 #include <net/socket_codes.h> 61 #include <net/in.h> 62 #include <net/in6.h> 63 #include <net/inet.h> 64 #include <net/modules.h> 65 #include <net/device.h> 66 #include <net/packet.h> 67 #include <net/icmp_codes.h> 68 46 47 #include <net_err.h> 48 #include <net_messages.h> 49 #include <net_modules.h> 69 50 #include <arp_interface.h> 51 #include <net_byteorder.h> 70 52 #include <net_checksum.h> 53 #include <net_device.h> 71 54 #include <icmp_client.h> 55 #include <icmp_codes.h> 72 56 #include <icmp_interface.h> 73 57 #include <il_interface.h> 58 #include <in.h> 59 #include <in6.h> 60 #include <inet.h> 74 61 #include <ip_client.h> 75 62 #include <ip_interface.h> 76 #include <ip_header.h>77 63 #include <net_interface.h> 78 64 #include <nil_interface.h> 79 65 #include <tl_interface.h> 66 #include <socket_codes.h> 67 #include <socket_errno.h> 68 #include <adt/measured_strings.h> 69 #include <adt/module_map.h> 70 #include <packet/packet_client.h> 80 71 #include <packet_remote.h> 72 #include <nil_messages.h> 73 #include <il_messages.h> 81 74 #include <il_local.h> 82 83 /** IP module name. */ 84 #define NAME "ip" 85 86 /** IP version 4. */ 87 #define IPV4 4 88 89 /** Default network interface IP version. */ 75 #include <ip_local.h> 76 77 #include "ip.h" 78 #include "ip_header.h" 79 #include "ip_messages.h" 80 #include "ip_module.h" 81 82 /** IP module name. 83 */ 84 #define NAME "ip" 85 86 /** IP version 4. 87 */ 88 #define IPV4 4 89 90 /** Default network interface IP version. 91 */ 90 92 #define NET_DEFAULT_IPV IPV4 91 93 92 /** Default network interface IP routing. */ 94 /** Default network interface IP routing. 95 */ 93 96 #define NET_DEFAULT_IP_ROUTING false 94 97 95 /** Minimum IP packet content. */ 96 #define IP_MIN_CONTENT 576 97 98 /** ARP module name. */ 99 #define ARP_NAME "arp" 100 101 /** ARP module filename. */ 102 #define ARP_FILENAME "/srv/arp" 103 104 /** IP packet address length. */ 105 #define IP_ADDR sizeof(struct sockaddr_in6) 106 107 /** IP packet prefix length. */ 108 #define IP_PREFIX sizeof(ip_header_t) 109 110 /** IP packet suffix length. */ 111 #define IP_SUFFIX 0 112 113 /** IP packet maximum content length. */ 114 #define IP_MAX_CONTENT 65535 115 116 /** The IP localhost address. */ 98 /** Minimum IP packet content. 99 */ 100 #define IP_MIN_CONTENT 576 101 102 /** ARP module name. 103 */ 104 #define ARP_NAME "arp" 105 106 /** ARP module filename. 107 */ 108 #define ARP_FILENAME "/srv/arp" 109 110 /** IP packet address length. 111 */ 112 #define IP_ADDR sizeof(struct sockaddr_in6) 113 114 /** IP packet prefix length. 115 */ 116 #define IP_PREFIX sizeof(ip_header_t) 117 118 /** IP packet suffix length. 119 */ 120 #define IP_SUFFIX 0 121 122 /** IP packet maximum content length. 123 */ 124 #define IP_MAX_CONTENT 65535 125 126 /** The IP localhost address. 127 */ 117 128 #define IPV4_LOCALHOST_ADDRESS htonl((127 << 24) + 1) 118 129 119 /** IP global data. */ 120 ip_globals_t ip_globals; 121 122 DEVICE_MAP_IMPLEMENT(ip_netifs, ip_netif_t); 123 INT_MAP_IMPLEMENT(ip_protos, ip_proto_t); 124 GENERIC_FIELD_IMPLEMENT(ip_routes, ip_route_t); 130 /** IP global data. 131 */ 132 ip_globals_t ip_globals; 133 134 DEVICE_MAP_IMPLEMENT(ip_netifs, ip_netif_t) 135 136 INT_MAP_IMPLEMENT(ip_protos, ip_proto_t) 137 138 GENERIC_FIELD_IMPLEMENT(ip_routes, ip_route_t) 139 140 /** Updates the device content length according to the new MTU value. 141 * @param[in] device_id The device identifier. 142 * @param[in] mtu The new mtu value. 143 * @returns EOK on success. 144 * @returns ENOENT if device is not found. 145 */ 146 int ip_mtu_changed_message(device_id_t device_id, size_t mtu); 147 148 /** Updates the device state. 149 * @param[in] device_id The device identifier. 150 * @param[in] state The new state value. 151 * @returns EOK on success. 152 * @returns ENOENT if device is not found. 153 */ 154 int ip_device_state_message(device_id_t device_id, device_state_t state); 155 156 /** Returns the device packet dimensions for sending. 157 * @param[in] phone The service module phone. 158 * @param[in] message The service specific message. 159 * @param[in] device_id The device identifier. 160 * @param[out] addr_len The minimum reserved address length. 161 * @param[out] prefix The minimum reserved prefix size. 162 * @param[out] content The maximum content size. 163 * @param[out] suffix The minimum reserved suffix size. 164 * @returns EOK on success. 165 */ 166 int ip_packet_size_message(device_id_t device_id, size_t * addr_len, size_t * prefix, size_t * content, size_t * suffix); 167 168 /** Registers the transport layer protocol. 169 * The traffic of this protocol will be supplied using either the receive function or IPC message. 170 * @param[in] protocol The transport layer module protocol. 171 * @param[in] service The transport layer module service. 172 * @param[in] phone The transport layer module phone. 173 * @param[in] tl_received_msg The receiving function. 174 * @returns EOK on success. 175 * @returns EINVAL if the protocol parameter and/or the service parameter is zero (0). 176 * @returns EINVAL if the phone parameter is not a positive number and the tl_receive_msg is NULL. 177 * @returns ENOMEM if there is not enough memory left. 178 */ 179 int ip_register(int protocol, services_t service, int phone, tl_received_msg_t tl_received_msg); 180 181 /** Initializes a new network interface specific data. 182 * Connects to the network interface layer module, reads the netif configuration, starts an ARP module if needed and sets the netif routing table. 183 * The device identifier and the nil service has to be set. 184 * @param[in,out] ip_netif Network interface specific data. 185 * @returns EOK on success. 186 * @returns ENOTSUP if DHCP is configured. 187 * @returns ENOTSUP if IPv6 is configured. 188 * @returns EINVAL if any of the addresses is invalid. 189 * @returns EINVAL if the used ARP module is not known. 190 * @returns ENOMEM if there is not enough memory left. 191 * @returns Other error codes as defined for the net_get_device_conf_req() function. 192 * @returns Other error codes as defined for the bind_service() function. 193 * @returns Other error codes as defined for the specific arp_device_req() function. 194 * @returns Other error codes as defined for the nil_packet_size_req() function. 195 */ 196 int ip_netif_initialize(ip_netif_ref ip_netif); 197 198 /** Sends the packet or the packet queue via the specified route. 199 * The ICMP_HOST_UNREACH error notification may be sent if route hardware destination address is found. 200 * @param[in,out] packet The packet to be sent. 201 * @param[in] netif The target network interface. 202 * @param[in] route The target route. 203 * @param[in] src The source address. 204 * @param[in] dest The destination address. 205 * @param[in] error The error module service. 206 * @returns EOK on success. 207 * @returns Other error codes as defined for the arp_translate_req() function. 208 * @returns Other error codes as defined for the ip_prepare_packet() function. 209 */ 210 int ip_send_route(packet_t packet, ip_netif_ref netif, ip_route_ref route, in_addr_t * src, in_addr_t dest, services_t error); 211 212 /** Prepares the outgoing packet or the packet queue. 213 * The packet queue is a fragmented packet 214 * Updates the first packet's IP header. 215 * Prefixes the additional packets with fragment headers. 216 * @param[in] source The source address. 217 * @param[in] dest The destination address. 218 * @param[in,out] packet The packet to be sent. 219 * @param[in] destination The destination hardware address. 220 * @returns EOK on success. 221 * @returns EINVAL if the packet is too small to contain the IP header. 222 * @returns EINVAL if the packet is too long than the IP allows. 223 * @returns ENOMEM if there is not enough memory left. 224 * @returns Other error codes as defined for the packet_set_addr() function. 225 */ 226 int ip_prepare_packet(in_addr_t * source, in_addr_t dest, packet_t packet, measured_string_ref destination); 227 228 /** Checks the packet queue lengths and fragments the packets if needed. 229 * The ICMP_FRAG_NEEDED error notification may be sent if the packet needs to be fragmented and the fragmentation is not allowed. 230 * @param[in,out] packet The packet or the packet queue to be checked. 231 * @param[in] prefix The minimum prefix size. 232 * @param[in] content The maximum content size. 233 * @param[in] suffix The minimum suffix size. 234 * @param[in] addr_len The minimum address length. 235 * @param[in] error The error module service. 236 * @returns The packet or the packet queue of the allowed length. 237 * @returns NULL if there are no packets left. 238 */ 239 packet_t ip_split_packet(packet_t packet, size_t prefix, size_t content, size_t suffix, socklen_t addr_len, services_t error); 240 241 /** Checks the packet length and fragments it if needed. 242 * The new fragments are queued before the original packet. 243 * @param[in,out] packet The packet to be checked. 244 * @param[in] length The maximum packet length. 245 * @param[in] prefix The minimum prefix size. 246 * @param[in] suffix The minimum suffix size. 247 * @param[in] addr_len The minimum address length. 248 * @returns EOK on success. 249 * @returns EINVAL if the packet_get_addr() function fails. 250 * @returns EINVAL if the packet does not contain the IP header. 251 * @returns EPERM if the packet needs to be fragmented and the fragmentation is not allowed. 252 * @returns ENOMEM if there is not enough memory left. 253 * @returns ENOMEM if there is no packet available. 254 * @returns ENOMEM if the packet is too small to contain the IP header. 255 * @returns Other error codes as defined for the packet_trim() function. 256 * @returns Other error codes as defined for the ip_create_middle_header() function. 257 * @returns Other error codes as defined for the ip_fragment_packet_data() function. 258 */ 259 int ip_fragment_packet(packet_t packet, size_t length, size_t prefix, size_t suffix, socklen_t addr_len); 260 261 /** Fragments the packet from the end. 262 * @param[in] packet The packet to be fragmented. 263 * @param[in,out] new_packet The new packet fragment. 264 * @param[in,out] header The original packet header. 265 * @param[in,out] new_header The new packet fragment header. 266 * @param[in] length The new fragment length. 267 * @param[in] src The source address. 268 * @param[in] dest The destiantion address. 269 * @param[in] addrlen The address length. 270 * @returns EOK on success. 271 * @returns ENOMEM if the target packet is too small. 272 * @returns Other error codes as defined for the packet_set_addr() function. 273 * @returns Other error codes as defined for the pq_insert_after() function. 274 */ 275 int ip_fragment_packet_data(packet_t packet, packet_t new_packet, ip_header_ref header, ip_header_ref new_header, size_t length, const struct sockaddr * src, const struct sockaddr * dest, socklen_t addrlen); 276 277 /** Prefixes a middle fragment header based on the last fragment header to the packet. 278 * @param[in] packet The packet to be prefixed. 279 * @param[in] last The last header to be copied. 280 * @returns The prefixed middle header. 281 * @returns NULL on error. 282 */ 283 ip_header_ref ip_create_middle_header(packet_t packet, ip_header_ref last); 284 285 /** Copies the fragment header. 286 * Copies only the header itself and relevant IP options. 287 * @param[out] last The created header. 288 * @param[in] first The original header to be copied. 289 */ 290 void ip_create_last_header(ip_header_ref last, ip_header_ref first); 291 292 /** Returns the network interface's IP address. 293 * @param[in] netif The network interface. 294 * @returns The IP address. 295 * @returns NULL if no IP address was found. 296 */ 297 in_addr_t * ip_netif_address(ip_netif_ref netif); 298 299 /** Searches all network interfaces if there is a suitable route. 300 * @param[in] destination The destination address. 301 * @returns The found route. 302 * @returns NULL if no route was found. 303 */ 304 ip_route_ref ip_find_route(in_addr_t destination); 305 306 /** Searches the network interfaces if there is a suitable route. 307 * @param[in] netif The network interface to be searched for routes. May be NULL. 308 * @param[in] destination The destination address. 309 * @returns The found route. 310 * @returns NULL if no route was found. 311 */ 312 ip_route_ref ip_netif_find_route(ip_netif_ref netif, in_addr_t destination); 313 314 /** Processes the received IP packet or the packet queue one by one. 315 * The packet is either passed to another module or released on error. 316 * @param[in] device_id The source device identifier. 317 * @param[in,out] packet The received packet. 318 * @returns EOK on success and the packet is no longer needed. 319 * @returns EINVAL if the packet is too small to carry the IP packet. 320 * @returns EINVAL if the received address lengths differs from the registered values. 321 * @returns ENOENT if the device is not found in the cache. 322 * @returns ENOENT if the protocol for the device is not found in the cache. 323 * @returns ENOMEM if there is not enough memory left. 324 */ 325 int ip_receive_message(device_id_t device_id, packet_t packet); 326 327 /** Processes the received packet. 328 * The packet is either passed to another module or released on error. 329 * The ICMP_PARAM_POINTER error notification may be sent if the checksum is invalid. 330 * The ICMP_EXC_TTL error notification may be sent if the TTL is less than two (2). 331 * The ICMP_HOST_UNREACH error notification may be sent if no route was found. 332 * The ICMP_HOST_UNREACH error notification may be sent if the packet is for another host and the routing is disabled. 333 * @param[in] device_id The source device identifier. 334 * @param[in] packet The received packet to be processed. 335 * @returns EOK on success. 336 * @returns EINVAL if the TTL is less than two (2). 337 * @returns EINVAL if the checksum is invalid. 338 * @returns EAFNOSUPPORT if the address family is not supported. 339 * @returns ENOENT if no route was found. 340 * @returns ENOENT if the packet is for another host and the routing is disabled. 341 */ 342 int ip_process_packet(device_id_t device_id, packet_t packet); 343 344 /** Returns the packet destination address from the IP header. 345 * @param[in] header The packet IP header to be read. 346 * @returns The packet destination address. 