source: mainline/uspace/srv/vfs/vfs_ops.c@ e755b3f

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since e755b3f was e503517a, checked in by Jakub Jermar <jakub@…>, 9 years ago

Introduce vfs_rdwr_internal()

This function can be used by the VFS itself to do read/write I/O on
client's file descriptor.

  • Property mode set to 100644
File size: 37.4 KB
Line 
1/*
2 * Copyright (c) 2008 Jakub Jermar
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/** @addtogroup fs
30 * @{
31 */
32
33/**
34 * @file vfs_ops.c
35 * @brief Operations that VFS offers to its clients.
36 */
37
38#include "vfs.h"
39#include <macros.h>
40#include <stdint.h>
41#include <async.h>
42#include <errno.h>
43#include <stdio.h>
44#include <stdlib.h>
45#include <str.h>
46#include <stdbool.h>
47#include <fibril_synch.h>
48#include <adt/list.h>
49#include <unistd.h>
50#include <ctype.h>
51#include <fcntl.h>
52#include <assert.h>
53#include <vfs/canonify.h>
54#include <vfs/vfs_mtab.h>
55
56FIBRIL_MUTEX_INITIALIZE(mtab_list_lock);
57LIST_INITIALIZE(mtab_list);
58static size_t mtab_size = 0;
59
60/* Forward declarations of static functions. */
61static int vfs_truncate_internal(fs_handle_t, service_id_t, fs_index_t,
62 aoff64_t);
63
64/**
65 * This rwlock prevents the race between a triplet-to-VFS-node resolution and a
66 * concurrent VFS operation which modifies the file system namespace.
67 */
68FIBRIL_RWLOCK_INITIALIZE(namespace_rwlock);
69
70vfs_pair_t rootfs = {
71 .fs_handle = 0,
72 .service_id = 0
73};
74
75static int vfs_mount_internal(ipc_callid_t rid, service_id_t service_id,
76 fs_handle_t fs_handle, char *mp, char *opts)
77{
78 vfs_lookup_res_t mp_res;
79 vfs_lookup_res_t mr_res;
80 vfs_node_t *mp_node = NULL;
81 vfs_node_t *mr_node;
82 fs_index_t rindex;
83 aoff64_t rsize;
84 unsigned rlnkcnt;
85 async_exch_t *exch;
86 sysarg_t rc;
87 aid_t msg;
88 ipc_call_t answer;
89
90 /* Resolve the path to the mountpoint. */
91 fibril_rwlock_write_lock(&namespace_rwlock);
92 if (rootfs.fs_handle) {
93 /* We already have the root FS. */
94 if (str_cmp(mp, "/") == 0) {
95 /* Trying to mount root FS over root FS */
96 fibril_rwlock_write_unlock(&namespace_rwlock);
97 async_answer_0(rid, EBUSY);
98 return EBUSY;
99 }
100
101 rc = vfs_lookup_internal(mp, L_MP, &mp_res, NULL);
102 if (rc != EOK) {
103 /* The lookup failed for some reason. */
104 fibril_rwlock_write_unlock(&namespace_rwlock);
105 async_answer_0(rid, rc);
106 return rc;
107 }
108
109 mp_node = vfs_node_get(&mp_res);
110 if (!mp_node) {
111 fibril_rwlock_write_unlock(&namespace_rwlock);
112 async_answer_0(rid, ENOMEM);
113 return ENOMEM;
114 }
115
116 /*
117 * Now we hold a reference to mp_node.
118 * It will be dropped upon the corresponding VFS_IN_UNMOUNT.
119 * This prevents the mount point from being deleted.
120 */
121 } else {
122 /* We still don't have the root file system mounted. */
123 if (str_cmp(mp, "/") == 0) {
124 /*
125 * For this simple, but important case,
126 * we are almost done.
127 */
128
129 /* Tell the mountee that it is being mounted. */
130 exch = vfs_exchange_grab(fs_handle);
131 msg = async_send_1(exch, VFS_OUT_MOUNTED,
132 (sysarg_t) service_id, &answer);
133 /* Send the mount options */
134 rc = async_data_write_start(exch, (void *)opts,
135 str_size(opts));
136 vfs_exchange_release(exch);
137
138 if (rc != EOK) {
139 async_forget(msg);
140 fibril_rwlock_write_unlock(&namespace_rwlock);
141 async_answer_0(rid, rc);
142 return rc;
143 }
144 async_wait_for(msg, &rc);
145
146 if (rc != EOK) {
147 fibril_rwlock_write_unlock(&namespace_rwlock);
148 async_answer_0(rid, rc);
149 return rc;
150 }
151
152 rindex = (fs_index_t) IPC_GET_ARG1(answer);
153 rsize = (aoff64_t) MERGE_LOUP32(IPC_GET_ARG2(answer),
154 IPC_GET_ARG3(answer));
155 rlnkcnt = (unsigned) IPC_GET_ARG4(answer);
156
157 mr_res.triplet.fs_handle = fs_handle;
158 mr_res.triplet.service_id = service_id;
159 mr_res.triplet.index = rindex;
160 mr_res.size = rsize;
161 mr_res.lnkcnt = rlnkcnt;
162 mr_res.type = VFS_NODE_DIRECTORY;
163
164 rootfs.fs_handle = fs_handle;
165 rootfs.service_id = service_id;
166
167 /* Add reference to the mounted root. */
168 mr_node = vfs_node_get(&mr_res);
169 assert(mr_node);
170
171 fibril_rwlock_write_unlock(&namespace_rwlock);
172 async_answer_0(rid, rc);
173 return rc;
174 } else {
175 /*
176 * We can't resolve this without the root filesystem
177 * being mounted first.
178 */
179 fibril_rwlock_write_unlock(&namespace_rwlock);
180 async_answer_0(rid, ENOENT);
181 return ENOENT;
182 }
183 }
184
185 /*
186 * At this point, we have all necessary pieces: file system handle
187 * and service ID, and we know the mount point VFS node.
