source: mainline/uspace/srv/vfs/vfs_ops.c@ 2a3214e

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since 2a3214e was c69646f8, checked in by Jakub Jermar <jakub@…>, 14 years ago

Fix deadlock caused by a too early released exchange.

  • Property mode set to 100644
File size: 32.3 KB
Line 
1/*
2 * Copyright (c) 2008 Jakub Jermar
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/** @addtogroup fs
30 * @{
31 */
32
33/**
34 * @file vfs_ops.c
35 * @brief Operations that VFS offers to its clients.
36 */
37
38#include "vfs.h"
39#include <macros.h>
40#include <stdint.h>
41#include <async.h>
42#include <errno.h>
43#include <stdio.h>
44#include <stdlib.h>
45#include <str.h>
46#include <bool.h>
47#include <fibril_synch.h>
48#include <adt/list.h>
49#include <unistd.h>
50#include <ctype.h>
51#include <fcntl.h>
52#include <assert.h>
53#include <vfs/canonify.h>
54
55/* Forward declarations of static functions. */
56static int vfs_truncate_internal(fs_handle_t, service_id_t, fs_index_t,
57 aoff64_t);
58
59/**
60 * This rwlock prevents the race between a triplet-to-VFS-node resolution and a
61 * concurrent VFS operation which modifies the file system namespace.
62 */
63FIBRIL_RWLOCK_INITIALIZE(namespace_rwlock);
64
65vfs_pair_t rootfs = {
66 .fs_handle = 0,
67 .service_id = 0
68};
69
70static void vfs_mount_internal(ipc_callid_t rid, service_id_t service_id,
71 fs_handle_t fs_handle, char *mp, char *opts)
72{
73 vfs_lookup_res_t mp_res;
74 vfs_lookup_res_t mr_res;
75 vfs_node_t *mp_node = NULL;
76 vfs_node_t *mr_node;
77 fs_index_t rindex;
78 aoff64_t rsize;
79 unsigned rlnkcnt;
80 async_exch_t *exch;
81 sysarg_t rc;
82 aid_t msg;
83 ipc_call_t answer;
84
85 /* Resolve the path to the mountpoint. */
86 fibril_rwlock_write_lock(&namespace_rwlock);
87 if (rootfs.fs_handle) {
88 /* We already have the root FS. */
89 if (str_cmp(mp, "/") == 0) {
90 /* Trying to mount root FS over root FS */
91 fibril_rwlock_write_unlock(&namespace_rwlock);
92 async_answer_0(rid, EBUSY);
93 return;
94 }
95
96 rc = vfs_lookup_internal(mp, L_MP, &mp_res, NULL);
97 if (rc != EOK) {
98 /* The lookup failed for some reason. */
99 fibril_rwlock_write_unlock(&namespace_rwlock);
100 async_answer_0(rid, rc);
101 return;
102 }
103
104 mp_node = vfs_node_get(&mp_res);
105 if (!mp_node) {
106 fibril_rwlock_write_unlock(&namespace_rwlock);
107 async_answer_0(rid, ENOMEM);
108 return;
109 }
110
111 /*
112 * Now we hold a reference to mp_node.
113 * It will be dropped upon the corresponding VFS_IN_UNMOUNT.
114 * This prevents the mount point from being deleted.
115 */
116 } else {
117 /* We still don't have the root file system mounted. */
118 if (str_cmp(mp, "/") == 0) {
119 /*
120 * For this simple, but important case,
121 * we are almost done.