347 */ 348 in_addr_t ip_get_destination(ip_header_ref header); 349 350 /** Delivers the packet to the local host. 351 * The packet is either passed to another module or released on error. 352 * The ICMP_PROT_UNREACH error notification may be sent if the protocol is not found. 353 * @param[in] device_id The source device identifier. 354 * @param[in] packet The packet to be delivered. 355 * @param[in] header The first packet IP header. May be NULL. 356 * @param[in] error The packet error service. 357 * @returns EOK on success. 358 * @returns ENOTSUP if the packet is a fragment. 359 * @returns EAFNOSUPPORT if the address family is not supported. 360 * @returns ENOENT if the target protocol is not found. 361 * @returns Other error codes as defined for the packet_set_addr() function. 362 * @returns Other error codes as defined for the packet_trim() function. 363 * @returns Other error codes as defined for the protocol specific tl_received_msg function. 364 */ 365 int ip_deliver_local(device_id_t device_id, packet_t packet, ip_header_ref header, services_t error); 366 367 /** Prepares the ICMP notification packet. 368 * Releases additional packets and keeps only the first one. 369 * All packets is released on error. 370 * @param[in] error The packet error service. 371 * @param[in] packet The packet or the packet queue to be reported as faulty. 372 * @param[in] header The first packet IP header. May be NULL. 373 * @returns The found ICMP phone. 374 * @returns EINVAL if the error parameter is set. 375 * @returns EINVAL if the ICMP phone is not found. 376 * @returns EINVAL if the ip_prepare_icmp() fails. 377 */ 378 int ip_prepare_icmp_and_get_phone(services_t error, packet_t packet, ip_header_ref header); 379 380 /** Returns the ICMP phone. 381 * Searches the registered protocols. 382 * @returns The found ICMP phone. 383 * @returns ENOENT if the ICMP is not registered. 384 */ 385 int ip_get_icmp_phone(void); 386 387 /** Prepares the ICMP notification packet. 388 * Releases additional packets and keeps only the first one. 389 * @param[in] packet The packet or the packet queue to be reported as faulty. 390 * @param[in] header The first packet IP header. May be NULL. 391 * @returns EOK on success. 392 * @returns EINVAL if there are no data in the packet. 393 * @returns EINVAL if the packet is a fragment. 394 * @returns ENOMEM if the packet is too short to contain the IP header. 395 * @returns EAFNOSUPPORT if the address family is not supported. 396 * @returns EPERM if the protocol is not allowed to send ICMP notifications. The ICMP protocol itself. 397 * @returns Other error codes as defined for the packet_set_addr(). 398 */ 399 int ip_prepare_icmp(packet_t packet, ip_header_ref header); 125 400 126 401 /** Releases the packet and returns the result. 127 * 128 * @param[in] packet The packet queue to be released. 129 * @param[in] result The result to be returned. 130 * @return The result parameter. 131 */ 132 static int ip_release_and_return(packet_t packet, int result) 133 { 134 pq_release_remote(ip_globals.net_phone, packet_get_id(packet)); 135 return result; 136 } 137 138 /** Returns the ICMP phone. 139 * 140 * Searches the registered protocols. 141 * 142 * @returns The found ICMP phone. 143 * @returns ENOENT if the ICMP is not registered. 144 */ 145 static int ip_get_icmp_phone(void) 146 { 147 ip_proto_ref proto; 148 int phone; 149 150 fibril_rwlock_read_lock(&ip_globals.protos_lock); 151 proto = ip_protos_find(&ip_globals.protos, IPPROTO_ICMP); 152 phone = proto ? proto->phone : ENOENT; 153 fibril_rwlock_read_unlock(&ip_globals.protos_lock); 154 return phone; 155 } 156 157 /** Prepares the ICMP notification packet. 158 * 159 * Releases additional packets and keeps only the first one. 160 * 161 * @param[in] packet The packet or the packet queue to be reported as faulty. 162 * @param[in] header The first packet IP header. May be NULL. 163 * @returns EOK on success. 164 * @returns EINVAL if there are no data in the packet. 165 * @returns EINVAL if the packet is a fragment. 166 * @returns ENOMEM if the packet is too short to contain the IP 167 * header. 168 * @returns EAFNOSUPPORT if the address family is not supported. 169 * @returns EPERM if the protocol is not allowed to send ICMP 170 * notifications. The ICMP protocol itself. 171 * @returns Other error codes as defined for the packet_set_addr(). 172 */ 173 static int ip_prepare_icmp(packet_t packet, ip_header_ref header) 174 { 175 packet_t next; 176 struct sockaddr *dest; 177 struct sockaddr_in dest_in; 178 socklen_t addrlen; 179 180 // detach the first packet and release the others 181 next = pq_detach(packet); 182 if (next) 183 pq_release_remote(ip_globals.net_phone, packet_get_id(next)); 184 185 if (!header) { 186 if (packet_get_data_length(packet) <= sizeof(ip_header_t)) 187 return ENOMEM; 188 189 // get header 190 header = (ip_header_ref) packet_get_data(packet); 191 if (!header) 192 return EINVAL; 193 194 } 195 196 // only for the first fragment 197 if (IP_FRAGMENT_OFFSET(header)) 198 return EINVAL; 199 200 // not for the ICMP protocol 201 if (header->protocol == IPPROTO_ICMP) 202 return EPERM; 203 204 // set the destination address 205 switch (header->version) { 206 case IPVERSION: 207 addrlen = sizeof(dest_in); 208 bzero(&dest_in, addrlen); 209 dest_in.sin_family = AF_INET; 210 memcpy(&dest_in.sin_addr.s_addr, &header->source_address, 211 sizeof(header->source_address)); 212 dest = (struct sockaddr *) &dest_in; 213 break; 214 215 default: 216 return EAFNOSUPPORT; 217 } 218 219 return packet_set_addr(packet, NULL, (uint8_t *) dest, addrlen); 220 } 221 222 /** Prepares the ICMP notification packet. 223 * 224 * Releases additional packets and keeps only the first one. 225 * All packets are released on error. 226 * 227 * @param[in] error The packet error service. 228 * @param[in] packet The packet or the packet queue to be reported as faulty. 229 * @param[in] header The first packet IP header. May be NULL. 230 * @returns The found ICMP phone. 231 * @returns EINVAL if the error parameter is set. 232 * @returns EINVAL if the ICMP phone is not found. 233 * @returns EINVAL if the ip_prepare_icmp() fails. 234 */ 235 static int 236 ip_prepare_icmp_and_get_phone(services_t error, packet_t packet, 237 ip_header_ref header) 238 { 239 int phone; 240 241 phone = ip_get_icmp_phone(); 242 if (error || (phone < 0) || ip_prepare_icmp(packet, header)) 243 return ip_release_and_return(packet, EINVAL); 244 return phone; 245 } 246 247 /** Initializes the IP module. 248 * 249 * @param[in] client_connection The client connection processing function. The 250 * module skeleton propagates its own one. 251 * @returns EOK on success. 252 * @returns ENOMEM if there is not enough memory left. 253 */ 254 int ip_initialize(async_client_conn_t client_connection) 255 { 402 * @param[in] packet The packet queue to be released. 403 * @param[in] result The result to be returned. 404 * @return The result parameter. 405 */ 406 int ip_release_and_return(packet_t packet, int result); 407 408 int ip_initialize(async_client_conn_t client_connection){ 256 409 ERROR_DECLARE; 257 410 … … 269 422 ip_globals.client_connection = client_connection; 270 423 ERROR_PROPAGATE(modules_initialize(&ip_globals.modules)); 271 ERROR_PROPAGATE(add_module(NULL, &ip_globals.modules, ARP_NAME, 272 ARP_FILENAME, SERVICE_ARP, 0, arp_connect_module)); 424 ERROR_PROPAGATE(add_module(NULL, &ip_globals.modules, ARP_NAME, ARP_FILENAME, SERVICE_ARP, arp_task_get_id(), arp_connect_module)); 273 425 fibril_rwlock_write_unlock(&ip_globals.lock); 274 275 426 return EOK; 276 427 } 277 428 278 /** Initializes a new network interface specific data. 279 * 280 * Connects to the network interface layer module, reads the netif 281 * configuration, starts an ARP module if needed and sets the netif routing 282 * table. 283 * 284 * The device identifier and the nil service has to be set. 285 * 286 * @param[in,out] ip_netif Network interface specific data. 287 * @returns EOK on success. 288 * @returns ENOTSUP if DHCP is configured. 289 * @returns ENOTSUP if IPv6 is configured. 290 * @returns EINVAL if any of the addresses is invalid. 291 * @returns EINVAL if the used ARP module is not known. 292 * @returns ENOMEM if there is not enough memory left. 293 * @returns Other error codes as defined for the 294 * net_get_device_conf_req() function. 295 * @returns Other error codes as defined for the bind_service() 296 * function. 297 * @returns Other error codes as defined for the specific 298 * arp_device_req() function. 299 * @returns Other error codes as defined for the 300 * nil_packet_size_req() function. 301 */ 302 static int ip_netif_initialize(ip_netif_ref ip_netif) 303 { 304 ERROR_DECLARE; 305 306 measured_string_t names[] = { 307 { 308 (char *) "IPV", 309 3 310 }, 311 { 312 (char *) "IP_CONFIG", 313 9 314 }, 315 { 316 (char *) "IP_ADDR", 317 7 318 }, 319 { 320 (char *) "IP_NETMASK", 321 10 322 }, 323 { 324 (char *) "IP_GATEWAY", 325 10 326 }, 327 { 328 (char *) "IP_BROADCAST", 329 12 330 }, 331 { 332 (char *) "ARP", 333 3 334 }, 335 { 336 (char *) "IP_ROUTING", 337 10 338 } 339 }; 340 measured_string_ref configuration; 341 size_t count = sizeof(names) / sizeof(measured_string_t); 342 char *data; 343 measured_string_t address; 344 int index; 345 ip_route_ref route; 346 in_addr_t gateway; 347 348 ip_netif->arp = NULL; 349 route = NULL; 350 ip_netif->ipv = NET_DEFAULT_IPV; 351 ip_netif->dhcp = false; 352 ip_netif->routing = NET_DEFAULT_IP_ROUTING; 353 configuration = &names[0]; 354 355 // get configuration 356 ERROR_PROPAGATE(net_get_device_conf_req(ip_globals.net_phone, 357 ip_netif->device_id, &configuration, count, &data)); 358 if (configuration) { 359 if (configuration[0].value) 360 ip_netif->ipv = strtol(configuration[0].value, NULL, 0); 361 362 ip_netif->dhcp = !str_lcmp(configuration[1].value, "dhcp", 363 configuration[1].length); 364 365 if (ip_netif->dhcp) { 366 // TODO dhcp 367 net_free_settings(configuration, data); 368 return ENOTSUP; 369 } else if (ip_netif->ipv == IPV4) { 370 route = (ip_route_ref) malloc(sizeof(ip_route_t)); 371 if (!route) { 372 net_free_settings(configuration, data); 373 return ENOMEM; 374 } 375 route->address.s_addr = 0; 376 route->netmask.s_addr = 0; 377 route->gateway.s_addr = 0; 378 route->netif = ip_netif; 379 index = ip_routes_add(&ip_netif->routes, route); 380 if (index < 0) { 381 net_free_settings(configuration, data); 382 free(route); 383 return index; 384 } 385 if (ERROR_OCCURRED(inet_pton(AF_INET, 386 configuration[2].value, 387 (uint8_t *) &route->address.s_addr)) || 388 ERROR_OCCURRED(inet_pton(AF_INET, 389 configuration[3].value, 390 (uint8_t *) &route->netmask.s_addr)) || 391 (inet_pton(AF_INET, configuration[4].value, 392 (uint8_t *) &gateway.s_addr) == EINVAL) || 393 (inet_pton(AF_INET, configuration[5].value, 394 (uint8_t *) &ip_netif->broadcast.s_addr) == EINVAL)) 395 { 396 net_free_settings(configuration, data); 397 return EINVAL; 398 } 399 } else { 400 // TODO ipv6 in separate module 401 net_free_settings(configuration, data); 402 return ENOTSUP; 403 } 404 405 if (configuration[6].value) { 406 ip_netif->arp = get_running_module(&ip_globals.modules, 407 configuration[6].value); 408 if (!ip_netif->arp) { 409 printf("Failed to start the arp %s\n", 410 configuration[6].value); 411 net_free_settings(configuration, data); 412 return EINVAL; 413 } 414 } 415 if (configuration[7].value) 416 ip_netif->routing = (configuration[7].value[0] == 'y'); 417 418 net_free_settings(configuration, data); 419 } 420 421 // binds the netif service which also initializes the device 422 ip_netif->phone = nil_bind_service(ip_netif->service, 423 (ipcarg_t) ip_netif->device_id, SERVICE_IP, 424 ip_globals.client_connection); 425 if (ip_netif->phone < 0) { 426 printf("Failed to contact the nil service %d\n", 427 ip_netif->service); 428 return ip_netif->phone; 429 } 430 431 // has to be after the device netif module initialization 432 if (ip_netif->arp) { 433 if (route) { 434 address.value = (char *) &route->address.s_addr; 435 address.length = CONVERT_SIZE(in_addr_t, char, 1); 436 ERROR_PROPAGATE(arp_device_req(ip_netif->arp->phone, 437 ip_netif->device_id, SERVICE_IP, ip_netif->service, 438 &address)); 439 } else { 440 ip_netif->arp = 0; 441 } 442 } 443 444 // get packet dimensions 445 ERROR_PROPAGATE(nil_packet_size_req(ip_netif->phone, 446 ip_netif->device_id, &ip_netif->packet_dimension)); 447 if (ip_netif->packet_dimension.content < IP_MIN_CONTENT) { 448 printf("Maximum transmission unit %d bytes is too small, at " 449 "least %d bytes are needed\n", 450 ip_netif->packet_dimension.content, IP_MIN_CONTENT); 451 ip_netif->packet_dimension.content = IP_MIN_CONTENT; 452 } 453 454 index = ip_netifs_add(&ip_globals.netifs, ip_netif->device_id, ip_netif); 455 if (index < 0) 456 return index; 457 458 if (gateway.s_addr) { 459 // the default gateway 460 ip_globals.gateway.address.s_addr = 0; 461 ip_globals.gateway.netmask.s_addr = 0; 462 ip_globals.gateway.gateway.s_addr = gateway.s_addr; 463 ip_globals.gateway.netif = ip_netif; 464 } 465 466 return EOK; 467 } 468 469 /** Updates the device content length according to the new MTU value. 470 * 471 * @param[in] device_id The device identifier. 472 * @param[in] mtu The new mtu value. 473 * @returns EOK on success. 474 * @returns ENOENT if device is not found. 475 */ 476 static int ip_mtu_changed_message(device_id_t device_id, size_t mtu) 477 { 478 ip_netif_ref netif; 479 480 fibril_rwlock_write_lock(&ip_globals.netifs_lock); 481 netif = ip_netifs_find(&ip_globals.netifs, device_id); 482 if (!netif) { 483 fibril_rwlock_write_unlock(&ip_globals.netifs_lock); 484 return ENOENT; 485 } 486 netif->packet_dimension.content = mtu; 487 fibril_rwlock_write_unlock(&ip_globals.netifs_lock); 488 489 printf("%s: Device %d changed MTU to %d\n", NAME, device_id, mtu); 490 491 return EOK; 492 } 493 494 /** Updates the device state. 495 * 496 * @param[in] device_id The device identifier. 497 * @param[in] state The new state value. 498 * @returns EOK on success. 499 * @returns ENOENT if device is not found. 500 */ 501 static int ip_device_state_message(device_id_t device_id, device_state_t state) 502 { 503 ip_netif_ref netif; 504 505 fibril_rwlock_write_lock(&ip_globals.netifs_lock); 506 // find the device 507 netif = ip_netifs_find(&ip_globals.netifs, device_id); 508 if (!netif) { 509 fibril_rwlock_write_unlock(&ip_globals.netifs_lock); 510 return ENOENT; 511 } 512 netif->state = state; 513 fibril_rwlock_write_unlock(&ip_globals.netifs_lock); 514 515 printf("%s: Device %d changed state to %d\n", NAME, device_id, state); 516 517 return EOK; 518 } 519 520 521 /** Prefixes a middle fragment header based on the last fragment header to the 522 * packet. 