188 */
189
190 async_exch_t *mountee_exch = vfs_exchange_grab(fs_handle);
191 assert(mountee_exch);
192
193 exch = vfs_exchange_grab(mp_res.triplet.fs_handle);
194 msg = async_send_4(exch, VFS_OUT_MOUNT,
195 (sysarg_t) mp_res.triplet.service_id,
196 (sysarg_t) mp_res.triplet.index,
197 (sysarg_t) fs_handle,
198 (sysarg_t) service_id, &answer);
199
200 /* Send connection */
201 rc = async_exchange_clone(exch, mountee_exch);
202 vfs_exchange_release(mountee_exch);
203
204 if (rc != EOK) {
205 vfs_exchange_release(exch);
206 async_forget(msg);
207
208 /* Mount failed, drop reference to mp_node. */
209 if (mp_node)
210 vfs_node_put(mp_node);
211
212 async_answer_0(rid, rc);
213 fibril_rwlock_write_unlock(&namespace_rwlock);
214 return rc;
215 }
216
217 /* send the mount options */
218 rc = async_data_write_start(exch, (void *) opts, str_size(opts));
219 if (rc != EOK) {
220 vfs_exchange_release(exch);
221 async_forget(msg);
222
223 /* Mount failed, drop reference to mp_node. */
224 if (mp_node)
225 vfs_node_put(mp_node);
226
227 fibril_rwlock_write_unlock(&namespace_rwlock);
228 async_answer_0(rid, rc);
229 return rc;
230 }
231
232 /*
233 * Wait for the answer before releasing the exchange to avoid deadlock
234 * in case the answer depends on further calls to the same file system.
235 * Think of a case when mounting a FS on a file_bd backed by a file on
236 * the same FS.
237 */
238 async_wait_for(msg, &rc);
239 vfs_exchange_release(exch);
240
241 if (rc == EOK) {
242 rindex = (fs_index_t) IPC_GET_ARG1(answer);
243 rsize = (aoff64_t) MERGE_LOUP32(IPC_GET_ARG2(answer),
244 IPC_GET_ARG3(answer));
245 rlnkcnt = (unsigned) IPC_GET_ARG4(answer);
246
247 mr_res.triplet.fs_handle = fs_handle;
248 mr_res.triplet.service_id = service_id;
249 mr_res.triplet.index = rindex;
250 mr_res.size = rsize;
251 mr_res.lnkcnt = rlnkcnt;
252 mr_res.type = VFS_NODE_DIRECTORY;
253
254 /* Add reference to the mounted root. */
255 mr_node = vfs_node_get(&mr_res);
256 assert(mr_node);
257 } else {
258 /* Mount failed, drop reference to mp_node. */
259 if (mp_node)
260 vfs_node_put(mp_node);
261 }
262
263 async_answer_0(rid, rc);
264 fibril_rwlock_write_unlock(&namespace_rwlock);
265 return rc;
266}
267
268void vfs_mount_srv(ipc_callid_t rid, ipc_call_t *request)
269{
270 service_id_t service_id;
271
272 /*
273 * We expect the library to do the device-name to device-handle
274 * translation for us, thus the device handle will arrive as ARG1
275 * in the request.
276 */
277 service_id = (service_id_t) IPC_GET_ARG1(*request);
278
279 /*
280 * Mount flags are passed as ARG2.
281 */
282 unsigned int flags = (unsigned int) IPC_GET_ARG2(*request);
283
284 /*
285 * Instance number is passed as ARG3.
286 */
287 unsigned int instance = IPC_GET_ARG3(*request);
288
289 /* We want the client to send us the mount point. */
290 char *mp;
291 int rc = async_data_write_accept((void **) &mp, true, 0, MAX_PATH_LEN,
292 0, NULL);
293 if (rc != EOK) {
294 async_answer_0(rid, rc);
295 return;
296 }
297
298 /* Now we expect to receive the mount options. */
299 char *opts;
300 rc = async_data_write_accept((void **) &opts, true, 0, MAX_MNTOPTS_LEN,
301 0, NULL);
302 if (rc != EOK) {
303 free(mp);
304 async_answer_0(rid, rc);
305 return;
306 }
307
308 /*
309 * Now, we expect the client to send us data with the name of the file
310 * system.
311 */
312 char *fs_name;
313 rc = async_data_write_accept((void **) &fs_name, true, 0,
314 FS_NAME_MAXLEN, 0, NULL);
315 if (rc != EOK) {
316 free(mp);
317 free(opts);
318 async_answer_0(rid, rc);
319 return;
320 }
321
322 /*
323 * Wait for VFS_IN_PING so that we can return an error if we don't know
324 * fs_name.
325 */
326 ipc_call_t data;
327 ipc_callid_t callid = async_get_call(&data);
328 if (IPC_GET_IMETHOD(data) != VFS_IN_PING) {
329 async_answer_0(callid, ENOTSUP);
330 async_answer_0(rid, ENOTSUP);
331 free(mp);
332 free(opts);
333 free(fs_name);
334 return;
335 }
336
337 /*
338 * Check if we know a file system with the same name as is in fs_name.
339 * This will also give us its file system handle.
340 */
341 fibril_mutex_lock(&fs_list_lock);
342 fs_handle_t fs_handle;
343recheck:
344 fs_handle = fs_name_to_handle(instance, fs_name, false);
345 if (!fs_handle) {
346 if (flags & IPC_FLAG_BLOCKING) {
347 fibril_condvar_wait(&fs_list_cv, &fs_list_lock);
348 goto recheck;
349 }
350
351 fibril_mutex_unlock(&fs_list_lock);
352 async_answer_0(callid, ENOENT);
353 async_answer_0(rid, ENOENT);
354 free(mp);
355 free(fs_name);
356 free(opts);
357 return;
358 }
359 fibril_mutex_unlock(&fs_list_lock);
360
361 /* Add the filesystem info to the list of mounted filesystems */
362 mtab_ent_t *mtab_ent = malloc(sizeof(mtab_ent_t));
363 if (!mtab_ent) {
364 async_answer_0(callid, ENOMEM);
365 async_answer_0(rid, ENOMEM);
366 free(mp);
367 free(fs_name);
368 free(opts);
369 return;
370 }
371
372 /* Do the mount */
373 rc = vfs_mount_internal(rid, service_id, fs_handle, mp, opts);
374 if (rc != EOK) {
375 async_answer_0(callid, ENOTSUP);
376 async_answer_0(rid, ENOTSUP);
377 free(mtab_ent);
378 free(mp);
379 free(opts);
380 free(fs_name);
381 return;
382 }
383
384 /* Add the filesystem info to the list of mounted filesystems */
385
386 str_cpy(mtab_ent->mp, MAX_PATH_LEN, mp);
387 str_cpy(mtab_ent->fs_name, FS_NAME_MAXLEN, fs_name);
388 str_cpy(mtab_ent->opts, MAX_MNTOPTS_LEN, opts);
389 mtab_ent->instance = instance;
390 mtab_ent->service_id = service_id;
391
392 link_initialize(&mtab_ent->link);
393
394 fibril_mutex_lock(&mtab_list_lock);
395 list_append(&mtab_ent->link, &mtab_list);
396 mtab_size++;
397 fibril_mutex_unlock(&mtab_list_lock);
398
399 free(mp);
400 free(fs_name);
401 free(opts);
402
403 /* Acknowledge that we know fs_name. */
404 async_answer_0(callid, EOK);
405}
406
407void vfs_unmount_srv(ipc_callid_t rid, ipc_call_t *request)
408{
409 int rc;
410 char *mp;
411 vfs_lookup_res_t mp_res;
412 vfs_lookup_res_t mr_res;
413 vfs_node_t *mr_node;
414 async_exch_t *exch;
415
416 /*
417 * Receive the mount point path.