122 */
123
124 /* Tell the mountee that it is being mounted. */
125 exch = vfs_exchange_grab(fs_handle);
126 msg = async_send_1(exch, VFS_OUT_MOUNTED,
127 (sysarg_t) service_id, &answer);
128 /* Send the mount options */
129 rc = async_data_write_start(exch, (void *)opts,
130 str_size(opts));
131 vfs_exchange_release(exch);
132
133 if (rc != EOK) {
134 async_wait_for(msg, NULL);
135 fibril_rwlock_write_unlock(&namespace_rwlock);
136 async_answer_0(rid, rc);
137 return;
138 }
139 async_wait_for(msg, &rc);
140
141 if (rc != EOK) {
142 fibril_rwlock_write_unlock(&namespace_rwlock);
143 async_answer_0(rid, rc);
144 return;
145 }
146
147 rindex = (fs_index_t) IPC_GET_ARG1(answer);
148 rsize = (aoff64_t) MERGE_LOUP32(IPC_GET_ARG2(answer), IPC_GET_ARG3(answer));
149 rlnkcnt = (unsigned) IPC_GET_ARG4(answer);
150
151 mr_res.triplet.fs_handle = fs_handle;
152 mr_res.triplet.service_id = service_id;
153 mr_res.triplet.index = rindex;
154 mr_res.size = rsize;
155 mr_res.lnkcnt = rlnkcnt;
156 mr_res.type = VFS_NODE_DIRECTORY;
157
158 rootfs.fs_handle = fs_handle;
159 rootfs.service_id = service_id;
160
161 /* Add reference to the mounted root. */
162 mr_node = vfs_node_get(&mr_res);
163 assert(mr_node);
164
165 fibril_rwlock_write_unlock(&namespace_rwlock);
166 async_answer_0(rid, rc);
167 return;
168 } else {
169 /*
170 * We can't resolve this without the root filesystem
171 * being mounted first.
172 */
173 fibril_rwlock_write_unlock(&namespace_rwlock);
174 async_answer_0(rid, ENOENT);
175 return;
176 }
177 }
178
179 /*
180 * At this point, we have all necessary pieces: file system handle
181 * and service ID, and we know the mount point VFS node.
182 */
183
184 async_exch_t *mountee_exch = vfs_exchange_grab(fs_handle);
185 assert(mountee_exch);
186
187 exch = vfs_exchange_grab(mp_res.triplet.fs_handle);
188 msg = async_send_4(exch, VFS_OUT_MOUNT,
189 (sysarg_t) mp_res.triplet.service_id,
190 (sysarg_t) mp_res.triplet.index,
191 (sysarg_t) fs_handle,
192 (sysarg_t) service_id, &answer);
193
194 /* Send connection */
195 rc = async_exchange_clone(exch, mountee_exch);
196 vfs_exchange_release(mountee_exch);
197
198 if (rc != EOK) {
199 vfs_exchange_release(exch);
200 async_wait_for(msg, NULL);
201
202 /* Mount failed, drop reference to mp_node. */
203 if (mp_node)
204 vfs_node_put(mp_node);
205
206 async_answer_0(rid, rc);
207 fibril_rwlock_write_unlock(&namespace_rwlock);
208 return;
209 }
210
211 /* send the mount options */
212 rc = async_data_write_start(exch, (void *) opts, str_size(opts));
213 if (rc != EOK) {
214 vfs_exchange_release(exch);
215 async_wait_for(msg, NULL);
216
217 /* Mount failed, drop reference to mp_node. */
218 if (mp_node)
219 vfs_node_put(mp_node);
220
221 fibril_rwlock_write_unlock(&namespace_rwlock);
222 async_answer_0(rid, rc);
223 return;
224 }
225
226 /*
227 * Wait for the answer before releasing the exchange to avoid deadlock
228 * in case the answer depends on further calls to the same file system.
229 * Think of a case when mounting a FS on a file_bd backed by a file on
230 * the same FS.
231 */
232 async_wait_for(msg, &rc);
233 vfs_exchange_release(exch);
234
235 if (rc == EOK) {
236 rindex = (fs_index_t) IPC_GET_ARG1(answer);
237 rsize = (aoff64_t) MERGE_LOUP32(IPC_GET_ARG2(answer),
238 IPC_GET_ARG3(answer));
239 rlnkcnt = (unsigned) IPC_GET_ARG4(answer);
240
241 mr_res.triplet.fs_handle = fs_handle;
242 mr_res.triplet.service_id = service_id;
243 mr_res.triplet.index = rindex;
244 mr_res.size = rsize;
245 mr_res.lnkcnt = rlnkcnt;
246 mr_res.type = VFS_NODE_DIRECTORY;
247
248 /* Add reference to the mounted root. */
249 mr_node = vfs_node_get(&mr_res);
250 assert(mr_node);
251 } else {
252 /* Mount failed, drop reference to mp_node. */
253 if (mp_node)
254 vfs_node_put(mp_node);
255 }
256
257 async_answer_0(rid, rc);
258 fibril_rwlock_write_unlock(&namespace_rwlock);
259}
260
261void vfs_mount(ipc_callid_t rid, ipc_call_t *request)
262{
263 service_id_t service_id;
264
265 /*
266 * We expect the library to do the device-name to device-handle
267 * translation for us, thus the device handle will arrive as ARG1
268 * in the request.