523 * 524 * @param[in] packet The packet to be prefixed. 525 * @param[in] last The last header to be copied. 526 * @returns The prefixed middle header. 527 * @returns NULL on error. 528 */ 529 static ip_header_ref 530 ip_create_middle_header(packet_t packet, ip_header_ref last) 531 { 532 ip_header_ref middle; 533 534 middle = (ip_header_ref) packet_suffix(packet, IP_HEADER_LENGTH(last)); 535 if (!middle) 536 return NULL; 537 memcpy(middle, last, IP_HEADER_LENGTH(last)); 538 middle->flags |= IPFLAG_MORE_FRAGMENTS; 539 return middle; 540 } 541 542 /** Copies the fragment header. 543 * 544 * Copies only the header itself and relevant IP options. 545 * 546 * @param[out] last The created header. 547 * @param[in] first The original header to be copied. 548 */ 549 static void ip_create_last_header(ip_header_ref last, ip_header_ref first) 550 { 551 ip_option_ref option; 552 size_t next; 553 size_t length; 554 555 // copy first itself 556 memcpy(last, first, sizeof(ip_header_t)); 557 length = sizeof(ip_header_t); 558 next = sizeof(ip_header_t); 559 560 // process all ip options 561 while (next < first->header_length) { 562 option = (ip_option_ref) (((uint8_t *) first) + next); 563 // skip end or noop 564 if ((option->type == IPOPT_END) || 565 (option->type == IPOPT_NOOP)) { 566 next++; 567 } else { 568 // copy if told so or skip 569 if (IPOPT_COPIED(option->type)) { 570 memcpy(((uint8_t *) last) + length, 571 ((uint8_t *) first) + next, option->length); 572 length += option->length; 573 } 574 // next option 575 next += option->length; 576 } 577 } 578 579 // align 4 byte boundary 580 if (length % 4) { 581 bzero(((uint8_t *) last) + length, 4 - (length % 4)); 582 last->header_length = length / 4 + 1; 583 } else { 584 last->header_length = length / 4; 585 } 586 587 last->header_checksum = 0; 588 } 589 590 /** Prepares the outgoing packet or the packet queue. 591 * 592 * The packet queue is a fragmented packet 593 * Updates the first packet's IP header. 594 * Prefixes the additional packets with fragment headers. 595 * 596 * @param[in] source The source address. 597 * @param[in] dest The destination address. 598 * @param[in,out] packet The packet to be sent. 599 * @param[in] destination The destination hardware address. 600 * @returns EOK on success. 601 * @returns EINVAL if the packet is too small to contain the IP 602 * header. 603 * @returns EINVAL if the packet is too long than the IP allows. 604 * @returns ENOMEM if there is not enough memory left. 605 * @returns Other error codes as defined for the packet_set_addr() 606 * function. 607 */ 608 static int 609 ip_prepare_packet(in_addr_t *source, in_addr_t dest, packet_t packet, 610 measured_string_ref destination) 611 { 612 ERROR_DECLARE; 613 614 size_t length; 615 ip_header_ref header; 616 ip_header_ref last_header; 617 ip_header_ref middle_header; 618 packet_t next; 619 620 length = packet_get_data_length(packet); 621 if ((length < sizeof(ip_header_t)) || (length > IP_MAX_CONTENT)) 622 return EINVAL; 623 624 header = (ip_header_ref) packet_get_data(packet); 625 if (destination) { 626 ERROR_PROPAGATE(packet_set_addr(packet, NULL, 627 (uint8_t *) destination->value, 628 CONVERT_SIZE(char, uint8_t, destination->length))); 629 } else { 630 ERROR_PROPAGATE(packet_set_addr(packet, NULL, NULL, 0)); 631 } 632 header->version = IPV4; 633 header->fragment_offset_high = 0; 634 header->fragment_offset_low = 0; 635 header->header_checksum = 0; 636 if (source) 637 header->source_address = source->s_addr; 638 header->destination_address = dest.s_addr; 639 640 fibril_rwlock_write_lock(&ip_globals.lock); 641 ip_globals.packet_counter++; 642 header->identification = htons(ip_globals.packet_counter); 643 fibril_rwlock_write_unlock(&ip_globals.lock); 644 645 if (pq_next(packet)) { 646 last_header = (ip_header_ref) malloc(IP_HEADER_LENGTH(header)); 647 if (!last_header) 648 return ENOMEM; 649 ip_create_last_header(last_header, header); 650 next = pq_next(packet); 651 while (pq_next(next)) { 652 middle_header = (ip_header_ref) packet_prefix(next, 653 IP_HEADER_LENGTH(last_header)); 654 if (!middle_header) { 655 free(last_header); 656 return ENOMEM; 657 } 658 659 memcpy(middle_header, last_header, 660 IP_HEADER_LENGTH(last_header)); 661 header->flags |= IPFLAG_MORE_FRAGMENTS; 662 middle_header->total_length = 663 htons(packet_get_data_length(next)); 664 middle_header->fragment_offset_high = 665 IP_COMPUTE_FRAGMENT_OFFSET_HIGH(length); 666 middle_header->fragment_offset_low = 667 IP_COMPUTE_FRAGMENT_OFFSET_LOW(length); 668 middle_header->header_checksum = 669 IP_HEADER_CHECKSUM(middle_header); 670 if (destination) { 671 if (ERROR_OCCURRED(packet_set_addr(next, NULL, 672 (uint8_t *) destination->value, 673 CONVERT_SIZE(char, uint8_t, 674 destination->length)))) { 675 free(last_header); 676 return ERROR_CODE; 677 } 678 } 679 length += packet_get_data_length(next); 680 next = pq_next(next); 681 } 682 683 middle_header = (ip_header_ref) packet_prefix(next, 684 IP_HEADER_LENGTH(last_header)); 685 if (!middle_header) { 686 free(last_header); 687 return ENOMEM; 688 } 689 690 memcpy(middle_header, last_header, 691 IP_HEADER_LENGTH(last_header)); 692 middle_header->total_length = 693 htons(packet_get_data_length(next)); 694 middle_header->fragment_offset_high = 695 IP_COMPUTE_FRAGMENT_OFFSET_HIGH(length); 696 middle_header->fragment_offset_low = 697 IP_COMPUTE_FRAGMENT_OFFSET_LOW(length); 698 middle_header->header_checksum = 699 IP_HEADER_CHECKSUM(middle_header); 700 if (destination) { 701 if (ERROR_OCCURRED(packet_set_addr(next, NULL, 702 (uint8_t *) destination->value, 703 CONVERT_SIZE(char, uint8_t, 704 destination->length)))) { 705 free(last_header); 706 return ERROR_CODE; 707 } 708 } 709 length += packet_get_data_length(next); 710 free(last_header); 711 header->flags |= IPFLAG_MORE_FRAGMENTS; 712 } 713 714 header->total_length = htons(length); 715 // unnecessary for all protocols 716 header->header_checksum = IP_HEADER_CHECKSUM(header); 717 718 return EOK; 719 } 720 721 /** Fragments the packet from the end. 722 * 723 * @param[in] packet The packet to be fragmented. 724 * @param[in,out] new_packet The new packet fragment. 725 * @param[in,out] header The original packet header. 726 * @param[in,out] new_header The new packet fragment header. 727 * @param[in] length The new fragment length. 728 * @param[in] src The source address. 729 * @param[in] dest The destiantion address. 730 * @param[in] addrlen The address length. 731 * @returns EOK on success. 732 * @returns ENOMEM if the target packet is too small. 733 * @returns Other error codes as defined for the packet_set_addr() 734 * function. 735 * @returns Other error codes as defined for the pq_insert_after() 736 * function. 737 */ 738 static int 739 ip_fragment_packet_data(packet_t packet, packet_t new_packet, 740 ip_header_ref header, ip_header_ref new_header, size_t length, 741 const struct sockaddr *src, const struct sockaddr *dest, socklen_t addrlen) 742 { 743 ERROR_DECLARE; 744 745 void *data; 746 size_t offset; 747 748 data = packet_suffix(new_packet, length); 749 if (!data) 750 return ENOMEM; 751 752 memcpy(data, ((void *) header) + IP_TOTAL_LENGTH(header) - length, 753 length); 754 ERROR_PROPAGATE(packet_trim(packet, 0, length)); 755 header->total_length = htons(IP_TOTAL_LENGTH(header) - length); 756 new_header->total_length = htons(IP_HEADER_LENGTH(new_header) + length); 757 offset = IP_FRAGMENT_OFFSET(header) + IP_HEADER_DATA_LENGTH(header); 758 new_header->fragment_offset_high = 759 IP_COMPUTE_FRAGMENT_OFFSET_HIGH(offset); 760 new_header->fragment_offset_low = 761 IP_COMPUTE_FRAGMENT_OFFSET_LOW(offset); 762 new_header->header_checksum = IP_HEADER_CHECKSUM(new_header); 763 ERROR_PROPAGATE(packet_set_addr(new_packet, (const uint8_t *) src, 764 (const uint8_t *) dest, addrlen)); 765 766 return pq_insert_after(packet, new_packet); 767 } 768 769 /** Checks the packet length and fragments it if needed. 770 * 771 * The new fragments are queued before the original packet. 772 * 773 * @param[in,out] packet The packet to be checked. 774 * @param[in] length The maximum packet length. 775 * @param[in] prefix The minimum prefix size. 776 * @param[in] suffix The minimum suffix size. 777 * @param[in] addr_len The minimum address length. 778 * @returns EOK on success. 779 * @returns EINVAL if the packet_get_addr() function fails. 780 * @returns EINVAL if the packet does not contain the IP header. 781 * @returns EPERM if the packet needs to be fragmented and the 782 * fragmentation is not allowed. 783 * @returns ENOMEM if there is not enough memory left. 784 * @returns ENOMEM if there is no packet available. 785 * @returns ENOMEM if the packet is too small to contain the IP 786 * header. 787 * @returns Other error codes as defined for the packet_trim() 788 * function. 789 * @returns Other error codes as defined for the 790 * ip_create_middle_header() function. 791 * @returns Other error codes as defined for the 792 * ip_fragment_packet_data() function. 793 */ 794 static int 795 ip_fragment_packet(packet_t packet, size_t length, size_t prefix, size_t suffix, 796 socklen_t addr_len) 797 { 798 ERROR_DECLARE; 799 800 packet_t new_packet; 801 ip_header_ref header; 802 ip_header_ref middle_header; 803 ip_header_ref last_header; 804 struct sockaddr *src; 805 struct sockaddr *dest; 806 socklen_t addrlen; 807 int result; 808 809 result = packet_get_addr(packet, (uint8_t **) &src, (uint8_t **) &dest); 810 if (result <= 0) 811 return EINVAL; 812 813 addrlen = (socklen_t) result; 814 if (packet_get_data_length(packet) <= sizeof(ip_header_t)) 815 return ENOMEM; 816 817 // get header 818 header = (ip_header_ref) packet_get_data(packet); 819 if (!header) 820 return EINVAL; 821 822 // fragmentation forbidden? 823 if(header->flags & IPFLAG_DONT_FRAGMENT) 824 return EPERM; 825 826 // create the last fragment 827 new_packet = packet_get_4_remote(ip_globals.net_phone, prefix, length, 828 suffix, ((addrlen > addr_len) ? addrlen : addr_len)); 829 if (!new_packet) 830 return ENOMEM; 831 832 // allocate as much as originally 833 last_header = (ip_header_ref) packet_suffix(new_packet, 834 IP_HEADER_LENGTH(header)); 835 if (!last_header) 836 return ip_release_and_return(packet, ENOMEM); 837 838 ip_create_last_header(last_header, header); 839 840 // trim the unused space 841 if (ERROR_OCCURRED(packet_trim(new_packet, 0, 842 IP_HEADER_LENGTH(header) - IP_HEADER_LENGTH(last_header)))) { 843 return ip_release_and_return(packet, ERROR_CODE); 844 } 845 846 // biggest multiple of 8 lower than content 847 // TODO even fragmentation? 848 length = length & ~0x7; 849 if (ERROR_OCCURRED(ip_fragment_packet_data(packet, new_packet, header, 850 last_header, 851 ((IP_HEADER_DATA_LENGTH(header) - 852 ((length - IP_HEADER_LENGTH(header)) & ~0x7)) % 853 ((length - IP_HEADER_LENGTH(last_header)) & ~0x7)), src, dest, 854 addrlen))) { 855 return ip_release_and_return(packet, ERROR_CODE); 856 } 857 858 // mark the first as fragmented 859 header->flags |= IPFLAG_MORE_FRAGMENTS; 860 861 // create middle framgents 862 while (IP_TOTAL_LENGTH(header) > length) { 863 new_packet = packet_get_4_remote(ip_globals.net_phone, prefix, 864 length, suffix, 865 ((addrlen >= addr_len) ? addrlen : addr_len)); 866 if (!new_packet) 867 return ENOMEM; 868 869 middle_header = ip_create_middle_header(new_packet, 870 last_header); 871 if (!middle_header) 872 return ip_release_and_return(packet, ENOMEM); 873 874 if (ERROR_OCCURRED(ip_fragment_packet_data(packet, new_packet, 875 header, middle_header, 876 (length - IP_HEADER_LENGTH(middle_header)) & ~0x7, src, 877 dest, addrlen))) { 878 return ip_release_and_return(packet, ERROR_CODE); 879 } 880 } 881 882 // finish the first fragment 883 header->header_checksum = IP_HEADER_CHECKSUM(header); 884 885 return EOK; 886 } 887 888 /** Checks the packet queue lengths and fragments the packets if needed. 889 * 890 * The ICMP_FRAG_NEEDED error notification may be sent if the packet needs to 891 * be fragmented and the fragmentation is not allowed. 892 * 893 * @param[in,out] packet The packet or the packet queue to be checked. 894 * @param[in] prefix The minimum prefix size. 895 * @param[in] content The maximum content size. 896 * @param[in] suffix The minimum suffix size. 897 * @param[in] addr_len The minimum address length. 898 * @param[in] error The error module service. 899 * @returns The packet or the packet queue of the allowed length. 900 * @returns NULL if there are no packets left. 901 */ 902 static packet_t 903 ip_split_packet(packet_t packet, size_t prefix, size_t content, size_t suffix, 904 socklen_t addr_len, services_t error) 905 { 906 size_t length; 907 packet_t next; 908 packet_t new_packet; 909 int result; 910 int phone; 911 912 next = packet; 913 // check all packets 914 while (next) { 915 length = packet_get_data_length(next); 916 917 if (length <= content) { 918 next = pq_next(next); 919 continue; 920 } 921 922 // too long 923 result = ip_fragment_packet(next, content, prefix, 924 suffix, addr_len); 925 if (result != EOK) { 926 new_packet = pq_detach(next); 927 if (next == packet) { 928 // the new first packet of the queue 929 packet = new_packet; 930 } 931 // fragmentation needed? 932 if (result == EPERM) { 933 phone = ip_prepare_icmp_and_get_phone( 934 error, next, NULL); 935 if (phone >= 0) { 936 // fragmentation necessary ICMP 937 icmp_destination_unreachable_msg(phone, 938 ICMP_FRAG_NEEDED, content, next); 939 } 940 } else { 941 pq_release_remote(ip_globals.net_phone, 942 packet_get_id(next)); 943 } 944 945 next = new_packet; 946 continue; 947 } 948 949 next = pq_next(next); 950 } 951 952 return packet; 953 } 954 955 /** Sends the packet or the packet queue via the specified route. 956 * 957 * The ICMP_HOST_UNREACH error notification may be sent if route hardware 958 * destination address is found. 959 * 960 * @param[in,out] packet The packet to be sent. 961 * @param[in] netif The target network interface. 962 * @param[in] route The target route. 963 * @param[in] src The source address. 964 * @param[in] dest The destination address. 965 * @param[in] error The error module service. 966 * @returns EOK on success. 967 * @returns Other error codes as defined for the arp_translate_req() 968 * function. 