418 */
419 rc = async_data_write_accept((void **) &mp, true, 0, MAX_PATH_LEN,
420 0, NULL);
421 if (rc != EOK)
422 async_answer_0(rid, rc);
423
424 /*
425 * Taking the namespace lock will do two things for us. First, it will
426 * prevent races with other lookup operations. Second, it will stop new
427 * references to already existing VFS nodes and creation of new VFS
428 * nodes. This is because new references are added as a result of some
429 * lookup operation or at least of some operation which is protected by
430 * the namespace lock.
431 */
432 fibril_rwlock_write_lock(&namespace_rwlock);
433
434 /*
435 * Lookup the mounted root and instantiate it.
436 */
437 rc = vfs_lookup_internal(mp, L_ROOT, &mr_res, NULL);
438 if (rc != EOK) {
439 fibril_rwlock_write_unlock(&namespace_rwlock);
440 free(mp);
441 async_answer_0(rid, rc);
442 return;
443 }
444 mr_node = vfs_node_get(&mr_res);
445 if (!mr_node) {
446 fibril_rwlock_write_unlock(&namespace_rwlock);
447 free(mp);
448 async_answer_0(rid, ENOMEM);
449 return;
450 }
451
452 /*
453 * Count the total number of references for the mounted file system. We
454 * are expecting at least two. One which we got above and one which we
455 * got when the file system was mounted. If we find more, it means that
456 * the file system cannot be gracefully unmounted at the moment because
457 * someone is working with it.
458 */
459 if (vfs_nodes_refcount_sum_get(mr_node->fs_handle,
460 mr_node->service_id) != 2) {
461 fibril_rwlock_write_unlock(&namespace_rwlock);
462 vfs_node_put(mr_node);
463 free(mp);
464 async_answer_0(rid, EBUSY);
465 return;
466 }
467
468 if (str_cmp(mp, "/") == 0) {
469
470 /*
471 * Unmounting the root file system.
472 *
473 * In this case, there is no mount point node and we send
474 * VFS_OUT_UNMOUNTED directly to the mounted file system.
475 */
476
477 exch = vfs_exchange_grab(mr_node->fs_handle);
478 rc = async_req_1_0(exch, VFS_OUT_UNMOUNTED,
479 mr_node->service_id);
480 vfs_exchange_release(exch);
481
482 if (rc != EOK) {
483 fibril_rwlock_write_unlock(&namespace_rwlock);
484 free(mp);
485 vfs_node_put(mr_node);
486 async_answer_0(rid, rc);
487 return;
488 }
489
490 rootfs.fs_handle = 0;
491 rootfs.service_id = 0;
492 } else {
493
494 /*
495 * Unmounting a non-root file system.
496 *
497 * We have a regular mount point node representing the parent
498 * file system, so we delegate the operation to it.
499 */
500
501 rc = vfs_lookup_internal(mp, L_MP, &mp_res, NULL);
502 if (rc != EOK) {
503 fibril_rwlock_write_unlock(&namespace_rwlock);
504 free(mp);
505 vfs_node_put(mr_node);
506 async_answer_0(rid, rc);
507 return;
508 }
509
510 vfs_node_t *mp_node = vfs_node_get(&mp_res);
511 if (!mp_node) {
512 fibril_rwlock_write_unlock(&namespace_rwlock);
513 free(mp);
514 vfs_node_put(mr_node);
515 async_answer_0(rid, ENOMEM);
516 return;
517 }
518
519 exch = vfs_exchange_grab(mp_node->fs_handle);
520 rc = async_req_2_0(exch, VFS_OUT_UNMOUNT,
521 mp_node->service_id, mp_node->index);
522 vfs_exchange_release(exch);
523
524 if (rc != EOK) {
525 fibril_rwlock_write_unlock(&namespace_rwlock);
526 free(mp);
527 vfs_node_put(mp_node);
528 vfs_node_put(mr_node);
529 async_answer_0(rid, rc);
530 return;
531 }
532
533 /* Drop the reference we got above. */
534 vfs_node_put(mp_node);
535 /* Drop the reference from when the file system was mounted. */
536 vfs_node_put(mp_node);
537 }
538
539 /*
540 * All went well, the mounted file system was successfully unmounted.
541 * The only thing left is to forget the unmounted root VFS node.
542 */
543 vfs_node_forget(mr_node);
544 fibril_rwlock_write_unlock(&namespace_rwlock);
545
546 fibril_mutex_lock(&mtab_list_lock);
547
548 int found = 0;
549
550 list_foreach(mtab_list, link, mtab_ent_t, mtab_ent) {
551 if (str_cmp(mtab_ent->mp, mp) == 0) {
552 list_remove(&mtab_ent->link);
553 mtab_size--;
554 free(mtab_ent);
555 found = 1;
556 break;
557 }
558 }
559 assert(found);
560 fibril_mutex_unlock(&mtab_list_lock);
561
562 free(mp);
563
564 async_answer_0(rid, EOK);
565}
566
567void vfs_open(ipc_callid_t rid, ipc_call_t *request)
568{
569 /*
570 * The POSIX interface is open(path, oflag, mode).
571 * We can receive oflags and mode along with the VFS_IN_OPEN call;
572 * the path will need to arrive in another call.
573 *
574 * We also receive one private, non-POSIX set of flags called lflag
575 * used to pass information to vfs_lookup_internal().
576 */
577 int lflag = IPC_GET_ARG1(*request);
578 int oflag = IPC_GET_ARG2(*request);
579 int mode = IPC_GET_ARG3(*request);
580
581 /* Ignore mode for now. */
582 (void) mode;
583
584 /*
585 * Make sure that we are called with exactly one of L_FILE and
586 * L_DIRECTORY. Make sure that the user does not pass L_OPEN,
587 * L_ROOT or L_MP.
588 */
589 if (((lflag & (L_FILE | L_DIRECTORY)) == 0) ||
590 ((lflag & (L_FILE | L_DIRECTORY)) == (L_FILE | L_DIRECTORY)) ||
591 (lflag & (L_OPEN | L_ROOT | L_MP))) {
592 async_answer_0(rid, EINVAL);
593 return;
594 }
595
596 if (oflag & O_CREAT)
597 lflag |= L_CREATE;
598 if (oflag & O_EXCL)
599 lflag |= L_EXCLUSIVE;
600
601 char *path;
602 int rc = async_data_write_accept((void **) &path, true, 0, 0, 0, NULL);
603 if (rc != EOK) {
604 async_answer_0(rid, rc);
605 return;
606 }
607
608 /*
609 * Avoid the race condition in which the file can be deleted before we
610 * find/create-and-lock the VFS node corresponding to the looked-up
611 * triplet.