269 */
270 service_id = (service_id_t) IPC_GET_ARG1(*request);
271
272 /*
273 * Mount flags are passed as ARG2.
274 */
275 unsigned int flags = (unsigned int) IPC_GET_ARG2(*request);
276
277 /*
278 * For now, don't make use of ARG3, but it can be used to
279 * carry mount options in the future.
280 */
281
282 /* We want the client to send us the mount point. */
283 char *mp;
284 int rc = async_data_write_accept((void **) &mp, true, 0, MAX_PATH_LEN,
285 0, NULL);
286 if (rc != EOK) {
287 async_answer_0(rid, rc);
288 return;
289 }
290
291 /* Now we expect to receive the mount options. */
292 char *opts;
293 rc = async_data_write_accept((void **) &opts, true, 0, MAX_MNTOPTS_LEN,
294 0, NULL);
295 if (rc != EOK) {
296 free(mp);
297 async_answer_0(rid, rc);
298 return;
299 }
300
301 /*
302 * Now, we expect the client to send us data with the name of the file
303 * system.
304 */
305 char *fs_name;
306 rc = async_data_write_accept((void **) &fs_name, true, 0,
307 FS_NAME_MAXLEN, 0, NULL);
308 if (rc != EOK) {
309 free(mp);
310 free(opts);
311 async_answer_0(rid, rc);
312 return;
313 }
314
315 /*
316 * Wait for VFS_IN_PING so that we can return an error if we don't know
317 * fs_name.
318 */
319 ipc_call_t data;
320 ipc_callid_t callid = async_get_call(&data);
321 if (IPC_GET_IMETHOD(data) != VFS_IN_PING) {
322 async_answer_0(callid, ENOTSUP);
323 async_answer_0(rid, ENOTSUP);
324 free(mp);
325 free(opts);
326 free(fs_name);
327 return;
328 }
329
330 /*
331 * Check if we know a file system with the same name as is in fs_name.
332 * This will also give us its file system handle.
333 */
334 fibril_mutex_lock(&fs_list_lock);
335 fs_handle_t fs_handle;
336recheck:
337 fs_handle = fs_name_to_handle(fs_name, false);
338 if (!fs_handle) {
339 if (flags & IPC_FLAG_BLOCKING) {
340 fibril_condvar_wait(&fs_list_cv, &fs_list_lock);
341 goto recheck;
342 }
343
344 fibril_mutex_unlock(&fs_list_lock);
345 async_answer_0(callid, ENOENT);
346 async_answer_0(rid, ENOENT);
347 free(mp);
348 free(fs_name);
349 free(opts);
350 return;
351 }
352 fibril_mutex_unlock(&fs_list_lock);
353
354 /* Acknowledge that we know fs_name. */
355 async_answer_0(callid, EOK);
356
357 /* Do the mount */
358 vfs_mount_internal(rid, service_id, fs_handle, mp, opts);
359 free(mp);
360 free(fs_name);
361 free(opts);
362}
363
364void vfs_unmount(ipc_callid_t rid, ipc_call_t *request)
365{
366 int rc;
367 char *mp;
368 vfs_lookup_res_t mp_res;
369 vfs_lookup_res_t mr_res;
370 vfs_node_t *mr_node;
371 async_exch_t *exch;
372
373 /*
374 * Receive the mount point path.
375 */
376 rc = async_data_write_accept((void **) &mp, true, 0, MAX_PATH_LEN,
377 0, NULL);
378 if (rc != EOK)
379 async_answer_0(rid, rc);
380
381 /*
382 * Taking the namespace lock will do two things for us. First, it will
383 * prevent races with other lookup operations. Second, it will stop new
384 * references to already existing VFS nodes and creation of new VFS
385 * nodes. This is because new references are added as a result of some
386 * lookup operation or at least of some operation which is protected by
387 * the namespace lock.