969 * @returns Other error codes as defined for the ip_prepare_packet() 970 * function. 971 */ 972 static int 973 ip_send_route(packet_t packet, ip_netif_ref netif, ip_route_ref route, 974 in_addr_t *src, in_addr_t dest, services_t error) 975 { 976 ERROR_DECLARE; 977 978 measured_string_t destination; 979 measured_string_ref translation; 980 char *data; 981 int phone; 982 983 // get destination hardware address 984 if (netif->arp && (route->address.s_addr != dest.s_addr)) { 985 destination.value = route->gateway.s_addr ? 986 (char *) &route->gateway.s_addr : (char *) &dest.s_addr; 987 destination.length = CONVERT_SIZE(dest.s_addr, char, 1); 988 989 if (ERROR_OCCURRED(arp_translate_req(netif->arp->phone, 990 netif->device_id, SERVICE_IP, &destination, &translation, 991 &data))) { 992 pq_release_remote(ip_globals.net_phone, 993 packet_get_id(packet)); 994 return ERROR_CODE; 995 } 996 997 if (!translation || !translation->value) { 998 if (translation) { 999 free(translation); 1000 free(data); 1001 } 1002 phone = ip_prepare_icmp_and_get_phone(error, packet, 1003 NULL); 1004 if (phone >= 0) { 1005 // unreachable ICMP if no routing 1006 icmp_destination_unreachable_msg(phone, 1007 ICMP_HOST_UNREACH, 0, packet); 1008 } 1009 return EINVAL; 1010 } 1011 1012 } else { 1013 translation = NULL; 1014 } 1015 1016 if (ERROR_OCCURRED(ip_prepare_packet(src, dest, packet, translation))) { 1017 pq_release_remote(ip_globals.net_phone, packet_get_id(packet)); 1018 } else { 1019 packet = ip_split_packet(packet, netif->packet_dimension.prefix, 1020 netif->packet_dimension.content, 1021 netif->packet_dimension.suffix, 1022 netif->packet_dimension.addr_len, error); 1023 if (packet) { 1024 nil_send_msg(netif->phone, netif->device_id, packet, 1025 SERVICE_IP); 1026 } 1027 } 1028 1029 if (translation) { 1030 free(translation); 1031 free(data); 1032 } 1033 1034 return ERROR_CODE; 1035 } 1036 1037 /** Searches the network interfaces if there is a suitable route. 1038 * 1039 * @param[in] netif The network interface to be searched for routes. May be 1040 * NULL. 1041 * @param[in] destination The destination address. 1042 * @returns The found route. 1043 * @returns NULL if no route was found. 1044 */ 1045 static ip_route_ref 1046 ip_netif_find_route(ip_netif_ref netif, in_addr_t destination) 1047 { 1048 int index; 1049 ip_route_ref route; 1050 1051 if (!netif) 1052 return NULL; 1053 1054 // start with the first one - the direct route 1055 for (index = 0; index < ip_routes_count(&netif->routes); index++) { 1056 route = ip_routes_get_index(&netif->routes, index); 1057 if (route && 1058 ((route->address.s_addr & route->netmask.s_addr) == 1059 (destination.s_addr & route->netmask.s_addr))) { 1060 return route; 1061 } 1062 } 1063 1064 return NULL; 1065 } 1066 1067 /** Searches all network interfaces if there is a suitable route. 1068 * 1069 * @param[in] destination The destination address. 1070 * @returns The found route. 1071 * @returns NULL if no route was found. 1072 */ 1073 static ip_route_ref ip_find_route(in_addr_t destination) { 1074 int index; 1075 ip_route_ref route; 1076 ip_netif_ref netif; 1077 1078 // start with the last netif - the newest one 1079 index = ip_netifs_count(&ip_globals.netifs) - 1; 1080 while (index >= 0) { 1081 netif = ip_netifs_get_index(&ip_globals.netifs, index); 1082 if (netif && (netif->state == NETIF_ACTIVE)) { 1083 route = ip_netif_find_route(netif, destination); 1084 if (route) 1085 return route; 1086 } 1087 index--; 1088 } 1089 1090 return &ip_globals.gateway; 1091 } 1092 1093 /** Returns the network interface's IP address. 1094 * 1095 * @param[in] netif The network interface. 1096 * @returns The IP address. 1097 * @returns NULL if no IP address was found. 1098 */ 1099 static in_addr_t *ip_netif_address(ip_netif_ref netif) 1100 { 1101 ip_route_ref route; 1102 1103 route = ip_routes_get_index(&netif->routes, 0); 1104 return route ? &route->address : NULL; 1105 } 1106 1107 /** Registers the transport layer protocol. 1108 * 1109 * The traffic of this protocol will be supplied using either the receive 1110 * function or IPC message. 1111 * 1112 * @param[in] protocol The transport layer module protocol. 1113 * @param[in] service The transport layer module service. 1114 * @param[in] phone The transport layer module phone. 1115 * @param[in] received_msg The receiving function. 1116 * @returns EOK on success. 1117 * @returns EINVAL if the protocol parameter and/or the service 1118 * parameter is zero. 1119 * @returns EINVAL if the phone parameter is not a positive number 1120 * and the tl_receive_msg is NULL. 1121 * @returns ENOMEM if there is not enough memory left. 1122 */ 1123 static int 1124 ip_register(int protocol, services_t service, int phone, 1125 tl_received_msg_t received_msg) 1126 { 1127 ip_proto_ref proto; 1128 int index; 1129 1130 if (!protocol || !service || ((phone < 0) && !received_msg)) 1131 return EINVAL; 1132 1133 proto = (ip_proto_ref) malloc(sizeof(ip_protos_t)); 1134 if (!proto) 1135 return ENOMEM; 1136 1137 proto->protocol = protocol; 1138 proto->service = service; 1139 proto->phone = phone; 1140 proto->received_msg = received_msg; 1141 1142 fibril_rwlock_write_lock(&ip_globals.protos_lock); 1143 index = ip_protos_add(&ip_globals.protos, proto->protocol, proto); 1144 if (index < 0) { 1145 fibril_rwlock_write_unlock(&ip_globals.protos_lock); 1146 free(proto); 1147 return index; 1148 } 1149 fibril_rwlock_write_unlock(&ip_globals.protos_lock); 1150 1151 printf("%s: Protocol registered (protocol: %d, phone: %d)\n", 1152 NAME, proto->protocol, proto->phone); 1153 1154 return EOK; 1155 } 1156 1157 static int 1158 ip_device_req_local(int il_phone, device_id_t device_id, services_t netif) 1159 { 429 int ip_device_req_local(int il_phone, device_id_t device_id, services_t netif){ 1160 430 ERROR_DECLARE; 1161 431 … … 1165 435 1166 436 ip_netif = (ip_netif_ref) malloc(sizeof(ip_netif_t)); 1167 if (!ip_netif)437 if(! ip_netif){ 1168 438 return ENOMEM; 1169 1170 if (ERROR_OCCURRED(ip_routes_initialize(&ip_netif->routes))){439 } 440 if(ERROR_OCCURRED(ip_routes_initialize(&ip_netif->routes))){ 1171 441 free(ip_netif); 1172 442 return ERROR_CODE; 1173 443 } 1174 1175 444 ip_netif->device_id = device_id; 1176 445 ip_netif->service = netif; 1177 446 ip_netif->state = NETIF_STOPPED; 1178 1179 447 fibril_rwlock_write_lock(&ip_globals.netifs_lock); 1180 if (ERROR_OCCURRED(ip_netif_initialize(ip_netif))){448 if(ERROR_OCCURRED(ip_netif_initialize(ip_netif))){ 1181 449 fibril_rwlock_write_unlock(&ip_globals.netifs_lock); 1182 450 ip_routes_destroy(&ip_netif->routes); … … 1184 452 return ERROR_CODE; 1185 453 } 1186 if (ip_netif->arp)1187 ip_netif->arp->usage++;1188 454 if(ip_netif->arp){ 455 ++ ip_netif->arp->usage; 456 } 1189 457 // print the settings 1190 458 printf("%s: Device registered (id: %d, phone: %d, ipv: %d, conf: %s)\n", … … 1198 466 char gateway[INET_ADDRSTRLEN]; 1199 467 1200 for (index = 0; index < ip_routes_count(&ip_netif->routes); index++){468 for (index = 0; index < ip_routes_count(&ip_netif->routes); ++ index){ 1201 469 route = ip_routes_get_index(&ip_netif->routes, index); 1202 470 if (route) { 1203 inet_ntop(AF_INET, (uint8_t *) &route->address.s_addr, 1204 address, INET_ADDRSTRLEN); 1205 inet_ntop(AF_INET, (uint8_t *) &route->netmask.s_addr, 1206 netmask, INET_ADDRSTRLEN); 1207 inet_ntop(AF_INET, (uint8_t *) &route->gateway.s_addr, 1208 gateway, INET_ADDRSTRLEN); 1209 printf("%s: Route %d (address: %s, netmask: %s, " 1210 "gateway: %s)\n", NAME, index, address, netmask, 1211 gateway); 471 inet_ntop(AF_INET, (uint8_t *) &route->address.s_addr, address, INET_ADDRSTRLEN); 472 inet_ntop(AF_INET, (uint8_t *) &route->netmask.s_addr, netmask, INET_ADDRSTRLEN); 473 inet_ntop(AF_INET, (uint8_t *) &route->gateway.s_addr, gateway, INET_ADDRSTRLEN); 474 printf("%s: Route %d (address: %s, netmask: %s, gateway: %s)\n", 475 NAME, index, address, netmask, gateway); 1212 476 } 1213 477 } 1214 478 1215 inet_ntop(AF_INET, (uint8_t *) &ip_netif->broadcast.s_addr, address, 1216 INET_ADDRSTRLEN); 479 inet_ntop(AF_INET, (uint8_t *) &ip_netif->broadcast.s_addr, address, INET_ADDRSTRLEN); 480 printf("%s: Broadcast (%s)\n", NAME, address); 481 1217 482 fibril_rwlock_write_unlock(&ip_globals.netifs_lock); 1218 1219 printf("%s: Broadcast (%s)\n", NAME, address);1220 1221 483 return EOK; 1222 484 } 1223 485 1224 static int 1225 ip_send_msg_local(int il_phone, device_id_t device_id, packet_t packet, 1226 services_t sender, services_t error) 1227 { 486 int ip_netif_initialize(ip_netif_ref ip_netif){ 487 ERROR_DECLARE; 488 489 measured_string_t names[] = {{str_dup("IPV"), 3}, {str_dup("IP_CONFIG"), 9}, {str_dup("IP_ADDR"), 7}, {str_dup("IP_NETMASK"), 10}, {str_dup("IP_GATEWAY"), 10}, {str_dup("IP_BROADCAST"), 12}, {str_dup("ARP"), 3}, {str_dup("IP_ROUTING"), 10}}; 490 measured_string_ref configuration; 491 size_t count = sizeof(names) / sizeof(measured_string_t); 492 char * data; 493 measured_string_t address; 494 int index; 495 ip_route_ref route; 496 in_addr_t gateway; 497 498 ip_netif->arp = NULL; 499 route = NULL; 500 ip_netif->ipv = NET_DEFAULT_IPV; 501 ip_netif->dhcp = false; 502 ip_netif->routing = NET_DEFAULT_IP_ROUTING; 503 configuration = &names[0]; 504 // get configuration 505 ERROR_PROPAGATE(net_get_device_conf_req(ip_globals.net_phone, ip_netif->device_id, &configuration, count, &data)); 506 if(configuration){ 507 if(configuration[0].value){ 508 ip_netif->ipv = strtol(configuration[0].value, NULL, 0); 509 } 510 ip_netif->dhcp = ! str_lcmp(configuration[1].value, "dhcp", configuration[1].length); 511 if(ip_netif->dhcp){ 512 // TODO dhcp 513 net_free_settings(configuration, data); 514 return ENOTSUP; 515 }else if(ip_netif->ipv == IPV4){ 516 route = (ip_route_ref) malloc(sizeof(ip_route_t)); 517 if(! route){ 518 net_free_settings(configuration, data); 519 return ENOMEM; 520 } 521 route->address.s_addr = 0; 522 route->netmask.s_addr = 0; 523 route->gateway.s_addr = 0; 524 route->netif = ip_netif; 525 index = ip_routes_add(&ip_netif->routes, route); 526 if(index < 0){ 527 net_free_settings(configuration, data); 528 free(route); 529 return index; 530 } 531 if(ERROR_OCCURRED(inet_pton(AF_INET, configuration[2].value, (uint8_t *) &route->address.s_addr)) 532 || ERROR_OCCURRED(inet_pton(AF_INET, configuration[3].value, (uint8_t *) &route->netmask.s_addr)) 533 || (inet_pton(AF_INET, configuration[4].value, (uint8_t *) &gateway.s_addr) == EINVAL) 534 || (inet_pton(AF_INET, configuration[5].value, (uint8_t *) &ip_netif->broadcast.s_addr) == EINVAL)){ 535 net_free_settings(configuration, data); 536 return EINVAL; 537 } 538 }else{ 539 // TODO ipv6 in separate module 540 net_free_settings(configuration, data); 541 return ENOTSUP; 542 } 543 if(configuration[6].value){ 544 ip_netif->arp = get_running_module(&ip_globals.modules, configuration[6].value); 545 if(! ip_netif->arp){ 546 printf("Failed to start the arp %s\n", configuration[6].value); 547 net_free_settings(configuration, data); 548 return EINVAL; 549 } 550 } 551 if(configuration[7].value){ 552 ip_netif->routing = (configuration[7].value[0] == 'y'); 553 } 554 net_free_settings(configuration, data); 555 } 556 // binds the netif service which also initializes the device 557 ip_netif->phone = nil_bind_service(ip_netif->service, (ipcarg_t) ip_netif->device_id, SERVICE_IP, ip_globals.client_connection); 558 if(ip_netif->phone < 0){ 559 printf("Failed to contact the nil service %d\n", ip_netif->service); 560 return ip_netif->phone; 561 } 562 // has to be after the device netif module initialization 563 if(ip_netif->arp){ 564 if(route){ 565 address.value = (char *) &route->address.s_addr; 566 address.length = CONVERT_SIZE(in_addr_t, char, 1); 567 ERROR_PROPAGATE(arp_device_req(ip_netif->arp->phone, ip_netif->device_id, SERVICE_IP, ip_netif->service, &address)); 568 }else{ 569 ip_netif->arp = 0; 570 } 571 } 572 // get packet dimensions 573 ERROR_PROPAGATE(nil_packet_size_req(ip_netif->phone, ip_netif->device_id, &ip_netif->packet_dimension)); 574 if(ip_netif->packet_dimension.content < IP_MIN_CONTENT){ 575 printf("Maximum transmission unit %d bytes is too small, at least %d bytes are needed\n", ip_netif->packet_dimension.content, IP_MIN_CONTENT); 576 ip_netif->packet_dimension.content = IP_MIN_CONTENT; 577 } 578 index = ip_netifs_add(&ip_globals.netifs, ip_netif->device_id, ip_netif); 579 if(index < 0){ 580 return index; 581 } 582 if(gateway.s_addr){ 583 // the default gateway 584 ip_globals.gateway.address.s_addr = 0; 585 ip_globals.gateway.netmask.s_addr = 0; 586 ip_globals.gateway.gateway.s_addr = gateway.s_addr; 587 ip_globals.gateway.netif = ip_netif; 588 } 589 return EOK; 590 } 591 592 int ip_mtu_changed_message(device_id_t device_id, size_t mtu){ 593 ip_netif_ref netif; 594 595 fibril_rwlock_write_lock(&ip_globals.netifs_lock); 596 netif = ip_netifs_find(&ip_globals.netifs, device_id); 597 if(! netif){ 598 fibril_rwlock_write_unlock(&ip_globals.netifs_lock); 599 return ENOENT; 600 } 601 netif->packet_dimension.content = mtu; 602 printf("%s: Device %d changed MTU to %d\n", NAME, device_id, mtu); 603 fibril_rwlock_write_unlock(&ip_globals.netifs_lock); 604 return EOK; 605 } 606 607 int ip_device_state_message(device_id_t device_id, device_state_t state){ 608 ip_netif_ref netif; 609 610 fibril_rwlock_write_lock(&ip_globals.netifs_lock); 611 // find the device 612 netif = ip_netifs_find(&ip_globals.netifs, device_id); 613 if(! netif){ 614 fibril_rwlock_write_unlock(&ip_globals.netifs_lock); 615 return ENOENT; 616 } 617 netif->state = state; 618 printf("%s: Device %d changed state to %d\n", NAME, device_id, state); 619 fibril_rwlock_write_unlock(&ip_globals.netifs_lock); 620 return EOK; 621 } 622 623 int ip_connect_module(services_t service){ 624 return EOK; 625 } 626 627 int ip_bind_service(services_t service, int protocol, services_t me, async_client_conn_t receiver, tl_received_msg_t received_msg){ 628 return ip_register(protocol, me, 0, received_msg); 629 } 630 631 int ip_register(int protocol, services_t service, int phone, tl_received_msg_t received_msg){ 632 ip_proto_ref proto; 633 int index; 634 635 if(!