612 */
613 if (lflag & L_CREATE)
614 fibril_rwlock_write_lock(&namespace_rwlock);
615 else
616 fibril_rwlock_read_lock(&namespace_rwlock);
617
618 /* The path is now populated and we can call vfs_lookup_internal(). */
619 vfs_lookup_res_t lr;
620 rc = vfs_lookup_internal(path, lflag | L_OPEN, &lr, NULL);
621 if (rc != EOK) {
622 if (lflag & L_CREATE)
623 fibril_rwlock_write_unlock(&namespace_rwlock);
624 else
625 fibril_rwlock_read_unlock(&namespace_rwlock);
626 async_answer_0(rid, rc);
627 free(path);
628 return;
629 }
630
631 /* Path is no longer needed. */
632 free(path);
633
634 vfs_node_t *node = vfs_node_get(&lr);
635 if (lflag & L_CREATE)
636 fibril_rwlock_write_unlock(&namespace_rwlock);
637 else
638 fibril_rwlock_read_unlock(&namespace_rwlock);
639
640 if (!node) {
641 async_answer_0(rid, ENOMEM);
642 return;
643 }
644
645 /* Truncate the file if requested and if necessary. */
646 if (oflag & O_TRUNC) {
647 fibril_rwlock_write_lock(&node->contents_rwlock);
648 if (node->size) {
649 rc = vfs_truncate_internal(node->fs_handle,
650 node->service_id, node->index, 0);
651 if (rc) {
652 fibril_rwlock_write_unlock(&node->contents_rwlock);
653 vfs_node_put(node);
654 async_answer_0(rid, rc);
655 return;
656 }
657 node->size = 0;
658 }
659 fibril_rwlock_write_unlock(&node->contents_rwlock);
660 }
661
662 /*
663 * Get ourselves a file descriptor and the corresponding vfs_file_t
664 * structure.
665 */
666 int fd = vfs_fd_alloc((oflag & O_DESC) != 0);
667 if (fd < 0) {
668 vfs_node_put(node);
669 async_answer_0(rid, fd);
670 return;
671 }
672 vfs_file_t *file = vfs_file_get(fd);
673 assert(file);
674 file->node = node;
675 if (oflag & O_APPEND)
676 file->append = true;
677
678 /*
679 * The following increase in reference count is for the fact that the
680 * file is being opened and that a file structure is pointing to it.
681 * It is necessary so that the file will not disappear when
682 * vfs_node_put() is called. The reference will be dropped by the
683 * respective VFS_IN_CLOSE.
684 */
685 vfs_node_addref(node);
686 vfs_node_put(node);
687 vfs_file_put(file);
688
689 /* Success! Return the new file descriptor to the client. */
690 async_answer_1(rid, EOK, fd);
691}
692
693void vfs_sync(ipc_callid_t rid, ipc_call_t *request)
694{
695 int fd = IPC_GET_ARG1(*request);
696
697 /* Lookup the file structure corresponding to the file descriptor. */
698 vfs_file_t *file = vfs_file_get(fd);
699 if (!file) {
700 async_answer_0(rid, ENOENT);
701 return;
702 }
703
704 /*
705 * Lock the open file structure so that no other thread can manipulate
706 * the same open file at a time.
707 */
708 fibril_mutex_lock(&file->lock);
709 async_exch_t *fs_exch = vfs_exchange_grab(file->node->fs_handle);
710
711 /* Make a VFS_OUT_SYMC request at the destination FS server. */
712 aid_t msg;
713 ipc_call_t answer;
714 msg = async_send_2(fs_exch, VFS_OUT_SYNC, file->node->service_id,
715 file->node->index, &answer);
716
717 vfs_exchange_release(fs_exch);
718
719 /* Wait for reply from the FS server. */
720 sysarg_t rc;
721 async_wait_for(msg, &rc);
722
723 fibril_mutex_unlock(&file->lock);
724
725 vfs_file_put(file);
726 async_answer_0(rid, rc);
727}
728
729void vfs_close(ipc_callid_t rid, ipc_call_t *request)
730{
731 int fd = IPC_GET_ARG1(*request);
732 int ret = vfs_fd_free(fd);
733 async_answer_0(rid, ret);
734}
735
736typedef int (* rdwr_ipc_cb_t)(async_exch_t *, vfs_file_t *, ipc_call_t *,
737 bool, void *);
738
739static int rdwr_ipc_client(async_exch_t *exch, vfs_file_t *file,
740 ipc_call_t *answer, bool read, void *data)
741{
742 size_t *bytes = (size_t *) data;
743 int rc;
744
745 /*
746 * Make a VFS_READ/VFS_WRITE request at the destination FS server
747 * and forward the IPC_M_DATA_READ/IPC_M_DATA_WRITE request to the
748 * destination FS server. The call will be routed as if sent by
749 * ourselves. Note that call arguments are immutable in this case so we
750 * don't have to bother.
751 */
752
753 if (read) {
754 rc = async_data_read_forward_4_1(exch, VFS_OUT_READ,
755 file->node->service_id, file->node->index,
756 LOWER32(file->pos), UPPER32(file->pos), answer);
757 } else {
758 rc = async_data_write_forward_4_1(exch, VFS_OUT_WRITE,
759 file->node->service_id, file->node->index,
760 LOWER32(file->pos), UPPER32(file->pos), answer);
761 }
762
763 *bytes = IPC_GET_ARG1(*answer);
764 return rc;
765}
766
767static int rdwr_ipc_internal(async_exch_t *exch, vfs_file_t *file,
768 ipc_call_t *answer, bool read, void *data)
769{
770 rdwr_io_chunk_t *chunk = (rdwr_io_chunk_t *) data;
771
772 if (exch == NULL)
773 return ENOENT;
774
775 aid_t msg = async_send_fast(exch, read ? VFS_OUT_READ : VFS_OUT_WRITE,
776 file->node->service_id, file->node->index, LOWER32(file->pos),
777 UPPER32(file->pos), answer);
778 if (msg == 0)
779 return EINVAL;
780
781 int retval = async_data_read_start(exch, chunk->buffer, chunk->size);
782 if (retval != EOK) {
783 async_forget(msg);
784 return retval;
785 }
786
787 sysarg_t rc;
788 async_wait_for(msg, &rc);
789
790 chunk->size = IPC_GET_ARG1(*answer);
791
792 return (int) rc;
793}
794
795static int vfs_rdwr(int fd, bool read, rdwr_ipc_cb_t ipc_cb, void *ipc_cb_data)
796{
797 /*
798 * The following code strongly depends on the fact that the files data
799 * structure can be only accessed by a single fibril and all file
800 * operations are serialized (i.e. the reads and writes cannot
801 * interleave and a file cannot be closed while it is being read).