388 */
389 fibril_rwlock_write_lock(&namespace_rwlock);
390
391 /*
392 * Lookup the mounted root and instantiate it.
393 */
394 rc = vfs_lookup_internal(mp, L_ROOT, &mr_res, NULL);
395 if (rc != EOK) {
396 fibril_rwlock_write_unlock(&namespace_rwlock);
397 free(mp);
398 async_answer_0(rid, rc);
399 return;
400 }
401 mr_node = vfs_node_get(&mr_res);
402 if (!mr_node) {
403 fibril_rwlock_write_unlock(&namespace_rwlock);
404 free(mp);
405 async_answer_0(rid, ENOMEM);
406 return;
407 }
408
409 /*
410 * Count the total number of references for the mounted file system. We
411 * are expecting at least two. One which we got above and one which we
412 * got when the file system was mounted. If we find more, it means that
413 * the file system cannot be gracefully unmounted at the moment because
414 * someone is working with it.
415 */
416 if (vfs_nodes_refcount_sum_get(mr_node->fs_handle,
417 mr_node->service_id) != 2) {
418 fibril_rwlock_write_unlock(&namespace_rwlock);
419 vfs_node_put(mr_node);
420 free(mp);
421 async_answer_0(rid, EBUSY);
422 return;
423 }
424
425 if (str_cmp(mp, "/") == 0) {
426
427 /*
428 * Unmounting the root file system.
429 *
430 * In this case, there is no mount point node and we send
431 * VFS_OUT_UNMOUNTED directly to the mounted file system.
432 */
433
434 free(mp);
435
436 exch = vfs_exchange_grab(mr_node->fs_handle);
437 rc = async_req_1_0(exch, VFS_OUT_UNMOUNTED,
438 mr_node->service_id);
439 vfs_exchange_release(exch);
440
441 if (rc != EOK) {
442 fibril_rwlock_write_unlock(&namespace_rwlock);
443 vfs_node_put(mr_node);
444 async_answer_0(rid, rc);
445 return;
446 }
447
448 rootfs.fs_handle = 0;
449 rootfs.service_id = 0;
450 } else {
451
452 /*
453 * Unmounting a non-root file system.
454 *
455 * We have a regular mount point node representing the parent
456 * file system, so we delegate the operation to it.
457 */
458
459 rc = vfs_lookup_internal(mp, L_MP, &mp_res, NULL);
460 free(mp);
461 if (rc != EOK) {
462 fibril_rwlock_write_unlock(&namespace_rwlock);
463 vfs_node_put(mr_node);
464 async_answer_0(rid, rc);
465 return;
466 }
467
468 vfs_node_t *mp_node = vfs_node_get(&mp_res);
469 if (!mp_node) {
470 fibril_rwlock_write_unlock(&namespace_rwlock);
471 vfs_node_put(mr_node);
472 async_answer_0(rid, ENOMEM);
473 return;
474 }
475
476 exch = vfs_exchange_grab(mp_node->fs_handle);
477 rc = async_req_2_0(exch, VFS_OUT_UNMOUNT,
478 mp_node->service_id, mp_node->index);
479 vfs_exchange_release(exch);
480
481 if (rc != EOK) {
482 fibril_rwlock_write_unlock(&namespace_rwlock);
483 vfs_node_put(mp_node);
484 vfs_node_put(mr_node);
485 async_answer_0(rid, rc);
486 return;
487 }
488
489 /* Drop the reference we got above. */
490 vfs_node_put(mp_node);
491 /* Drop the reference from when the file system was mounted. */
492 vfs_node_put(mp_node);
493 }
494
495 /*
496 * All went well, the mounted file system was successfully unmounted.
497 * The only thing left is to forget the unmounted root VFS node.
498 */
499 vfs_node_forget(mr_node);
500
501 fibril_rwlock_write_unlock(&namespace_rwlock);
502 async_answer_0(rid, EOK);
503}
504
505void vfs_open(ipc_callid_t rid, ipc_call_t *request)
506{
507 /*
508 * The POSIX interface is open(path, oflag, mode).
509 * We can receive oflags and mode along with the VFS_IN_OPEN call;
510 * the path will need to arrive in another call.