(protocol && service && ((phone > 0) || (received_msg)))){ 636 return EINVAL; 637 } 638 proto = (ip_proto_ref) malloc(sizeof(ip_protos_t)); 639 if(! proto){ 640 return ENOMEM; 641 } 642 proto->protocol = protocol; 643 proto->service = service; 644 proto->phone = phone; 645 proto->received_msg = received_msg; 646 fibril_rwlock_write_lock(&ip_globals.protos_lock); 647 index = ip_protos_add(&ip_globals.protos, proto->protocol, proto); 648 if(index < 0){ 649 fibril_rwlock_write_unlock(&ip_globals.protos_lock); 650 free(proto); 651 return index; 652 } 653 654 printf("%s: Protocol registered (protocol: %d, phone: %d)\n", 655 NAME, proto->protocol, proto->phone); 656 657 fibril_rwlock_write_unlock(&ip_globals.protos_lock); 658 return EOK; 659 } 660 661 int ip_send_msg_local(int il_phone, device_id_t device_id, packet_t packet, services_t sender, services_t error){ 1228 662 ERROR_DECLARE; 1229 663 … … 1231 665 ip_netif_ref netif; 1232 666 ip_route_ref route; 1233 struct sockaddr *addr; 1234 struct sockaddr_in *address_in; 1235 in_addr_t *dest; 1236 in_addr_t *src; 667 struct sockaddr * addr; 668 struct sockaddr_in * address_in; 669 // struct sockaddr_in6 * address_in6; 670 in_addr_t * dest; 671 in_addr_t * src; 1237 672 int phone; 1238 673 … … 1240 675 // should be the next hop address or the target destination address 1241 676 addrlen = packet_get_addr(packet, NULL, (uint8_t **) &addr); 1242 if (addrlen < 0)677 if(addrlen < 0){ 1243 678 return ip_release_and_return(packet, addrlen); 1244 if ((size_t) addrlen < sizeof(struct sockaddr)) 679 } 680 if((size_t) addrlen < sizeof(struct sockaddr)){ 1245 681 return ip_release_and_return(packet, EINVAL); 1246 1247 switch (addr->sa_family) { 1248 case AF_INET: 1249 if (addrlen != sizeof(struct sockaddr_in)) 1250 return ip_release_and_return(packet, EINVAL); 1251 address_in = (struct sockaddr_in *) addr; 1252 dest = &address_in->sin_addr; 1253 if (!dest->s_addr) 1254 dest->s_addr = IPV4_LOCALHOST_ADDRESS; 1255 break; 1256 case AF_INET6: 1257 default: 1258 return ip_release_and_return(packet, EAFNOSUPPORT); 1259 } 1260 682 } 683 switch(addr->sa_family){ 684 case AF_INET: 685 if(addrlen != sizeof(struct sockaddr_in)){ 686 return ip_release_and_return(packet, EINVAL); 687 } 688 address_in = (struct sockaddr_in *) addr; 689 dest = &address_in->sin_addr; 690 if(! dest->s_addr){ 691 dest->s_addr = IPV4_LOCALHOST_ADDRESS; 692 } 693 break; 694 // TODO IPv6 695 /* case AF_INET6: 696 if(addrlen != sizeof(struct sockaddr_in6)){ 697 return EINVAL; 698 } 699 address_in6 = (struct sockaddr_in6 *) dest; 700 address_in6.sin6_addr.s6_addr; 701 IPV6_LOCALHOST_ADDRESS; 702 */ default: 703 return ip_release_and_return(packet, EAFNOSUPPORT); 704 } 1261 705 netif = NULL; 1262 706 route = NULL; 1263 707 fibril_rwlock_read_lock(&ip_globals.netifs_lock); 1264 1265 708 // device specified? 1266 if (device_id > 0){709 if(device_id > 0){ 1267 710 netif = ip_netifs_find(&ip_globals.netifs, device_id); 1268 711 route = ip_netif_find_route(netif, * dest); 1269 if (netif && !route && (ip_globals.gateway.netif == netif))712 if(netif && (! route) && (ip_globals.gateway.netif == netif)){ 1270 713 route = &ip_globals.gateway; 1271 }1272 1273 if (!route){714 } 715 } 716 if(! route){ 1274 717 route = ip_find_route(*dest); 1275 718 netif = route ? route->netif : NULL; 1276 719 } 1277 if (!netif || !route){720 if(!(netif && route)){ 1278 721 fibril_rwlock_read_unlock(&ip_globals.netifs_lock); 1279 722 phone = ip_prepare_icmp_and_get_phone(error, packet, NULL); 1280 if (phone >= 0){723 if(phone >= 0){ 1281 724 // unreachable ICMP if no routing 1282 icmp_destination_unreachable_msg(phone, 1283 ICMP_NET_UNREACH, 0, packet); 725 icmp_destination_unreachable_msg(phone, ICMP_NET_UNREACH, 0, packet); 1284 726 } 1285 727 return ENOENT; 1286 728 } 1287 1288 if (error) { 1289 // do not send for broadcast, anycast packets or network 1290 // broadcast 1291 if (!dest->s_addr || !(~dest->s_addr) || 1292 !(~((dest->s_addr & ~route->netmask.s_addr) | 1293 route->netmask.s_addr)) || 1294 (!(dest->s_addr & ~route->netmask.s_addr))) { 729 if(error){ 730 // do not send for broadcast, anycast packets or network broadcast 731 if((! dest->s_addr) 732 || (!(~ dest->s_addr)) 733 || (!(~((dest->s_addr &(~ route->netmask.s_addr)) | route->netmask.s_addr))) 734 || (!(dest->s_addr &(~ route->netmask.s_addr)))){ 1295 735 return ip_release_and_return(packet, EINVAL); 1296 736 } 1297 737 } 1298 1299 738 // if the local host is the destination 1300 if ((route->address.s_addr == dest->s_addr) &&1301 (dest->s_addr != IPV4_LOCALHOST_ADDRESS)){739 if((route->address.s_addr == dest->s_addr) 740 && (dest->s_addr != IPV4_LOCALHOST_ADDRESS)){ 1302 741 // find the loopback device to deliver 1303 742 dest->s_addr = IPV4_LOCALHOST_ADDRESS; 1304 743 route = ip_find_route(*dest); 1305 744 netif = route ? route->netif : NULL; 1306 if (!netif || !route){745 if(!(netif && route)){ 1307 746 fibril_rwlock_read_unlock(&ip_globals.netifs_lock); 1308 phone = ip_prepare_icmp_and_get_phone(error, packet, 1309 NULL); 1310 if (phone >= 0) { 747 phone = ip_prepare_icmp_and_get_phone(error, packet, NULL); 748 if(phone >= 0){ 1311 749 // unreachable ICMP if no routing 1312 icmp_destination_unreachable_msg(phone, 1313 ICMP_HOST_UNREACH, 0, packet); 750 icmp_destination_unreachable_msg(phone, ICMP_HOST_UNREACH, 0, packet); 1314 751 } 1315 752 return ENOENT; 1316 753 } 1317 754 } 1318 1319 755 src = ip_netif_address(netif); 1320 if (!src){756 if(! src){ 1321 757 fibril_rwlock_read_unlock(&ip_globals.netifs_lock); 1322 758 return ip_release_and_return(packet, ENOENT); 1323 759 } 1324 1325 ERROR_CODE = ip_send_route(packet, netif, route, src, *dest, error); 760 ERROR_CODE = ip_send_route(packet, netif, route, src, * dest, error); 1326 761 fibril_rwlock_read_unlock(&ip_globals.netifs_lock); 1327 1328 762 return ERROR_CODE; 1329 763 } 1330 764 1331 /** Returns the device packet dimensions for sending. 1332 * 1333 * @param[in] phone The service module phone. 1334 * @param[in] message The service specific message. 1335 * @param[in] device_id The device identifier. 1336 * @param[out] addr_len The minimum reserved address length. 1337 * @param[out] prefix The minimum reserved prefix size. 1338 * @param[out] content The maximum content size. 1339 * @param[out] suffix The minimum reserved suffix size. 1340 * @returns EOK on success. 1341 */ 1342 static int 1343 ip_packet_size_message(device_id_t device_id, size_t *addr_len, size_t *prefix, 1344 size_t *content, size_t *suffix) 1345 { 1346 ip_netif_ref netif; 1347 int index; 1348 1349 if (!addr_len || !prefix || !content || !suffix) 1350 return EBADMEM; 1351 1352 *content = IP_MAX_CONTENT - IP_PREFIX; 1353 fibril_rwlock_read_lock(&ip_globals.netifs_lock); 1354 if (device_id < 0) { 1355 *addr_len = IP_ADDR; 1356 *prefix = 0; 1357 *suffix = 0; 1358 1359 for (index = ip_netifs_count(&ip_globals.netifs) - 1; 1360 index >= 0; index--) { 1361 netif = ip_netifs_get_index(&ip_globals.netifs, index); 1362 if (!netif) 1363 continue; 1364 1365 if (netif->packet_dimension.addr_len > *addr_len) 1366 *addr_len = netif->packet_dimension.addr_len; 1367 1368 if (netif->packet_dimension.prefix > *prefix) 1369 *prefix = netif->packet_dimension.prefix; 1370 1371 if (netif->packet_dimension.suffix > *suffix) 1372 *suffix = netif->packet_dimension.suffix; 1373 } 1374 1375 *prefix = *prefix + IP_PREFIX; 1376 *suffix = *suffix + IP_SUFFIX; 1377 } else { 1378 netif = ip_netifs_find(&ip_globals.netifs, device_id); 1379 if (!netif) { 1380 fibril_rwlock_read_unlock(&ip_globals.netifs_lock); 1381 return ENOENT; 1382 } 1383 1384 *addr_len = (netif->packet_dimension.addr_len > IP_ADDR) ? 1385 netif->packet_dimension.addr_len : IP_ADDR; 1386 *prefix = netif->packet_dimension.prefix + IP_PREFIX; 1387 *suffix = netif->packet_dimension.suffix + IP_SUFFIX; 1388 } 1389 fibril_rwlock_read_unlock(&ip_globals.netifs_lock); 1390 765 in_addr_t * ip_netif_address(ip_netif_ref netif){ 766 ip_route_ref route; 767 768 route = ip_routes_get_index(&netif->routes, 0); 769 return route ? &route->address : NULL; 770 } 771 772 int ip_send_route(packet_t packet, ip_netif_ref netif, ip_route_ref route, in_addr_t * src, in_addr_t dest, services_t error){ 773 ERROR_DECLARE; 774 775 measured_string_t destination; 776 measured_string_ref translation; 777 char * data; 778 int phone; 779 780 // get destination hardware address 781 if(netif->arp && (route->address.s_addr != dest.s_addr)){ 782 destination.value = route->gateway.s_addr ? (char *) &route->gateway.s_addr : (char *) &dest.s_addr; 783 destination.length = CONVERT_SIZE(dest.s_addr, char, 1); 784 if(ERROR_OCCURRED(arp_translate_req(netif->arp->phone, netif->device_id, SERVICE_IP, &destination, &translation, &data))){ 785 // sleep(1); 786 // ERROR_PROPAGATE(arp_translate_req(netif->arp->phone, netif->device_id, SERVICE_IP, &destination, &translation, &data)); 787 pq_release_remote(ip_globals.net_phone, packet_get_id(packet)); 788 return ERROR_CODE; 789 } 790 if(!(translation && translation->value)){ 791 if(translation){ 792 free(translation); 793 free(data); 794 } 795 phone = ip_prepare_icmp_and_get_phone(error, packet, NULL); 796 if(phone >= 0){ 797 // unreachable ICMP if no routing 798 icmp_destination_unreachable_msg(phone, ICMP_HOST_UNREACH, 0, packet); 799 } 800 return EINVAL; 801 } 802 }else translation = NULL; 803 if(ERROR_OCCURRED(ip_prepare_packet(src, dest, packet, translation))){ 804 pq_release_remote(ip_globals.net_phone, packet_get_id(packet)); 805 }else{ 806 packet = ip_split_packet(packet, netif->packet_dimension.prefix, netif->packet_dimension.content, netif->packet_dimension.suffix, netif->packet_dimension.addr_len, error); 807 if(packet){ 808 nil_send_msg(netif->phone, netif->device_id, packet, SERVICE_IP); 809 } 810 } 811 if(translation){ 812 free(translation); 813 free(data); 814 } 815 return ERROR_CODE; 816 } 817 818 int ip_prepare_packet(in_addr_t * source, in_addr_t dest, packet_t packet, measured_string_ref destination){ 819 ERROR_DECLARE; 820 821 size_t length; 822 ip_header_ref header; 823 ip_header_ref last_header; 824 ip_header_ref middle_header; 825 packet_t next; 826 827 length = packet_get_data_length(packet); 828 if((length < sizeof(ip_header_t)) || (length > IP_MAX_CONTENT)){ 829 return EINVAL; 830 } 831 header = (ip_header_ref) packet_get_data(packet); 832 if(destination){ 833 ERROR_PROPAGATE(packet_set_addr(packet, NULL, (uint8_t *) destination->value, CONVERT_SIZE(char, uint8_t, destination->length))); 834 }else{ 835 ERROR_PROPAGATE(packet_set_addr(packet, NULL, NULL, 0)); 836 } 837 header->version = IPV4; 838 header->fragment_offset_high = 0; 839 header->fragment_offset_low = 0; 840 header->header_checksum = 0; 841 if(source){ 842 header->source_address = source->s_addr; 843 } 844 header->destination_address = dest.s_addr; 845 fibril_rwlock_write_lock(&ip_globals.lock); 846 ++ ip_globals.packet_counter; 847 header->identification = htons(ip_globals.packet_counter); 848 fibril_rwlock_write_unlock(&ip_globals.lock); 849 // length = packet_get_data_length(packet); 850 if(pq_next(packet)){ 851 last_header = (ip_header_ref) malloc(IP_HEADER_LENGTH(header)); 852 if(! last_header){ 853 return ENOMEM; 854 } 855 ip_create_last_header(last_header, header); 856 next = pq_next(packet); 857 while(pq_next(next)){ 858 middle_header = (ip_header_ref) packet_prefix(next, IP_HEADER_LENGTH(last_header)); 859 if(! middle_header){ 860 return ENOMEM; 861 } 862 memcpy(middle_header, last_header, IP_HEADER_LENGTH(last_header)); 863 header->flags |= IPFLAG_MORE_FRAGMENTS; 864 middle_header->total_length = htons(packet_get_data_length(next)); 865 middle_header->fragment_offset_high = IP_COMPUTE_FRAGMENT_OFFSET_HIGH(length); 866 middle_header->fragment_offset_low = IP_COMPUTE_FRAGMENT_OFFSET_LOW(length); 867 middle_header->header_checksum = IP_HEADER_CHECKSUM(middle_header); 868 if(destination){ 869 ERROR_PROPAGATE(packet_set_addr(next, NULL, (uint8_t *) destination->value, CONVERT_SIZE(char, uint8_t, destination->length))); 870 } 871 length += packet_get_data_length(next); 872 next = pq_next(next); 873 } 874 middle_header = (ip_header_ref) packet_prefix(next, IP_HEADER_LENGTH(last_header)); 875 if(! middle_header){ 876 return ENOMEM; 877 } 878 memcpy(middle_header, last_header, IP_HEADER_LENGTH(last_header)); 879 middle_header->total_length = htons(packet_get_data_length(next)); 880 middle_header->fragment_offset_high = IP_COMPUTE_FRAGMENT_OFFSET_HIGH(length); 881 middle_header->fragment_offset_low = IP_COMPUTE_FRAGMENT_OFFSET_LOW(length); 882 middle_header->header_checksum = IP_HEADER_CHECKSUM(middle_header); 883 if(destination){ 884 ERROR_PROPAGATE(packet_set_addr(next, NULL, (uint8_t *) destination->value, CONVERT_SIZE(char, uint8_t, destination->length))); 885 } 886 length += packet_get_data_length(next); 887 free(last_header); 888 header->flags |= IPFLAG_MORE_FRAGMENTS; 889 } 890 header->total_length = htons(length); 891 // unnecessary for all protocols 892 header->header_checksum = IP_HEADER_CHECKSUM(header); 1391 893 return EOK; 1392 894 } 1393 895 1394 /** Returns the packet destination address from the IP header. 1395 * 1396 * @param[in] header The packet IP header to be read. 1397 * @returns The packet destination address. 1398 */ 1399 static in_addr_t ip_get_destination(ip_header_ref header) 1400 { 1401 in_addr_t destination; 1402 1403 // TODO search set ipopt route? 1404 destination.s_addr = header->destination_address; 1405 return destination; 1406 } 1407 1408 /** Delivers the packet to the local host. 1409 * 1410 * The packet is either passed to another module or released on error. 1411 * The ICMP_PROT_UNREACH error notification may be sent if the protocol is not 1412 * found. 1413 * 1414 * @param[in] device_id The source device identifier. 1415 * @param[in] packet The packet to be delivered. 1416 * @param[in] header The first packet IP header. May be NULL. 1417 * @param[in] error The packet error service. 1418 * @returns EOK on success. 1419 * @returns ENOTSUP if the packet is a fragment. 1420 * @returns EAFNOSUPPORT if the address family is not supported. 1421 * @returns ENOENT if the target protocol is not found. 1422 * @returns Other error codes as defined for the packet_set_addr() 1423 * function. 1424 * @returns Other error codes as defined for the packet_trim() 1425 * function. 1426 * @returns Other error codes as defined for the protocol specific 1427 * tl_received_msg() function. 