802 *
803 * Additional synchronization needs to be added once the table of
804 * open files supports parallel access!
805 */
806
807 /* Lookup the file structure corresponding to the file descriptor. */
808 vfs_file_t *file = vfs_file_get(fd);
809 if (!file)
810 return ENOENT;
811
812 /*
813 * Lock the open file structure so that no other thread can manipulate
814 * the same open file at a time.
815 */
816 fibril_mutex_lock(&file->lock);
817
818 vfs_info_t *fs_info = fs_handle_to_info(file->node->fs_handle);
819 assert(fs_info);
820
821 /*
822 * Lock the file's node so that no other client can read/write to it at
823 * the same time unless the FS supports concurrent reads/writes and its
824 * write implementation does not modify the file size.
825 */
826 if ((read) ||
827 ((fs_info->concurrent_read_write) && (fs_info->write_retains_size)))
828 fibril_rwlock_read_lock(&file->node->contents_rwlock);
829 else
830 fibril_rwlock_write_lock(&file->node->contents_rwlock);
831
832 if (file->node->type == VFS_NODE_DIRECTORY) {
833 /*
834 * Make sure that no one is modifying the namespace
835 * while we are in readdir().
836 */
837 assert(read);
838 fibril_rwlock_read_lock(&namespace_rwlock);
839 }
840
841 async_exch_t *fs_exch = vfs_exchange_grab(file->node->fs_handle);
842
843 if (!read && file->append)
844 file->pos = file->node->size;
845
846 /*
847 * Handle communication with the endpoint FS.
848 */
849 ipc_call_t answer;
850 int rc = ipc_cb(fs_exch, file, &answer, read, ipc_cb_data);
851
852 vfs_exchange_release(fs_exch);
853
854 size_t bytes = IPC_GET_ARG1(answer);
855
856 if (file->node->type == VFS_NODE_DIRECTORY)
857 fibril_rwlock_read_unlock(&namespace_rwlock);
858
859 /* Unlock the VFS node. */
860 if ((read) ||
861 ((fs_info->concurrent_read_write) && (fs_info->write_retains_size)))
862 fibril_rwlock_read_unlock(&file->node->contents_rwlock);
863 else {
864 /* Update the cached version of node's size. */
865 if (rc == EOK)
866 file->node->size = MERGE_LOUP32(IPC_GET_ARG2(answer),
867 IPC_GET_ARG3(answer));
868 fibril_rwlock_write_unlock(&file->node->contents_rwlock);
869 }
870
871 /* Update the position pointer and unlock the open file. */
872 if (rc == EOK)
873 file->pos += bytes;
874 fibril_mutex_unlock(&file->lock);
875 vfs_file_put(file);
876
877 return rc;
878}
879
880static void vfs_rdwr_client(ipc_callid_t rid, ipc_call_t *request, bool read)
881{
882 size_t bytes = 0;
883 int rc = vfs_rdwr(IPC_GET_ARG1(*request), read, rdwr_ipc_client,
884 &bytes);
885 async_answer_1(rid, rc, bytes);
886}
887
888int vfs_rdwr_internal(int fd, bool read, rdwr_io_chunk_t *chunk)
889{
890 return vfs_rdwr(fd, read, rdwr_ipc_internal, chunk);
891}
892
893void vfs_read(ipc_callid_t rid, ipc_call_t *request)
894{
895 vfs_rdwr_client(rid, request, true);
896}
897
898void vfs_write(ipc_callid_t rid, ipc_call_t *request)
899{
900 vfs_rdwr_client(rid, request, false);
901}
902
903void vfs_seek(ipc_callid_t rid, ipc_call_t *request)
904{
905 int fd = (int) IPC_GET_ARG1(*request);
906 off64_t off = (off64_t) MERGE_LOUP32(IPC_GET_ARG2(*request),
907 IPC_GET_ARG3(*request));
908 int whence = (int) IPC_GET_ARG4(*request);
909
910 /* Lookup the file structure corresponding to the file descriptor. */
911 vfs_file_t *file = vfs_file_get(fd);
912 if (!file) {
913 async_answer_0(rid, ENOENT);
914 return;
915 }
916
917 fibril_mutex_lock(&file->lock);
918
919 off64_t newoff;
920 switch (whence) {
921 case SEEK_SET:
922 if (off >= 0) {
923 file->pos = (aoff64_t) off;
924 fibril_mutex_unlock(&file->lock);
925 vfs_file_put(file);
926 async_answer_1(rid, EOK, off);
927 return;
928 }
929 break;
930 case SEEK_CUR:
931 if ((off >= 0) && (file->pos + off < file->pos)) {
932 fibril_mutex_unlock(&file->lock);
933 vfs_file_put(file);
934 async_answer_0(rid, EOVERFLOW);
935 return;
936 }
937
938 if ((off < 0) && (file->pos < (aoff64_t) -off)) {
939 fibril_mutex_unlock(&file->lock);
940 vfs_file_put(file);
941 async_answer_0(rid, EOVERFLOW);
942 return;
943 }
944
945 file->pos += off;
946 newoff = (file->pos > OFF64_MAX) ? OFF64_MAX : file->pos;
947
948 fibril_mutex_unlock(&file->lock);
949 vfs_file_put(file);
950 async_answer_2(rid, EOK, LOWER32(newoff),
951 UPPER32(newoff));
952 return;
953 case SEEK_END:
954 fibril_rwlock_read_lock(&file->node->contents_rwlock);
955 aoff64_t size = file->node->size;
956
957 if ((off >= 0) && (size + off < size)) {
958 fibril_rwlock_read_unlock(&file->node->contents_rwlock);
959 fibril_mutex_unlock(&file->lock);
960 vfs_file_put(file);
961 async_answer_0(rid, EOVERFLOW);
962 return;
963 }
964
965 if ((off < 0) && (size < (aoff64_t) -off)) {
966 fibril_rwlock_read_unlock(&file->node->contents_rwlock);
967 fibril_mutex_unlock(&file->lock);
968 vfs_file_put(file);
969 async_answer_0(rid, EOVERFLOW);
970 return;
971 }
972
973 file->pos = size + off;
974 newoff = (file->pos > OFF64_MAX) ? OFF64_MAX : file->pos;
975
976 fibril_rwlock_read_unlock(&file->node->contents_rwlock);
977 fibril_mutex_unlock(&file->lock);