511 *
512 * We also receive one private, non-POSIX set of flags called lflag
513 * used to pass information to vfs_lookup_internal().
514 */
515 int lflag = IPC_GET_ARG1(*request);
516 int oflag = IPC_GET_ARG2(*request);
517 int mode = IPC_GET_ARG3(*request);
518
519 /* Ignore mode for now. */
520 (void) mode;
521
522 /*
523 * Make sure that we are called with exactly one of L_FILE and
524 * L_DIRECTORY. Make sure that the user does not pass L_OPEN,
525 * L_ROOT or L_MP.
526 */
527 if (((lflag & (L_FILE | L_DIRECTORY)) == 0) ||
528 ((lflag & (L_FILE | L_DIRECTORY)) == (L_FILE | L_DIRECTORY)) ||
529 (lflag & (L_OPEN | L_ROOT | L_MP))) {
530 async_answer_0(rid, EINVAL);
531 return;
532 }
533
534 if (oflag & O_CREAT)
535 lflag |= L_CREATE;
536 if (oflag & O_EXCL)
537 lflag |= L_EXCLUSIVE;
538
539 char *path;
540 int rc = async_data_write_accept((void **) &path, true, 0, 0, 0, NULL);
541 if (rc != EOK) {
542 async_answer_0(rid, rc);
543 return;
544 }
545
546 /*
547 * Avoid the race condition in which the file can be deleted before we
548 * find/create-and-lock the VFS node corresponding to the looked-up
549 * triplet.
550 */
551 if (lflag & L_CREATE)
552 fibril_rwlock_write_lock(&namespace_rwlock);
553 else
554 fibril_rwlock_read_lock(&namespace_rwlock);
555
556 /* The path is now populated and we can call vfs_lookup_internal(). */
557 vfs_lookup_res_t lr;
558 rc = vfs_lookup_internal(path, lflag | L_OPEN, &lr, NULL);
559 if (rc != EOK) {
560 if (lflag & L_CREATE)
561 fibril_rwlock_write_unlock(&namespace_rwlock);
562 else
563 fibril_rwlock_read_unlock(&namespace_rwlock);
564 async_answer_0(rid, rc);
565 free(path);
566 return;
567 }
568
569 /* Path is no longer needed. */
570 free(path);
571
572 vfs_node_t *node = vfs_node_get(&lr);
573 if (lflag & L_CREATE)
574 fibril_rwlock_write_unlock(&namespace_rwlock);
575 else
576 fibril_rwlock_read_unlock(&namespace_rwlock);
577
578 /* Truncate the file if requested and if necessary. */
579 if (oflag & O_TRUNC) {
580 fibril_rwlock_write_lock(&node->contents_rwlock);
581 if (node->size) {
582 rc = vfs_truncate_internal(node->fs_handle,
583 node->service_id, node->index, 0);
584 if (rc) {
585 fibril_rwlock_write_unlock(&node->contents_rwlock);
586 vfs_node_put(node);
587 async_answer_0(rid, rc);
588 return;
589 }
590 node->size = 0;
591 }
592 fibril_rwlock_write_unlock(&node->contents_rwlock);
593 }
594
595 /*
596 * Get ourselves a file descriptor and the corresponding vfs_file_t
597 * structure.
598 */
599 int fd = vfs_fd_alloc((oflag & O_DESC) != 0);
600 if (fd < 0) {
601 vfs_node_put(node);
602 async_answer_0(rid, fd);
603 return;
604 }
605 vfs_file_t *file = vfs_file_get(fd);
606 assert(file);
607 file->node = node;
608 if (oflag & O_APPEND)
609 file->append = true;
610
611 /*
612 * The following increase in reference count is for the fact that the
613 * file is being opened and that a file structure is pointing to it.
614 * It is necessary so that the file will not disappear when
615 * vfs_node_put() is called. The reference will be dropped by the
616 * respective VFS_IN_CLOSE.