1428 */ 1429 static int 1430 ip_deliver_local(device_id_t device_id, packet_t packet, ip_header_ref header, 1431 services_t error) 1432 { 1433 ERROR_DECLARE; 1434 1435 ip_proto_ref proto; 1436 int phone; 1437 services_t service; 1438 tl_received_msg_t received_msg; 1439 struct sockaddr *src; 1440 struct sockaddr *dest; 1441 struct sockaddr_in src_in; 1442 struct sockaddr_in dest_in; 1443 socklen_t addrlen; 1444 1445 if ((header->flags & IPFLAG_MORE_FRAGMENTS) || 1446 IP_FRAGMENT_OFFSET(header)) { 1447 // TODO fragmented 1448 return ENOTSUP; 1449 } 1450 1451 switch (header->version) { 1452 case IPVERSION: 1453 addrlen = sizeof(src_in); 1454 bzero(&src_in, addrlen); 1455 src_in.sin_family = AF_INET; 1456 memcpy(&dest_in, &src_in, addrlen); 1457 memcpy(&src_in.sin_addr.s_addr, &header->source_address, 1458 sizeof(header->source_address)); 1459 memcpy(&dest_in.sin_addr.s_addr, &header->destination_address, 1460 sizeof(header->destination_address)); 1461 src = (struct sockaddr *) &src_in; 1462 dest = (struct sockaddr *) &dest_in; 1463 break; 1464 1465 default: 1466 return ip_release_and_return(packet, EAFNOSUPPORT); 1467 } 1468 1469 if (ERROR_OCCURRED(packet_set_addr(packet, (uint8_t *) src, 1470 (uint8_t *) dest, addrlen))) { 1471 return ip_release_and_return(packet, ERROR_CODE); 1472 } 1473 1474 // trim padding if present 1475 if (!error && 1476 (IP_TOTAL_LENGTH(header) < packet_get_data_length(packet))) { 1477 if (ERROR_OCCURRED(packet_trim(packet, 0, 1478 packet_get_data_length(packet) - IP_TOTAL_LENGTH(header)))) 1479 return ip_release_and_return(packet, ERROR_CODE); 1480 } 1481 1482 fibril_rwlock_read_lock(&ip_globals.protos_lock); 1483 1484 proto = ip_protos_find(&ip_globals.protos, header->protocol); 1485 if (!proto) { 1486 fibril_rwlock_read_unlock(&ip_globals.protos_lock); 1487 phone = ip_prepare_icmp_and_get_phone(error, packet, header); 1488 if (phone >= 0) { 1489 // unreachable ICMP 1490 icmp_destination_unreachable_msg(phone, 1491 ICMP_PROT_UNREACH, 0, packet); 1492 } 1493 return ENOENT; 1494 } 1495 1496 if (proto->received_msg) { 1497 service = proto->service; 1498 received_msg = proto->received_msg; 1499 fibril_rwlock_read_unlock(&ip_globals.protos_lock); 1500 ERROR_CODE = received_msg(device_id, packet, service, error); 1501 } else { 1502 ERROR_CODE = tl_received_msg(proto->phone, device_id, packet, 1503 proto->service, error); 1504 fibril_rwlock_read_unlock(&ip_globals.protos_lock); 1505 } 1506 1507 return ERROR_CODE; 1508 } 1509 1510 /** Processes the received packet. 1511 * 1512 * The packet is either passed to another module or released on error. 1513 * 1514 * The ICMP_PARAM_POINTER error notification may be sent if the checksum is 1515 * invalid. 1516 * The ICMP_EXC_TTL error notification may be sent if the TTL is less than two. 1517 * The ICMP_HOST_UNREACH error notification may be sent if no route was found. 1518 * The ICMP_HOST_UNREACH error notification may be sent if the packet is for 1519 * another host and the routing is disabled. 1520 * 1521 * @param[in] device_id The source device identifier. 1522 * @param[in] packet The received packet to be processed. 1523 * @returns EOK on success. 1524 * @returns EINVAL if the TTL is less than two. 1525 * @returns EINVAL if the checksum is invalid. 1526 * @returns EAFNOSUPPORT if the address family is not supported. 1527 * @returns ENOENT if no route was found. 1528 * @returns ENOENT if the packet is for another host and the routing 1529 * is disabled. 1530 */ 1531 static int 1532 ip_process_packet(device_id_t device_id, packet_t packet) 1533 { 1534 ERROR_DECLARE; 1535 1536 ip_header_ref header; 1537 in_addr_t dest; 1538 ip_route_ref route; 1539 int phone; 1540 struct sockaddr *addr; 1541 struct sockaddr_in addr_in; 1542 socklen_t addrlen; 1543 1544 header = (ip_header_ref) packet_get_data(packet); 1545 if (!header) 1546 return ip_release_and_return(packet, ENOMEM); 1547 1548 // checksum 1549 if ((header->header_checksum) && 1550 (IP_HEADER_CHECKSUM(header) != IP_CHECKSUM_ZERO)) { 1551 phone = ip_prepare_icmp_and_get_phone(0, packet, header); 1552 if (phone >= 0) { 1553 // checksum error ICMP 1554 icmp_parameter_problem_msg(phone, ICMP_PARAM_POINTER, 1555 ((size_t) ((void *) &header->header_checksum)) - 1556 ((size_t) ((void *) header)), packet); 1557 } 1558 return EINVAL; 1559 } 1560 1561 if (header->ttl <= 1) { 1562 phone = ip_prepare_icmp_and_get_phone(0, packet, header); 1563 if (phone >= 0) { 1564 // ttl exceeded ICMP 1565 icmp_time_exceeded_msg(phone, ICMP_EXC_TTL, packet); 1566 } 1567 return EINVAL; 1568 } 1569 1570 // process ipopt and get destination 1571 dest = ip_get_destination(header); 1572 1573 // set the addrination address 1574 switch (header->version) { 1575 case IPVERSION: 1576 addrlen = sizeof(addr_in); 1577 bzero(&addr_in, addrlen); 1578 addr_in.sin_family = AF_INET; 1579 memcpy(&addr_in.sin_addr.s_addr, &dest, sizeof(dest)); 1580 addr = (struct sockaddr *) &addr_in; 1581 break; 1582 1583 default: 1584 return ip_release_and_return(packet, EAFNOSUPPORT); 1585 } 1586 1587 ERROR_PROPAGATE(packet_set_addr(packet, NULL, (uint8_t *) &addr, 1588 addrlen)); 1589 1590 route = ip_find_route(dest); 1591 if (!route) { 1592 phone = ip_prepare_icmp_and_get_phone(0, packet, header); 1593 if (phone >= 0) { 1594 // unreachable ICMP 1595 icmp_destination_unreachable_msg(phone, 1596 ICMP_HOST_UNREACH, 0, packet); 1597 } 1598 return ENOENT; 1599 } 1600 1601 if (route->address.s_addr == dest.s_addr) { 1602 // local delivery 1603 return ip_deliver_local(device_id, packet, header, 0); 1604 } 1605 1606 if (route->netif->routing) { 1607 header->ttl--; 1608 return ip_send_route(packet, route->netif, route, NULL, dest, 1609 0); 1610 } 1611 1612 phone = ip_prepare_icmp_and_get_phone(0, packet, header); 1613 if (phone >= 0) { 1614 // unreachable ICMP if no routing 1615 icmp_destination_unreachable_msg(phone, ICMP_HOST_UNREACH, 0, 1616 packet); 1617 } 1618 1619 return ENOENT; 1620 } 1621 1622 static int 1623 ip_add_route_req_local(int ip_phone, device_id_t device_id, in_addr_t address, 1624 in_addr_t netmask, in_addr_t gateway) 1625 { 1626 ip_route_ref route; 1627 ip_netif_ref netif; 1628 int index; 1629 1630 fibril_rwlock_write_lock(&ip_globals.netifs_lock); 1631 1632 netif = ip_netifs_find(&ip_globals.netifs, device_id); 1633 if (!netif) { 1634 fibril_rwlock_write_unlock(&ip_globals.netifs_lock); 1635 return ENOENT; 1636 } 1637 1638 route = (ip_route_ref) malloc(sizeof(ip_route_t)); 1639 if (!route) { 1640 fibril_rwlock_write_unlock(&ip_globals.netifs_lock); 1641 return ENOMEM; 1642 } 1643 1644 route->address.s_addr = address.s_addr; 1645 route->netmask.s_addr = netmask.s_addr; 1646 route->gateway.s_addr = gateway.s_addr; 1647 route->netif = netif; 1648 index = ip_routes_add(&netif->routes, route); 1649 if (index < 0) 1650 free(route); 1651 1652 fibril_rwlock_write_unlock(&ip_globals.netifs_lock); 1653 1654 return index; 1655 } 1656 1657 static int 1658 ip_set_gateway_req_local(int ip_phone, device_id_t device_id, in_addr_t gateway) 1659 { 1660 ip_netif_ref netif; 1661 1662 fibril_rwlock_write_lock(&ip_globals.netifs_lock); 1663 1664 netif = ip_netifs_find(&ip_globals.netifs, device_id); 1665 if (!netif) { 1666 fibril_rwlock_write_unlock(&ip_globals.netifs_lock); 1667 return ENOENT; 1668 } 1669 1670 ip_globals.gateway.address.s_addr = 0; 1671 ip_globals.gateway.netmask.s_addr = 0; 1672 ip_globals.gateway.gateway.s_addr = gateway.s_addr; 1673 ip_globals.gateway.netif = netif; 1674 1675 fibril_rwlock_write_unlock(&ip_globals.netifs_lock); 1676 1677 return EOK; 1678 } 1679 1680 /** Notify the IP module about the received error notification packet. 1681 * 1682 * @param[in] ip_phone The IP module phone used for (semi)remote calls. 1683 * @param[in] device_id The device identifier. 1684 * @param[in] packet The received packet or the received packet queue. 1685 * @param[in] target The target internetwork module service to be 1686 * delivered to. 1687 * @param[in] error The packet error reporting service. Prefixes the 1688 * received packet. 1689 * @return EOK on success. 1690 * 1691 */ 1692 static int 1693 ip_received_error_msg_local(int ip_phone, device_id_t device_id, 1694 packet_t packet, services_t target, services_t error) 1695 { 1696 uint8_t *data; 1697 int offset; 1698 icmp_type_t type; 1699 icmp_code_t code; 1700 ip_netif_ref netif; 1701 measured_string_t address; 1702 ip_route_ref route; 1703 ip_header_ref header; 1704 1705 switch (error) { 1706 case SERVICE_ICMP: 1707 offset = icmp_client_process_packet(packet, &type, &code, NULL, 1708 NULL); 1709 if (offset < 0) 1710 return ip_release_and_return(packet, ENOMEM); 1711 1712 data = packet_get_data(packet); 1713 header = (ip_header_ref)(data + offset); 1714 1715 // destination host unreachable? 1716 if ((type != ICMP_DEST_UNREACH) || 1717 (code != ICMP_HOST_UNREACH)) { 1718 // no, something else 1719 break; 1720 } 1721 1722 fibril_rwlock_read_lock(&ip_globals.netifs_lock); 1723 1724 netif = ip_netifs_find(&ip_globals.netifs, device_id); 1725 if (!netif || !netif->arp) { 1726 fibril_rwlock_read_unlock(&ip_globals.netifs_lock); 1727 break; 1728 } 1729 1730 route = ip_routes_get_index(&netif->routes, 0); 1731 1732 // from the same network? 1733 if (route && ((route->address.s_addr & route->netmask.s_addr) == 1734 (header->destination_address & route->netmask.s_addr))) { 1735 // clear the ARP mapping if any 1736 address.value = (char *) &header->destination_address; 1737 address.length = CONVERT_SIZE(uint8_t, char, 1738 sizeof(header->destination_address)); 1739 arp_clear_address_req(netif->arp->phone, 1740 netif->device_id, SERVICE_IP, &address); 1741 } 1742 1743 fibril_rwlock_read_unlock(&ip_globals.netifs_lock); 1744 break; 1745 1746 default: 1747 return ip_release_and_return(packet, ENOTSUP); 1748 } 1749 1750 return ip_deliver_local(device_id, packet, header, error); 1751 } 1752 1753 static int 1754 ip_get_route_req_local(int ip_phone, ip_protocol_t protocol, 1755 const struct sockaddr *destination, socklen_t addrlen, 1756 device_id_t *device_id, void **header, size_t *headerlen) 1757 { 1758 struct sockaddr_in *address_in; 1759 in_addr_t *dest; 1760 in_addr_t *src; 1761 ip_route_ref route; 1762 ipv4_pseudo_header_ref header_in; 1763 1764 if (!destination || (addrlen <= 0)) 1765 return EINVAL; 1766 1767 if (!device_id || !header || !headerlen) 1768 return EBADMEM; 1769 1770 if ((size_t) addrlen < sizeof(struct sockaddr)) 1771 return EINVAL; 1772 1773 switch (destination->sa_family) { 1774 case AF_INET: 1775 if (addrlen != sizeof(struct sockaddr_in)) 1776 return EINVAL; 1777 address_in = (struct sockaddr_in *) destination; 1778 dest = &address_in->sin_addr; 1779 if (!dest->s_addr) 1780 dest->s_addr = IPV4_LOCALHOST_ADDRESS; 1781 break; 1782 1783 case AF_INET6: 1784 default: 1785 return EAFNOSUPPORT; 1786 } 1787 1788 fibril_rwlock_read_lock(&ip_globals.lock); 1789 route = ip_find_route(*dest); 1790 // if the local host is the destination 1791 if (route && (route->address.s_addr == dest->s_addr) && 1792 (dest->s_addr != IPV4_LOCALHOST_ADDRESS)) { 1793 // find the loopback device to deliver 1794 dest->s_addr = IPV4_LOCALHOST_ADDRESS; 1795 route = ip_find_route(*dest); 1796 } 1797 1798 if (!route || !route->netif) { 1799 fibril_rwlock_read_unlock(&ip_globals.lock); 1800 return ENOENT; 1801 } 1802 1803 *device_id = route->netif->device_id; 1804 src = ip_netif_address(route->netif); 1805 fibril_rwlock_read_unlock(&ip_globals.lock); 1806 1807 *headerlen = sizeof(*header_in); 1808 header_in = (ipv4_pseudo_header_ref) malloc(*headerlen); 1809 if (!header_in) 1810 return ENOMEM; 1811 1812 bzero(header_in, *headerlen); 1813 header_in->destination_address = dest->s_addr; 1814 header_in->source_address = src->s_addr; 1815 header_in->protocol = protocol; 1816 header_in->data_length = 0; 1817 *header = header_in; 1818 1819 return EOK; 1820 } 1821 1822 /** Processes the received IP packet or the packet queue one by one. 1823 * 1824 * The packet is either passed to another module or released on error. 1825 * 1826 * @param[in] device_id The source device identifier. 1827 * @param[in,out] packet The received packet. 1828 * @returns EOK on success and the packet is no longer needed. 1829 * @returns EINVAL if the packet is too small to carry the IP 1830 * packet. 1831 * @returns EINVAL if the received address lengths differs from the 1832 * registered values. 1833 * @returns ENOENT if the device is not found in the cache. 1834 * @returns ENOENT if the protocol for the device is not found in 1835 * the cache. 1836 * @returns ENOMEM if there is not enough memory left. 1837 */ 1838 static int ip_receive_message(device_id_t device_id, packet_t packet) 1839 { 1840 packet_t next; 1841 1842 do { 1843 next = pq_detach(packet); 1844 ip_process_packet(device_id, packet); 1845 packet = next; 1846 } while (packet); 1847 1848 return EOK; 1849 } 1850 1851 /** Processes the IP message. 1852 * 1853 * @param[in] callid The message identifier. 1854 * @param[in] call The message parameters. 1855 * @param[out] answer The message answer parameters. 1856 * @param[out] answer_count The last parameter for the actual answer in the 1857 * answer parameter. 1858 * @returns EOK on success. 1859 * @returns ENOTSUP if the message is not known. 