978 vfs_file_put(file);
979 async_answer_2(rid, EOK, LOWER32(newoff), UPPER32(newoff));
980 return;
981 }
982
983 fibril_mutex_unlock(&file->lock);
984 vfs_file_put(file);
985 async_answer_0(rid, EINVAL);
986}
987
988int vfs_truncate_internal(fs_handle_t fs_handle, service_id_t service_id,
989 fs_index_t index, aoff64_t size)
990{
991 async_exch_t *exch = vfs_exchange_grab(fs_handle);
992 sysarg_t rc = async_req_4_0(exch, VFS_OUT_TRUNCATE,
993 (sysarg_t) service_id, (sysarg_t) index, LOWER32(size),
994 UPPER32(size));
995 vfs_exchange_release(exch);
996
997 return (int) rc;
998}
999
1000void vfs_truncate(ipc_callid_t rid, ipc_call_t *request)
1001{
1002 int fd = IPC_GET_ARG1(*request);
1003 aoff64_t size = (aoff64_t) MERGE_LOUP32(IPC_GET_ARG2(*request),
1004 IPC_GET_ARG3(*request));
1005 int rc;
1006
1007 vfs_file_t *file = vfs_file_get(fd);
1008 if (!file) {
1009 async_answer_0(rid, ENOENT);
1010 return;
1011 }
1012 fibril_mutex_lock(&file->lock);
1013
1014 fibril_rwlock_write_lock(&file->node->contents_rwlock);
1015 rc = vfs_truncate_internal(file->node->fs_handle,
1016 file->node->service_id, file->node->index, size);
1017 if (rc == EOK)
1018 file->node->size = size;
1019 fibril_rwlock_write_unlock(&file->node->contents_rwlock);
1020
1021 fibril_mutex_unlock(&file->lock);
1022 vfs_file_put(file);
1023 async_answer_0(rid, (sysarg_t)rc);
1024}
1025
1026void vfs_fstat(ipc_callid_t rid, ipc_call_t *request)
1027{
1028 int fd = IPC_GET_ARG1(*request);
1029 sysarg_t rc;
1030
1031 vfs_file_t *file = vfs_file_get(fd);
1032 if (!file) {
1033 async_answer_0(rid, ENOENT);
1034 return;
1035 }
1036
1037 ipc_callid_t callid;
1038 if (!async_data_read_receive(&callid, NULL)) {
1039 vfs_file_put(file);
1040 async_answer_0(callid, EINVAL);
1041 async_answer_0(rid, EINVAL);
1042 return;
1043 }
1044
1045 fibril_mutex_lock(&file->lock);
1046
1047 async_exch_t *exch = vfs_exchange_grab(file->node->fs_handle);
1048
1049 aid_t msg;
1050 msg = async_send_3(exch, VFS_OUT_STAT, file->node->service_id,
1051 file->node->index, true, NULL);
1052 async_forward_fast(callid, exch, 0, 0, 0, IPC_FF_ROUTE_FROM_ME);
1053
1054 vfs_exchange_release(exch);
1055
1056 async_wait_for(msg, &rc);
1057
1058 fibril_mutex_unlock(&file->lock);
1059 vfs_file_put(file);
1060 async_answer_0(rid, rc);
1061}
1062
1063void vfs_stat(ipc_callid_t rid, ipc_call_t *request)
1064{
1065 char *path;
1066 int rc = async_data_write_accept((void **) &path, true, 0, 0, 0, NULL);
1067 if (rc != EOK) {
1068 async_answer_0(rid, rc);
1069 return;
1070 }
1071
1072 ipc_callid_t callid;
1073 if (!async_data_read_receive(&callid, NULL)) {
1074 free(path);
1075 async_answer_0(callid, EINVAL);
1076 async_answer_0(rid, EINVAL);
1077 return;
1078 }
1079
1080 vfs_lookup_res_t lr;
1081 fibril_rwlock_read_lock(&namespace_rwlock);
1082 rc = vfs_lookup_internal(path, L_NONE, &lr, NULL);
1083 free(path);
1084 if (rc != EOK) {
1085 fibril_rwlock_read_unlock(&namespace_rwlock);
1086 async_answer_0(callid, rc);
1087 async_answer_0(rid, rc);
1088 return;
1089 }
1090 vfs_node_t *node = vfs_node_get(&lr);
1091 if (!node) {
1092 fibril_rwlock_read_unlock(&namespace_rwlock);
1093 async_answer_0(callid, ENOMEM);
1094 async_answer_0(rid, ENOMEM);
1095 return;
1096 }
1097
1098 fibril_rwlock_read_unlock(&namespace_rwlock);
1099
1100 async_exch_t *exch = vfs_exchange_grab(node->fs_handle);
1101
1102 aid_t msg;
1103 msg = async_send_3(exch, VFS_OUT_STAT, node->service_id,
1104 node->index, false, NULL);
1105 async_forward_fast(callid, exch, 0, 0, 0, IPC_FF_ROUTE_FROM_ME);
1106
1107 vfs_exchange_release(exch);
1108
1109 sysarg_t rv;
1110 async_wait_for(msg, &rv);
1111
1112 async_answer_0(rid, rv);
1113
1114 vfs_node_put(node);
1115}
1116
1117void vfs_mkdir(ipc_callid_t rid, ipc_call_t *request)
1118{
1119 int mode = IPC_GET_ARG1(*request);
1120
1121 char *path;
1122 int rc = async_data_write_accept((void **) &path, true, 0, 0, 0, NULL);
1123 if (rc != EOK) {
1124 async_answer_0(rid, rc);
1125 return;
1126 }
1127
1128 /* Ignore mode for now. */
1129 (void) mode;
1130
1131 fibril_rwlock_write_lock(&namespace_rwlock);
1132 int lflag = L_DIRECTORY | L_CREATE | L_EXCLUSIVE;
1133 rc = vfs_lookup_internal(path, lflag, NULL, NULL);
1134 fibril_rwlock_write_unlock(&namespace_rwlock);
1135 free(path);
1136 async_answer_0(rid, rc);
1137}
1138
1139void vfs_unlink(ipc_callid_t rid, ipc_call_t *request)
1140{
1141 int lflag = IPC_GET_ARG1(*request);
1142
1143 char *path;
1144 int rc = async_data_write_accept((void **) &path, true, 0, 0, 0, NULL);
1145 if (rc != EOK) {
1146 async_answer_0(rid, rc);
1147 return;
1148 }
1149
1150 fibril_rwlock_write_lock(&namespace_rwlock);
1151 lflag &= L_DIRECTORY; /* sanitize lflag */
1152 vfs_lookup_res_t lr;
1153 rc = vfs_lookup_internal(path, lflag | L_UNLINK, &lr, NULL);
1154 free(path);
1155 if (rc != EOK) {
1156 fibril_rwlock_write_unlock(&namespace_rwlock);
1157 async_answer_0(rid, rc);
1158 return;
1159 }
1160
1161 /*
1162 * The name has already been unlinked by vfs_lookup_internal().