1860 * 1861 * @see ip_interface.h 1862 * @see il_interface.h 1863 * @see IS_NET_IP_MESSAGE() 1864 */ 1865 int 1866 ip_message_standalone(ipc_callid_t callid, ipc_call_t *call, ipc_call_t *answer, 1867 int *answer_count) 896 int ip_message_standalone(ipc_callid_t callid, ipc_call_t *call, 897 ipc_call_t *answer, int * answer_count) 1868 898 { 1869 899 ERROR_DECLARE; … … 1881 911 *answer_count = 0; 1882 912 switch (IPC_GET_METHOD(*call)) { 1883 case IPC_M_PHONE_HUNGUP: 1884 return EOK; 1885 1886 case IPC_M_CONNECT_TO_ME: 1887 return ip_register(IL_GET_PROTO(call), IL_GET_SERVICE(call), 1888 IPC_GET_PHONE(call), NULL); 1889 1890 case NET_IL_DEVICE: 1891 return ip_device_req_local(0, IPC_GET_DEVICE(call), 1892 IPC_GET_SERVICE(call)); 1893 1894 case NET_IL_SEND: 1895 ERROR_PROPAGATE(packet_translate_remote(ip_globals.net_phone, 1896 &packet, IPC_GET_PACKET(call))); 1897 return ip_send_msg_local(0, IPC_GET_DEVICE(call), packet, 0, 1898 IPC_GET_ERROR(call)); 1899 1900 case NET_IL_DEVICE_STATE: 1901 return ip_device_state_message(IPC_GET_DEVICE(call), 1902 IPC_GET_STATE(call)); 1903 1904 case NET_IL_RECEIVED: 1905 ERROR_PROPAGATE(packet_translate_remote(ip_globals.net_phone, 1906 &packet, IPC_GET_PACKET(call))); 1907 return ip_receive_message(IPC_GET_DEVICE(call), packet); 1908 1909 case NET_IP_RECEIVED_ERROR: 1910 ERROR_PROPAGATE(packet_translate_remote(ip_globals.net_phone, 1911 &packet, IPC_GET_PACKET(call))); 1912 return ip_received_error_msg_local(0, IPC_GET_DEVICE(call), 1913 packet, IPC_GET_TARGET(call), IPC_GET_ERROR(call)); 1914 1915 case NET_IP_ADD_ROUTE: 1916 return ip_add_route_req_local(0, IPC_GET_DEVICE(call), 1917 IP_GET_ADDRESS(call), IP_GET_NETMASK(call), 1918 IP_GET_GATEWAY(call)); 1919 1920 case NET_IP_SET_GATEWAY: 1921 return ip_set_gateway_req_local(0, IPC_GET_DEVICE(call), 1922 IP_GET_GATEWAY(call)); 1923 1924 case NET_IP_GET_ROUTE: 1925 ERROR_PROPAGATE(data_receive((void **) &addr, &addrlen)); 1926 ERROR_PROPAGATE(ip_get_route_req_local(0, IP_GET_PROTOCOL(call), 1927 addr, (socklen_t) addrlen, &device_id, &header, 1928 &headerlen)); 1929 IPC_SET_DEVICE(answer, device_id); 1930 IP_SET_HEADERLEN(answer, headerlen); 1931 1932 *answer_count = 2; 913 case IPC_M_PHONE_HUNGUP: 914 return EOK; 915 case NET_IL_DEVICE: 916 return ip_device_req_local(0, IPC_GET_DEVICE(call), 917 IPC_GET_SERVICE(call)); 918 case IPC_M_CONNECT_TO_ME: 919 return ip_register(IL_GET_PROTO(call), IL_GET_SERVICE(call), 920 IPC_GET_PHONE(call), NULL); 921 case NET_IL_SEND: 922 ERROR_PROPAGATE(packet_translate_remote(ip_globals.net_phone, &packet, 923 IPC_GET_PACKET(call))); 924 return ip_send_msg_local(0, IPC_GET_DEVICE(call), packet, 0, 925 IPC_GET_ERROR(call)); 926 case NET_IL_DEVICE_STATE: 927 return ip_device_state_message(IPC_GET_DEVICE(call), 928 IPC_GET_STATE(call)); 929 case NET_IL_RECEIVED: 930 ERROR_PROPAGATE(packet_translate_remote(ip_globals.net_phone, &packet, 931 IPC_GET_PACKET(call))); 932 return ip_receive_message(IPC_GET_DEVICE(call), packet); 933 case NET_IP_RECEIVED_ERROR: 934 ERROR_PROPAGATE(packet_translate_remote(ip_globals.net_phone, &packet, 935 IPC_GET_PACKET(call))); 936 return ip_received_error_msg_local(0, IPC_GET_DEVICE(call), packet, 937 IPC_GET_TARGET(call), IPC_GET_ERROR(call)); 938 case NET_IP_ADD_ROUTE: 939 return ip_add_route_req_local(0, IPC_GET_DEVICE(call), 940 IP_GET_ADDRESS(call), IP_GET_NETMASK(call), IP_GET_GATEWAY(call)); 941 case NET_IP_SET_GATEWAY: 942 return ip_set_gateway_req_local(0, IPC_GET_DEVICE(call), 943 IP_GET_GATEWAY(call)); 944 case NET_IP_GET_ROUTE: 945 ERROR_PROPAGATE(data_receive((void **) &addr, &addrlen)); 946 ERROR_PROPAGATE(ip_get_route_req_local(0, IP_GET_PROTOCOL(call), 947 addr, (socklen_t) addrlen, &device_id, &header, &headerlen)); 948 IPC_SET_DEVICE(answer, device_id); 949 IP_SET_HEADERLEN(answer, headerlen); 1933 950 1934 if (ERROR_NONE(data_reply(&headerlen, sizeof(headerlen)))) 1935 ERROR_CODE = data_reply(header, headerlen); 951 *answer_count = 2; 1936 952 1937 free(header); 1938 return ERROR_CODE; 1939 1940 case NET_IL_PACKET_SPACE: 1941 ERROR_PROPAGATE(ip_packet_size_message(IPC_GET_DEVICE(call), 1942 &addrlen, &prefix, &content, &suffix)); 1943 IPC_SET_ADDR(answer, addrlen); 1944 IPC_SET_PREFIX(answer, prefix); 1945 IPC_SET_CONTENT(answer, content); 1946 IPC_SET_SUFFIX(answer, suffix); 1947 *answer_count = 4; 1948 return EOK; 1949 1950 case NET_IL_MTU_CHANGED: 1951 return ip_mtu_changed_message(IPC_GET_DEVICE(call), 1952 IPC_GET_MTU(call)); 953 if (!ERROR_OCCURRED(data_reply(&headerlen, sizeof(headerlen)))) 954 ERROR_CODE = data_reply(header, headerlen); 955 956 free(header); 957 return ERROR_CODE; 958 case NET_IL_PACKET_SPACE: 959 ERROR_PROPAGATE(ip_packet_size_message(IPC_GET_DEVICE(call), 960 &addrlen, &prefix, &content, &suffix)); 961 IPC_SET_ADDR(answer, addrlen); 962 IPC_SET_PREFIX(answer, prefix); 963 IPC_SET_CONTENT(answer, content); 964 IPC_SET_SUFFIX(answer, suffix); 965 *answer_count = 4; 966 return EOK; 967 case NET_IL_MTU_CHANGED: 968 return ip_mtu_changed_message(IPC_GET_DEVICE(call), 969 IPC_GET_MTU(call)); 1953 970 } 1954 971 … … 1956 973 } 1957 974 975 int ip_packet_size_req_local(int ip_phone, device_id_t device_id, 976 packet_dimension_ref packet_dimension) 977 { 978 if (!packet_dimension) 979 return EBADMEM; 980 981 return ip_packet_size_message(device_id, &packet_dimension->addr_len, 982 &packet_dimension->prefix, &packet_dimension->content, 983 &packet_dimension->suffix); 984 } 985 986 int ip_packet_size_message(device_id_t device_id, size_t * addr_len, size_t * prefix, size_t * content, size_t * suffix){ 987 ip_netif_ref netif; 988 int index; 989 990 if(!(addr_len && prefix && content && suffix)){ 991 return EBADMEM; 992 } 993 *content = IP_MAX_CONTENT - IP_PREFIX; 994 fibril_rwlock_read_lock(&ip_globals.netifs_lock); 995 if(device_id < 0){ 996 *addr_len = IP_ADDR; 997 *prefix = 0; 998 *suffix = 0; 999 for(index = ip_netifs_count(&ip_globals.netifs) - 1; index >= 0; -- index){ 1000 netif = ip_netifs_get_index(&ip_globals.netifs, index); 1001 if(netif){ 1002 if(netif->packet_dimension.addr_len > * addr_len){ 1003 *addr_len = netif->packet_dimension.addr_len; 1004 } 1005 if(netif->packet_dimension.prefix > * prefix){ 1006 *prefix = netif->packet_dimension.prefix; 1007 } 1008 if(netif->packet_dimension.suffix > * suffix){ 1009 *suffix = netif->packet_dimension.suffix; 1010 } 1011 } 1012 } 1013 *prefix = * prefix + IP_PREFIX; 1014 *suffix = * suffix + IP_SUFFIX; 1015 }else{ 1016 netif = ip_netifs_find(&ip_globals.netifs, device_id); 1017 if(! netif){ 1018 fibril_rwlock_read_unlock(&ip_globals.netifs_lock); 1019 return ENOENT; 1020 } 1021 *addr_len = (netif->packet_dimension.addr_len > IP_ADDR) ? netif->packet_dimension.addr_len : IP_ADDR; 1022 *prefix = netif->packet_dimension.prefix + IP_PREFIX; 1023 *suffix = netif->packet_dimension.suffix + IP_SUFFIX; 1024 } 1025 fibril_rwlock_read_unlock(&ip_globals.netifs_lock); 1026 return EOK; 1027 } 1028 1029 int ip_add_route_req_local(int ip_phone, device_id_t device_id, in_addr_t address, in_addr_t netmask, in_addr_t gateway){ 1030 ip_route_ref route; 1031 ip_netif_ref netif; 1032 int index; 1033 1034 fibril_rwlock_write_lock(&ip_globals.netifs_lock); 1035 netif = ip_netifs_find(&ip_globals.netifs, device_id); 1036 if(! netif){ 1037 fibril_rwlock_write_unlock(&ip_globals.netifs_lock); 1038 return ENOENT; 1039 } 1040 route = (ip_route_ref) malloc(sizeof(ip_route_t)); 1041 if(! route){ 1042 fibril_rwlock_write_unlock(&ip_globals.netifs_lock); 1043 return ENOMEM; 1044 } 1045 route->address.s_addr = address.s_addr; 1046 route->netmask.s_addr = netmask.s_addr; 1047 route->gateway.s_addr = gateway.s_addr; 1048 route->netif = netif; 1049 index = ip_routes_add(&netif->routes, route); 1050 if(index < 0){ 1051 free(route); 1052 } 1053 fibril_rwlock_write_unlock(&ip_globals.netifs_lock); 1054 return index; 1055 } 1056 1057 ip_route_ref ip_find_route(in_addr_t destination){ 1058 int index; 1059 ip_route_ref route; 1060 ip_netif_ref netif; 1061 1062 // start with the last netif - the newest one 1063 index = ip_netifs_count(&ip_globals.netifs) - 1; 1064 while(index >= 0){ 1065 netif = ip_netifs_get_index(&ip_globals.netifs, index); 1066 if(netif && (netif->state == NETIF_ACTIVE)){ 1067 route = ip_netif_find_route(netif, destination); 1068 if(route){ 1069 return route; 1070 } 1071 } 1072 -- index; 1073 } 1074 return &ip_globals.gateway; 1075 } 1076 1077 ip_route_ref ip_netif_find_route(ip_netif_ref netif, in_addr_t destination){ 1078 int index; 1079 ip_route_ref route; 1080 1081 if(netif){ 1082 // start with the first one - the direct route 1083 for(index = 0; index < ip_routes_count(&netif->routes); ++ index){ 1084 route = ip_routes_get_index(&netif->routes, index); 1085 if(route && ((route->address.s_addr &route->netmask.s_addr) == (destination.s_addr &route->netmask.s_addr))){ 1086 return route; 1087 } 1088 } 1089 } 1090 return NULL; 1091 } 1092 1093 int ip_set_gateway_req_local(int ip_phone, device_id_t device_id, in_addr_t gateway) 1094 { 1095 ip_netif_ref netif; 1096 1097 fibril_rwlock_write_lock(&ip_globals.netifs_lock); 1098 netif = ip_netifs_find(&ip_globals.netifs, device_id); 1099 if(! netif){ 1100 fibril_rwlock_write_unlock(&ip_globals.netifs_lock); 1101 return ENOENT; 1102 } 1103 ip_globals.gateway.address.s_addr = 0; 1104 ip_globals.gateway.netmask.s_addr = 0; 1105 ip_globals.gateway.gateway.s_addr = gateway.s_addr; 1106 ip_globals.gateway.netif = netif; 1107 fibril_rwlock_write_unlock(&ip_globals.netifs_lock); 1108 return EOK; 1109 } 1110 1111 packet_t ip_split_packet(packet_t packet, size_t prefix, size_t content, size_t suffix, socklen_t addr_len, services_t error){ 1112 size_t length; 1113 packet_t next; 1114 packet_t new_packet; 1115 int result; 1116 int phone; 1117 1118 next = packet; 1119 // check all packets 1120 while(next){ 1121 length = packet_get_data_length(next); 1122 // too long? 1123 if(length > content){ 1124 result = ip_fragment_packet(next, content, prefix, suffix, addr_len); 1125 if(result != EOK){ 1126 new_packet = pq_detach(next); 1127 if(next == packet){ 1128 // the new first packet of the queue 1129 packet = new_packet; 1130 } 1131 // fragmentation needed? 1132 if(result == EPERM){ 1133 phone = ip_prepare_icmp_and_get_phone(error, next, NULL); 1134 if(phone >= 0){ 1135 // fragmentation necessary ICMP 1136 icmp_destination_unreachable_msg(phone, ICMP_FRAG_NEEDED, content, next); 1137 } 1138 }else{ 1139 pq_release_remote(ip_globals.net_phone, packet_get_id(next)); 1140 } 1141 next = new_packet; 1142 continue; 1143 } 1144 } 1145 next = pq_next(next); 1146 } 1147 return packet; 1148 } 1149 1150 int ip_fragment_packet(packet_t packet, size_t length, size_t prefix, size_t suffix, socklen_t addr_len){ 1151 ERROR_DECLARE; 1152 1153 packet_t new_packet; 1154 ip_header_ref header; 1155 ip_header_ref middle_header; 1156 ip_header_ref last_header; 1157 struct sockaddr * src; 1158 struct sockaddr * dest; 1159 socklen_t addrlen; 1160 int result; 1161 1162 result = packet_get_addr(packet, (uint8_t **) &src, (uint8_t **) &dest); 1163 if(result <= 0){ 1164 return EINVAL; 1165 } 1166 addrlen = (socklen_t) result; 1167 if(packet_get_data_length(packet) <= sizeof(ip_header_t)){ 1168 return ENOMEM; 1169 } 1170 // get header 1171 header = (ip_header_ref) packet_get_data(packet); 1172 if(! header){ 1173 return EINVAL; 1174 } 1175 // fragmentation forbidden? 1176 if(header->flags &IPFLAG_DONT_FRAGMENT){ 1177 return EPERM; 1178 } 1179 // create the last fragment 1180 new_packet = packet_get_4_remote(ip_globals.net_phone, prefix, length, suffix, ((addrlen > addr_len) ? addrlen : addr_len)); 1181 if(! new_packet){ 1182 return ENOMEM; 1183 } 1184 // allocate as much as originally 1185 last_header = (ip_header_ref) packet_suffix(new_packet, IP_HEADER_LENGTH(header)); 1186 if(! last_header){ 1187 return ip_release_and_return(packet, ENOMEM); 1188 } 1189 ip_create_last_header(last_header, header); 1190 // trim the unused space 1191 if(ERROR_OCCURRED(packet_trim(new_packet, 0, IP_HEADER_LENGTH(header) - IP_HEADER_LENGTH(last_header)))){ 1192 return ip_release_and_return(packet, ERROR_CODE); 1193 } 1194 // biggest multiple of 8 lower than content 1195 // TODO even fragmentation? 1196 length = length &(~ 0x7);// (content / 8) * 8 1197 if(ERROR_OCCURRED(ip_fragment_packet_data(packet, new_packet, header, last_header, ((IP_HEADER_DATA_LENGTH(header) - ((length - IP_HEADER_LENGTH(header)) &(~ 0x7))) % ((length - IP_HEADER_LENGTH(last_header)) &(~ 0x7))), src, dest, addrlen))){ 1198 return ip_release_and_return(packet, ERROR_CODE); 1199 } 1200 // mark the first as fragmented 1201 header->flags |= IPFLAG_MORE_FRAGMENTS; 1202 // create middle framgents 1203 while(IP_TOTAL_LENGTH(header) > length){ 1204 new_packet = packet_get_4_remote(ip_globals.net_phone, prefix, length, suffix, ((addrlen >= addr_len) ? addrlen : addr_len)); 1205 if(! new_packet){ 1206 return ENOMEM; 1207 } 1208 middle_header = ip_create_middle_header(new_packet, last_header); 1209 if(! middle_header){ 1210 return ip_release_and_return(packet, ENOMEM); 1211 } 1212 if(ERROR_OCCURRED(ip_fragment_packet_data(packet, new_packet, header, middle_header, (length - IP_HEADER_LENGTH(middle_header)) &(~ 0x7), src, dest, addrlen))){ 1213 return ip_release_and_return(packet, ERROR_CODE); 1214 } 1215 } 1216 // finish the first fragment 1217 header->header_checksum = IP_HEADER_CHECKSUM(header); 1218 return EOK; 1219 } 1220 1221 int ip_fragment_packet_data(packet_t packet, packet_t new_packet, ip_header_ref header, ip_header_ref new_header, size_t length, const struct sockaddr * src, const struct sockaddr * dest, socklen_t addrlen){ 1222 ERROR_DECLARE; 1223 1224 void * data; 1225 size_t offset; 1226 1227 data = packet_suffix(new_packet, length); 1228 if(! data){ 1229 return ENOMEM; 1230 } 1231 memcpy(data, ((void *) header) + IP_TOTAL_LENGTH(header) - length, length); 1232 ERROR_PROPAGATE(packet_trim(packet, 0, length)); 1233 header->total_length = htons(IP_TOTAL_LENGTH(header) - length); 1234 new_header->total_length = htons(IP_HEADER_LENGTH(new_header) + length); 1235 offset = IP_FRAGMENT_OFFSET(header) + IP_HEADER_DATA_LENGTH(header); 1236 new_header->fragment_offset_high = IP_COMPUTE_FRAGMENT_OFFSET_HIGH(offset); 1237 new_header->fragment_offset_low = IP_COMPUTE_FRAGMENT_OFFSET_LOW(offset); 1238 new_header->header_checksum = IP_HEADER_CHECKSUM(new_header); 1239 ERROR_PROPAGATE(packet_set_addr(new_packet, (const uint8_t *) src, (const uint8_t *) dest, addrlen)); 1240 return pq_insert_after(packet, new_packet); 1241 } 1242 1243 ip_header_ref ip_create_middle_header(packet_t packet, ip_header_ref last){ 1244 ip_header_ref middle; 1245 1246 middle = (ip_header_ref) packet_suffix(packet, IP_HEADER_LENGTH(last)); 1247 if(! middle){ 1248 return NULL; 1249 } 1250 memcpy(middle, last, IP_HEADER_LENGTH(last)); 1251 middle->flags |= IPFLAG_MORE_FRAGMENTS; 1252 return middle; 1253 } 1254 1255 void ip_create_last_header(ip_header_ref last, ip_header_ref first){ 1256 ip_option_ref option; 1257 size_t next; 1258 size_t length; 1259 1260 // copy first itself 1261 memcpy(last, first, sizeof(ip_header_t)); 1262 length = sizeof(ip_header_t); 1263 next = sizeof(ip_header_t); 1264 // process all ip options 1265 while(next < first->header_length){ 1266 option = (ip_option_ref) (((uint8_t *) first) + next); 1267 // skip end or noop 1268 if((option->type == IPOPT_END) || (option->type == IPOPT_NOOP)){ 1269 ++ next; 1270 }else{ 1271 // copy if said so or skip 1272 if(IPOPT_COPIED(option->type)){ 1273 memcpy(((uint8_t *) last) + length, ((uint8_t *) first) + next, option->length); 1274 length += option->length; 1275 } 1276 // next option 1277 next += option->length; 1278 } 1279 } 1280 // align 4 byte boundary 1281 if(length % 4){ 1282 bzero(((uint8_t *) last) + length, 4 - (length % 4)); 1283 last->header_length = length / 4 + 1; 1284 }else{ 1285 last->header_length = length / 4; 1286 } 1287 last->header_checksum = 0; 1288 } 1289 1290 int ip_receive_message(device_id_t device_id, packet_t packet){ 1291 packet_t next; 1292 1293 do{ 1294 next = pq_detach(packet); 1295 ip_process_packet(device_id, packet); 1296 packet = next; 1297 }while(packet); 1298 return EOK; 1299 } 1300 1301 int ip_process_packet(device_id_t device_id, packet_t packet){ 1302 ERROR_DECLARE; 1303 1304 ip_header_ref header; 1305 in_addr_t dest; 1306 ip_route_ref route; 1307 int phone; 1308 struct sockaddr * addr; 1309 struct sockaddr_in addr_in; 1310 // struct sockaddr_in addr_in6; 1311 socklen_t addrlen; 1312 1313 header = (ip_header_ref) packet_get_data(packet); 1314 if(! header){ 1315 return ip_release_and_return(packet, ENOMEM); 1316 } 1317 // checksum 1318 if((header->header_checksum) && (IP_HEADER_CHECKSUM(header) != IP_CHECKSUM_ZERO)){ 1319 phone = ip_prepare_icmp_and_get_phone(0, packet, header); 1320 if(phone >= 0){ 1321 // checksum error ICMP 1322 icmp_parameter_problem_msg(phone, ICMP_PARAM_POINTER, ((size_t) ((void *) &header->header_checksum)) - ((size_t) ((void *) header)), packet); 1323 } 1324 return EINVAL; 1325 } 1326 if(header->ttl <= 1){ 1327 phone = ip_prepare_icmp_and_get_phone(0, packet, header); 1328 if(phone >= 0){ 1329 // ttl oxceeded ICMP 1330 icmp_time_exceeded_msg(phone, ICMP_EXC_TTL, packet); 1331 } 1332 return EINVAL; 1333 } 1334 // process ipopt and get destination 1335 dest = ip_get_destination(header); 1336 // set the addrination address 1337 switch(header->version){ 1338 case IPVERSION: 1339 addrlen = sizeof(addr_in); 1340 bzero(&addr_in, addrlen); 1341 addr_in.sin_family = AF_INET; 1342 memcpy(&addr_in.sin_addr.s_addr, &dest, sizeof(dest)); 1343 addr = (struct sockaddr *) &addr_in; 1344 break; 1345 /* case IPv6VERSION: 1346 addrlen = sizeof(dest_in6); 1347 bzero(&dest_in6, addrlen); 1348 dest_in6.sin6_family = AF_INET6; 1349 memcpy(&dest_in6.sin6_addr.s6_addr,); 1350 dest = (struct sockaddr *) &dest_in; 1351 break; 1352 */ default: 1353 return ip_release_and_return(packet, EAFNOSUPPORT); 1354 } 1355 ERROR_PROPAGATE(packet_set_addr(packet, NULL, (uint8_t *) &addr, addrlen)); 1356 route = ip_find_route(dest); 1357 if(! route){ 1358 phone = ip_prepare_icmp_and_get_phone(0, packet, header); 1359 if(phone >= 0){ 1360 // unreachable ICMP 1361 icmp_destination_unreachable_msg(phone, ICMP_HOST_UNREACH, 0, packet); 1362 } 1363 return ENOENT; 1364 } 1365 if(route->address.s_addr == dest.s_addr){ 1366 // local delivery 1367 return ip_deliver_local(device_id, packet, header, 0); 1368 }else{ 1369 // only if routing enabled 1370 if(route->netif->routing){ 1371 -- header->ttl; 1372 return ip_send_route(packet, route->netif, route, NULL, dest, 0); 1373 }else{ 1374 phone = ip_prepare_icmp_and_get_phone(0, packet, header); 1375 if(phone >= 0){ 1376 // unreachable ICMP if no routing 1377 icmp_destination_unreachable_msg(phone, ICMP_HOST_UNREACH, 0, packet); 1378 } 1379 return ENOENT; 1380 } 1381 } 1382 } 1383 1384 /** Notify the IP module about the received error notification packet. 1385 * 1386 * @param[in] ip_phone The IP module phone used for (semi)remote calls. 1387 * @param[in] device_id The device identifier. 1388 * @param[in] packet The received packet or the received packet queue. 1389 * @param[in] target The target internetwork module service to be 1390 * delivered to. 1391 * @param[in] error The packet error reporting service. Prefixes the 1392 * received packet. 1393 * 1394 * @return EOK on success. 1395 * 1396 */ 1397 int ip_received_error_msg_local(int ip_phone, device_id_t device_id, packet_t packet, services_t target, services_t error){ 1398 uint8_t * data; 1399 int offset; 1400 icmp_type_t type; 1401 icmp_code_t code; 1402 ip_netif_ref netif; 1403 measured_string_t address; 1404 ip_route_ref route; 1405 ip_header_ref header; 1406 1407 switch(error){ 1408 case SERVICE_ICMP: 1409 offset = icmp_client_process_packet(packet, &type, &code, NULL, NULL); 1410 if(offset < 0){ 1411 return ip_release_and_return(packet, ENOMEM); 1412 } 1413 data = packet_get_data(packet); 1414 header = (ip_header_ref)(data + offset); 1415 // destination host unreachable? 1416 if((type == ICMP_DEST_UNREACH) && (code == ICMP_HOST_UNREACH)){ 1417 fibril_rwlock_read_lock(&ip_globals.netifs_lock); 1418 netif = ip_netifs_find(&ip_globals.netifs, device_id); 1419 if(netif && netif->arp){ 1420 route = ip_routes_get_index(&netif->routes, 0); 1421 // from the same network? 1422 if(route && ((route->address.s_addr &route->netmask.s_addr) == (header->destination_address &route->netmask.s_addr))){ 1423 // clear the ARP mapping if any 1424 address.value = (char *) &header->destination_address; 1425 address.length = CONVERT_SIZE(uint8_t, char, sizeof(header->destination_address)); 1426 arp_clear_address_req(netif->arp->phone, netif->device_id, SERVICE_IP, &address); 1427 } 1428 } 1429 fibril_rwlock_read_unlock(&ip_globals.netifs_lock); 1430 } 1431 break; 1432 default: 1433 return ip_release_and_return(packet, ENOTSUP); 1434 } 1435 return ip_deliver_local(device_id, packet, header, error); 1436 } 1437 1438 int ip_deliver_local(device_id_t device_id, packet_t packet, ip_header_ref header, services_t error){ 1439 ERROR_DECLARE; 1440 1441 ip_proto_ref proto; 1442 int phone; 1443 services_t service; 1444 tl_received_msg_t received_msg; 1445 struct sockaddr * src; 1446 struct sockaddr * dest; 1447 struct sockaddr_in src_in; 1448 struct sockaddr_in dest_in; 1449 // struct sockaddr_in src_in6; 1450 // struct sockaddr_in dest_in6; 1451 socklen_t addrlen; 1452 1453 if((header->flags &IPFLAG_MORE_FRAGMENTS) || IP_FRAGMENT_OFFSET(header)){ 1454 // TODO fragmented 1455 return ENOTSUP; 1456 }else{ 1457 switch(header->version){ 1458 case IPVERSION: 1459 addrlen = sizeof(src_in); 1460 bzero(&src_in, addrlen); 1461 src_in.sin_family = AF_INET; 1462 memcpy(&dest_in, &src_in, addrlen); 1463 memcpy(&src_in.sin_addr.s_addr, &header->source_address, sizeof(header->source_address)); 1464 memcpy(&dest_in.sin_addr.s_addr, &header->destination_address, sizeof(header->destination_address)); 1465 src = (struct sockaddr *) &src_in; 1466 dest = (struct sockaddr *) &dest_in; 1467 break; 1468 /* case IPv6VERSION: 1469 addrlen = sizeof(src_in6); 1470 bzero(&src_in6, addrlen); 1471 src_in6.sin6_family = AF_INET6; 1472 memcpy(&dest_in6, &src_in6, addrlen); 1473 memcpy(&src_in6.sin6_addr.s6_addr,); 1474 memcpy(&dest_in6.sin6_addr.s6_addr,); 1475 src = (struct sockaddr *) &src_in; 1476 dest = (struct sockaddr *) &dest_in; 1477 break; 1478 */ default: 1479 return ip_release_and_return(packet, EAFNOSUPPORT); 1480 } 1481 if(ERROR_OCCURRED(packet_set_addr(packet, (uint8_t *) src, (uint8_t *) dest, addrlen))){ 1482 return ip_release_and_return(packet, ERROR_CODE); 1483 } 1484 // trim padding if present 1485 if((! error) && (IP_TOTAL_LENGTH(header) < packet_get_data_length(packet))){ 1486 if(ERROR_OCCURRED(packet_trim(packet, 0, packet_get_data_length(packet) - IP_TOTAL_LENGTH(header)))){ 1487 return ip_release_and_return(packet, ERROR_CODE); 1488 } 1489 } 1490 fibril_rwlock_read_lock(&ip_globals.protos_lock); 1491 proto = ip_protos_find(&ip_globals.protos, header->protocol); 1492 if(! proto){ 1493 fibril_rwlock_read_unlock(&ip_globals.protos_lock); 1494 phone = ip_prepare_icmp_and_get_phone(error, packet, header); 1495 if(phone >= 0){ 1496 // unreachable ICMP 1497 icmp_destination_unreachable_msg(phone, ICMP_PROT_UNREACH, 0, packet); 1498 } 1499 return ENOENT; 1500 } 1501 if(proto->received_msg){ 1502 service = proto->service; 1503 received_msg = proto->received_msg; 1504 fibril_rwlock_read_unlock(&ip_globals.protos_lock); 1505 ERROR_CODE = received_msg(device_id, packet, service, error); 1506 }else{ 1507 ERROR_CODE = tl_received_msg(proto->phone, device_id, packet, proto->service, error); 1508 fibril_rwlock_read_unlock(&ip_globals.protos_lock); 1509 } 1510 return ERROR_CODE; 1511 } 1512 } 1513 1514 in_addr_t ip_get_destination(ip_header_ref header){ 1515 in_addr_t destination; 1516 1517 // TODO search set ipopt route? 1518 destination.s_addr = header->destination_address; 1519 return destination; 1520 } 1521 1522 int ip_prepare_icmp(packet_t packet, ip_header_ref header){ 1523 packet_t next; 1524 struct sockaddr * dest; 1525 struct sockaddr_in dest_in; 1526 // struct sockaddr_in dest_in6; 1527 socklen_t addrlen; 1528 1529 // detach the first packet and release the others 1530 next = pq_detach(packet); 1531 if(next){ 1532 pq_release_remote(ip_globals.net_phone, packet_get_id(next)); 1533 } 1534 if(! header){ 1535 if(packet_get_data_length(packet) <= sizeof(ip_header_t)){ 1536 return ENOMEM; 1537 } 1538 // get header 1539 header = (ip_header_ref) packet_get_data(packet); 1540 if(! header){ 1541 return EINVAL; 1542 } 1543 } 1544 // only for the first fragment 1545 if(IP_FRAGMENT_OFFSET(header)){ 1546 return EINVAL; 1547 } 1548 // not for the ICMP protocol 1549 if(header->protocol == IPPROTO_ICMP){ 1550 return EPERM; 1551 } 1552 // set the destination address 1553 switch(header->version){ 1554 case IPVERSION: 1555 addrlen = sizeof(dest_in); 1556 bzero(&dest_in, addrlen); 1557 dest_in.sin_family = AF_INET; 1558 memcpy(&dest_in.sin_addr.s_addr, &header->source_address, sizeof(header->source_address)); 1559 dest = (struct sockaddr *) &dest_in; 1560 break; 1561 /* case IPv6VERSION: 1562 addrlen = sizeof(dest_in6); 1563 bzero(&dest_in6, addrlen); 1564 dest_in6.sin6_family = AF_INET6; 1565 memcpy(&dest_in6.sin6_addr.s6_addr,); 1566 dest = (struct sockaddr *) &dest_in; 1567 break; 1568 */ default: 1569 return EAFNOSUPPORT; 1570 } 1571 return packet_set_addr(packet, NULL, (uint8_t *) dest, addrlen); 1572 } 1573 1574 int ip_get_icmp_phone(void){ 1575 ip_proto_ref proto; 1576 int phone; 1577 1578 fibril_rwlock_read_lock(&ip_globals.protos_lock); 1579 proto = ip_protos_find(&ip_globals.protos, IPPROTO_ICMP); 1580 phone = proto ? proto->phone : ENOENT; 1581 fibril_rwlock_read_unlock(&ip_globals.protos_lock); 1582 return phone; 1583 } 1584 1585 int ip_prepare_icmp_and_get_phone(services_t error, packet_t packet, ip_header_ref header){ 1586 int phone; 1587 1588 phone = ip_get_icmp_phone(); 1589 if(error || (phone < 0) || ip_prepare_icmp(packet, header)){ 1590 return ip_release_and_return(packet, EINVAL); 1591 } 1592 return phone; 1593 } 1594 1595 int ip_release_and_return(packet_t packet, int result){ 1596 pq_release_remote(ip_globals.net_phone, packet_get_id(packet)); 1597 return result; 1598 } 1599 1600 int ip_get_route_req_local(int ip_phone, ip_protocol_t protocol, const struct sockaddr * destination, socklen_t addrlen, device_id_t * device_id, void **header, size_t * headerlen){ 1601 struct sockaddr_in * address_in; 1602 // struct sockaddr_in6 * address_in6; 1603 in_addr_t * dest; 1604 in_addr_t * src; 1605 ip_route_ref route; 1606 ipv4_pseudo_header_ref header_in; 1607 1608 if(!(destination && (addrlen > 0))){ 1609 return EINVAL; 1610 } 1611 if(!(device_id && header && headerlen)){ 1612 return EBADMEM; 1613 } 1614 if((size_t) addrlen < sizeof(struct sockaddr)){ 1615 return EINVAL; 1616 } 1617 switch(destination->sa_family){ 1618 case AF_INET: 1619 if(addrlen != sizeof(struct sockaddr_in)){ 1620 return EINVAL; 1621 } 1622 address_in = (struct sockaddr_in *) destination; 1623 dest = &address_in->sin_addr; 1624 if(! dest->s_addr){ 1625 dest->s_addr = IPV4_LOCALHOST_ADDRESS; 1626 } 1627 break; 1628 // TODO IPv6 1629 /* case AF_INET6: 1630 if(addrlen != sizeof(struct sockaddr_in6)){ 1631 return EINVAL; 1632 } 1633 address_in6 = (struct sockaddr_in6 *) dest; 1634 address_in6.sin6_addr.s6_addr; 1635 */ default: 1636 return EAFNOSUPPORT; 1637 } 1638 fibril_rwlock_read_lock(&ip_globals.lock); 1639 route = ip_find_route(*dest); 1640 // if the local host is the destination 1641 if(route && (route->address.s_addr == dest->s_addr) 1642 && (dest->s_addr != IPV4_LOCALHOST_ADDRESS)){ 1643 // find the loopback device to deliver 1644 dest->s_addr = IPV4_LOCALHOST_ADDRESS; 1645 route = ip_find_route(*dest); 1646 } 1647 if(!(route && route->netif)){ 1648 fibril_rwlock_read_unlock(&ip_globals.lock); 1649 return ENOENT; 1650 } 1651 *device_id = route->netif->device_id; 1652 src = ip_netif_address(route->netif); 1653 fibril_rwlock_read_unlock(&ip_globals.lock); 1654 *headerlen = sizeof(*header_in); 1655 header_in = (ipv4_pseudo_header_ref) malloc(*headerlen); 1656 if(! header_in){ 1657 return ENOMEM; 1658 } 1659 bzero(header_in, * headerlen); 1660 header_in->destination_address = dest->s_addr; 1661 header_in->source_address = src->s_addr; 1662 header_in->protocol = protocol; 1663 header_in->data_length = 0; 1664 *header = header_in; 1665 return EOK; 1666 } 1667 1958 1668 /** Default thread for new connections. 1959 1669 * 1960 * @param[in] iid The initial message identifier. 1961 * @param[in] icall The initial message call structure. 1962 */ 1963 static void il_client_connection(ipc_callid_t iid, ipc_call_t *icall) 1670 * @param[in] iid The initial message identifier. 1671 * @param[in] icall The initial message call structure. 1672 * 1673 */ 1674 static void il_client_connection(ipc_callid_t iid, ipc_call_t * icall) 1964 1675 { 1965 1676 /* … … 1969 1680 ipc_answer_0(iid, EOK); 1970 1681 1971 while 1682 while(true) { 1972 1683 ipc_call_t answer; 1973 1684 int answer_count; … … 1984 1695 &answer_count); 1985 1696 1986 /* 1987 * End if told to either by the message or the processing 1988 * result. 1989 */ 1990 if ((IPC_GET_METHOD(call) == IPC_M_PHONE_HUNGUP) || 1991 (res == EHANGUP)) { 1697 /* End if said to either by the message or the processing result */ 1698 if ((IPC_GET_METHOD(call) == IPC_M_PHONE_HUNGUP) || (res == EHANGUP)) 1992 1699 return; 1993 }1994 1700 1995 1701 /* Answer the message */ … … 2000 1706 /** Starts the module. 2001 1707 * 2002 * @returns EOK on success. 2003 * @returns Other error codes as defined for each specific module start function. 1708 * @param argc The count of the command line arguments. Ignored parameter. 1709 * @param argv The command line parameters. Ignored parameter. 1710 * 1711 * @returns EOK on success. 1712 * @returns Other error codes as defined for each specific module start function. 1713 * 2004 1714 */ 2005 1715 int main(int argc, char *argv[]) … … 2008 1718 2009 1719 /* Start the module */ 2010 ERROR_PROPAGATE(il_module_start_standalone(il_client_connection)); 1720 if (ERROR_OCCURRED(il_module_start_standalone(il_client_connection))) 1721 return ERROR_CODE; 1722 2011 1723 return EOK; 2012 1724 }
Note:
See TracChangeset
for help on using the changeset viewer.