1163 * We have to get and put the VFS node to ensure that it is
1164 * VFS_OUT_DESTROY'ed after the last reference to it is dropped.
1165 */
1166 vfs_node_t *node = vfs_node_get(&lr);
1167 fibril_mutex_lock(&nodes_mutex);
1168 node->lnkcnt--;
1169 fibril_mutex_unlock(&nodes_mutex);
1170 fibril_rwlock_write_unlock(&namespace_rwlock);
1171 vfs_node_put(node);
1172 async_answer_0(rid, EOK);
1173}
1174
1175void vfs_rename(ipc_callid_t rid, ipc_call_t *request)
1176{
1177 /* Retrieve the old path. */
1178 char *old;
1179 int rc = async_data_write_accept((void **) &old, true, 0, 0, 0, NULL);
1180 if (rc != EOK) {
1181 async_answer_0(rid, rc);
1182 return;
1183 }
1184
1185 /* Retrieve the new path. */
1186 char *new;
1187 rc = async_data_write_accept((void **) &new, true, 0, 0, 0, NULL);
1188 if (rc != EOK) {
1189 free(old);
1190 async_answer_0(rid, rc);
1191 return;
1192 }
1193
1194 size_t olen;
1195 size_t nlen;
1196 char *oldc = canonify(old, &olen);
1197 char *newc = canonify(new, &nlen);
1198
1199 if ((!oldc) || (!newc)) {
1200 async_answer_0(rid, EINVAL);
1201 free(old);
1202 free(new);
1203 return;
1204 }
1205
1206 oldc[olen] = '\0';
1207 newc[nlen] = '\0';
1208
1209 if ((!str_lcmp(newc, oldc, str_length(oldc))) &&
1210 ((newc[str_length(oldc)] == '/') ||
1211 (str_length(oldc) == 1) ||
1212 (str_length(oldc) == str_length(newc)))) {
1213 /*
1214 * oldc is a prefix of newc and either
1215 * - newc continues with a / where oldc ends, or
1216 * - oldc was / itself, or
1217 * - oldc and newc are equal.
1218 */
1219 async_answer_0(rid, EINVAL);
1220 free(old);
1221 free(new);
1222 return;
1223 }
1224
1225 vfs_lookup_res_t old_lr;
1226 vfs_lookup_res_t new_lr;
1227 vfs_lookup_res_t new_par_lr;
1228 fibril_rwlock_write_lock(&namespace_rwlock);
1229
1230 /* Lookup the node belonging to the old file name. */
1231 rc = vfs_lookup_internal(oldc, L_NONE, &old_lr, NULL);
1232 if (rc != EOK) {
1233 fibril_rwlock_write_unlock(&namespace_rwlock);
1234 async_answer_0(rid, rc);
1235 free(old);
1236 free(new);
1237 return;
1238 }
1239
1240 vfs_node_t *old_node = vfs_node_get(&old_lr);
1241 if (!old_node) {
1242 fibril_rwlock_write_unlock(&namespace_rwlock);
1243 async_answer_0(rid, ENOMEM);
1244 free(old);
1245 free(new);
1246 return;
1247 }
1248
1249 /* Determine the path to the parent of the node with the new name. */
1250 char *parentc = str_dup(newc);
1251 if (!parentc) {
1252 fibril_rwlock_write_unlock(&namespace_rwlock);
1253 vfs_node_put(old_node);
1254 async_answer_0(rid, rc);
1255 free(old);
1256 free(new);
1257 return;
1258 }
1259
1260 char *lastsl = str_rchr(parentc + 1, '/');
1261 if (lastsl)
1262 *lastsl = '\0';
1263 else
1264 parentc[1] = '\0';
1265
1266 /* Lookup parent of the new file name. */
1267 rc = vfs_lookup_internal(parentc, L_NONE, &new_par_lr, NULL);
1268 free(parentc); /* not needed anymore */
1269 if (rc != EOK) {
1270 fibril_rwlock_write_unlock(&namespace_rwlock);
1271 vfs_node_put(old_node);
1272 async_answer_0(rid, rc);
1273 free(old);
1274 free(new);
1275 return;
1276 }
1277
1278 /* Check whether linking to the same file system instance. */
1279 if ((old_node->fs_handle != new_par_lr.triplet.fs_handle) ||
1280 (old_node->service_id != new_par_lr.triplet.service_id)) {
1281 fibril_rwlock_write_unlock(&namespace_rwlock);
1282 vfs_node_put(old_node);
1283 async_answer_0(rid, EXDEV); /* different file systems */
1284 free(old);
1285 free(new);
1286 return;
1287 }
1288
1289 /* Destroy the old link for the new name. */
1290 vfs_node_t *new_node = NULL;
1291 rc = vfs_lookup_internal(newc, L_UNLINK, &new_lr, NULL);
1292
1293 switch (rc) {
1294 case ENOENT:
1295 /* simply not in our way */
1296 break;
1297 case EOK:
1298 new_node = vfs_node_get(&new_lr);
1299 if (!new_node) {
1300 fibril_rwlock_write_unlock(&namespace_rwlock);
1301 vfs_node_put(old_node);
1302 async_answer_0(rid, ENOMEM);
1303 free(old);
1304 free(new);
1305 return;
1306 }
1307 fibril_mutex_lock(&nodes_mutex);
1308 new_node->lnkcnt--;
1309 fibril_mutex_unlock(&nodes_mutex);
1310 break;
1311 default:
1312 fibril_rwlock_write_unlock(&namespace_rwlock);
1313 vfs_node_put(old_node);
1314 async_answer_0(rid, ENOTEMPTY);
1315 free(old);
1316 free(new);
1317 return;
1318 }
1319
1320 /* Create the new link for the new name. */
1321 rc = vfs_lookup_internal(newc, L_LINK, NULL, NULL, old_node->index);
1322 if (rc != EOK) {
1323 fibril_rwlock_write_unlock(&namespace_rwlock);
1324 vfs_node_put(old_node);
1325 if (new_node)
1326 vfs_node_put(new_node);
1327 async_answer_0(rid, rc);
1328 free(old);
1329 free(new);
1330 return;
1331 }
1332
1333 fibril_mutex_lock(&nodes_mutex);
1334 old_node->lnkcnt++;
1335 fibril_mutex_unlock(&nodes_mutex);
1336
1337 /* Destroy the link for the old name. */
1338 rc = vfs_lookup_internal(oldc, L_UNLINK, NULL, NULL);
1339 if (rc != EOK) {
1340 fibril_rwlock_write_unlock(&namespace_rwlock);
1341 vfs_node_put(old_node);
1342 if (new_node)
1343 vfs_node_put(new_node);
1344 async_answer_0(rid, rc);
1345 free(old);
1346 free(new);
1347 return;
1348 }
1349
1350 fibril_mutex_lock(&nodes_mutex);
1351 old_node->lnkcnt--;
1352 fibril_mutex_unlock(&nodes_mutex);
1353 fibril_rwlock_write_unlock(&namespace_rwlock);
1354 vfs_node_put(old_node);
1355
1356 if (new_node)
1357 vfs_node_put(new_node);
1358
1359 free(old);
1360 free(new);
1361 async_answer_0(rid, EOK);
1362}
1363
1364void vfs_dup(ipc_callid_t rid, ipc_call_t *request)
1365{
1366 int oldfd = IPC_GET_ARG1(*request);
1367 int newfd = IPC_GET_ARG2(*request);
1368
1369 /* If the file descriptors are the same, do nothing. */
1370 if (oldfd == newfd) {
1371 async_answer_1(rid, EOK, newfd);
1372 return;
1373 }
1374
1375 /* Lookup the file structure corresponding to oldfd. */
1376 vfs_file_t *oldfile = vfs_file_get(oldfd);
1377 if (!oldfile) {
1378 async_answer_0(rid, EBADF);
1379 return;
1380 }
1381
1382 /*
1383 * Lock the open file structure so that no other thread can manipulate
1384 * the same open file at a time.
1385 */
1386 fibril_mutex_lock(&oldfile->lock);
1387
1388 /* Make sure newfd is closed. */
1389 (void) vfs_fd_free(newfd);
1390
1391 /* Assign the old file to newfd. */
1392 int ret = vfs_fd_assign(oldfile, newfd);
1393 fibril_mutex_unlock(&oldfile->lock);
1394 vfs_file_put(oldfile);
1395
1396 if (ret != EOK)
1397 async_answer_0(rid, ret);
1398 else
1399 async_answer_1(rid, EOK, newfd);
1400}
1401
1402void vfs_wait_handle(ipc_callid_t rid, ipc_call_t *request)
1403{
1404 int fd = vfs_wait_handle_internal();
1405 async_answer_1(rid, EOK, fd);
1406}
1407
1408void vfs_get_mtab(ipc_callid_t rid, ipc_call_t *request)
1409{
1410 ipc_callid_t callid;
1411 ipc_call_t data;
1412 sysarg_t rc = EOK;
1413 size_t len;
1414
1415 fibril_mutex_lock(&mtab_list_lock);
1416
1417 /* Send to the caller the number of mounted filesystems */
1418 callid = async_get_call(&data);
1419 if (IPC_GET_IMETHOD(data) != VFS_IN_PING) {
1420 rc = ENOTSUP;
1421 async_answer_0(callid, rc);
1422 goto exit;
1423 }
1424 async_answer_1(callid, EOK, mtab_size);
1425
1426 list_foreach(mtab_list, link, mtab_ent_t, mtab_ent) {
1427 rc = ENOTSUP;
1428
1429 if (!async_data_read_receive(&callid, &len)) {
1430 async_answer_0(callid, rc);
1431 goto exit;
1432 }
1433
1434 (void) async_data_read_finalize(callid, mtab_ent->mp,
1435 str_size(mtab_ent->mp));
1436
1437 if (!async_data_read_receive(&callid, &len)) {
1438 async_answer_0(callid, rc);
1439 goto exit;
1440 }
1441
1442 (void) async_data_read_finalize(callid, mtab_ent->opts,
1443 str_size(mtab_ent->opts));
1444
1445 if (!async_data_read_receive(&callid, &len)) {
1446 async_answer_0(callid, rc);
1447 goto exit;
1448 }
1449
1450 (void) async_data_read_finalize(callid, mtab_ent->fs_name,
1451 str_size(mtab_ent->fs_name));
1452
1453 callid = async_get_call(&data);
1454
1455 if (IPC_GET_IMETHOD(data) != VFS_IN_PING) {
1456 async_answer_0(callid, rc);
1457 goto exit;
1458 }
1459
1460 rc = EOK;
1461 async_answer_2(callid, rc, mtab_ent->instance,
1462 mtab_ent->service_id);
1463 }
1464
1465exit:
1466 fibril_mutex_unlock(&mtab_list_lock);
1467 async_answer_0(rid, rc);
1468}
1469
1470void vfs_statfs(ipc_callid_t rid, ipc_call_t *request)
1471{
1472 char *path;
1473 int rc = async_data_write_accept((void **) &path, true, 0, 0, 0, NULL);
1474 if (rc != EOK) {
1475 async_answer_0(rid, rc);
1476 return;
1477 }
1478
1479 ipc_callid_t callid;
1480 if (!async_data_read_receive(&callid, NULL)) {
1481 free(path);
1482 async_answer_0(callid, EINVAL);
1483 async_answer_0(rid, EINVAL);
1484 return;
1485 }
1486
1487 vfs_lookup_res_t lr;
1488 fibril_rwlock_read_lock(&namespace_rwlock);
1489 rc = vfs_lookup_internal(path, L_NONE, &lr, NULL);
1490 free(path);
1491 if (rc != EOK) {
1492 fibril_rwlock_read_unlock(&namespace_rwlock);
1493 async_answer_0(callid, rc);
1494 async_answer_0(rid, rc);
1495 return;
1496 }
1497 vfs_node_t *node = vfs_node_get(&lr);
1498 if (!node) {
1499 fibril_rwlock_read_unlock(&namespace_rwlock);
1500 async_answer_0(callid, ENOMEM);
1501 async_answer_0(rid, ENOMEM);
1502 return;
1503 }
1504
1505 fibril_rwlock_read_unlock(&namespace_rwlock);
1506
1507 async_exch_t *exch = vfs_exchange_grab(node->fs_handle);
1508
1509 aid_t msg;
1510 msg = async_send_3(exch, VFS_OUT_STATFS, node->service_id,
1511 node->index, false, NULL);
1512 async_forward_fast(callid, exch, 0, 0, 0, IPC_FF_ROUTE_FROM_ME);
1513
1514 vfs_exchange_release(exch);
1515
1516 sysarg_t rv;
1517 async_wait_for(msg, &rv);
1518
1519 async_answer_0(rid, rv);
1520
1521 vfs_node_put(node);
1522}
1523
1524/**
1525 * @}
1526 */
Note: See TracBrowser for help on using the repository browser.