617 */
618 vfs_node_addref(node);
619 vfs_node_put(node);
620 vfs_file_put(file);
621
622 /* Success! Return the new file descriptor to the client. */
623 async_answer_1(rid, EOK, fd);
624}
625
626void vfs_sync(ipc_callid_t rid, ipc_call_t *request)
627{
628 int fd = IPC_GET_ARG1(*request);
629
630 /* Lookup the file structure corresponding to the file descriptor. */
631 vfs_file_t *file = vfs_file_get(fd);
632 if (!file) {
633 async_answer_0(rid, ENOENT);
634 return;
635 }
636
637 /*
638 * Lock the open file structure so that no other thread can manipulate
639 * the same open file at a time.
640 */
641 fibril_mutex_lock(&file->lock);
642 async_exch_t *fs_exch = vfs_exchange_grab(file->node->fs_handle);
643
644 /* Make a VFS_OUT_SYMC request at the destination FS server. */
645 aid_t msg;
646 ipc_call_t answer;
647 msg = async_send_2(fs_exch, VFS_OUT_SYNC, file->node->service_id,
648 file->node->index, &answer);
649
650 vfs_exchange_release(fs_exch);
651
652 /* Wait for reply from the FS server. */
653 sysarg_t rc;
654 async_wait_for(msg, &rc);
655
656 fibril_mutex_unlock(&file->lock);
657
658 vfs_file_put(file);
659 async_answer_0(rid, rc);
660}
661
662void vfs_close(ipc_callid_t rid, ipc_call_t *request)
663{
664 int fd = IPC_GET_ARG1(*request);
665 int ret = vfs_fd_free(fd);
666 async_answer_0(rid, ret);
667}
668
669static void vfs_rdwr(ipc_callid_t rid, ipc_call_t *request, bool read)
670{
671 /*
672 * The following code strongly depends on the fact that the files data
673 * structure can be only accessed by a single fibril and all file
674 * operations are serialized (i.e. the reads and writes cannot
675 * interleave and a file cannot be closed while it is being read).
676 *
677 * Additional synchronization needs to be added once the table of
678 * open files supports parallel access!
679 */
680
681 int fd = IPC_GET_ARG1(*request);
682
683 /* Lookup the file structure corresponding to the file descriptor. */
684 vfs_file_t *file = vfs_file_get(fd);
685 if (!file) {
686 async_answer_0(rid, ENOENT);
687 return;
688 }
689
690 /*
691 * Lock the open file structure so that no other thread can manipulate
692 * the same open file at a time.
693 */
694 fibril_mutex_lock(&file->lock);
695
696 vfs_info_t *fs_info = fs_handle_to_info(file->node->fs_handle);
697 assert(fs_info);
698
699 /*
700 * Lock the file's node so that no other client can read/write to it at
701 * the same time unless the FS supports concurrent reads/writes and its
702 * write implementation does not modify the file size.
703 */
704 if ((read) ||
705 ((fs_info->concurrent_read_write) && (fs_info->write_retains_size)))
706 fibril_rwlock_read_lock(&file->node->contents_rwlock);
707 else
708 fibril_rwlock_write_lock(&file->node->contents_rwlock);
709
710 if (file->node->type == VFS_NODE_DIRECTORY) {
711 /*
712 * Make sure that no one is modifying the namespace
713 * while we are in readdir().
714 */
715 assert(read);
716 fibril_rwlock_read_lock(&namespace_rwlock);
717 }
718
719 async_exch_t *fs_exch = vfs_exchange_grab(file->node->fs_handle);
720
721 /*
722 * Make a VFS_READ/VFS_WRITE request at the destination FS server
723 * and forward the IPC_M_DATA_READ/IPC_M_DATA_WRITE request to the
724 * destination FS server. The call will be routed as if sent by
725 * ourselves. Note that call arguments are immutable in this case so we
726 * don't have to bother.
727 */
728 sysarg_t rc;
729 ipc_call_t answer;
730 if (read) {
731 rc = async_data_read_forward_4_1(fs_exch, VFS_OUT_READ,
732 file->node->service_id, file->node->index,
733 LOWER32(file->pos), UPPER32(file->pos), &answer);
734 } else {
735 if (file->append)
736 file->pos = file->node->size;
737
738 rc = async_data_write_forward_4_1(fs_exch, VFS_OUT_WRITE,
739 file->node->service_id, file->node->index,
740 LOWER32(file->pos), UPPER32(file->pos), &answer);
741 }
742
743 vfs_exchange_release(fs_exch);
744
745 size_t bytes = IPC_GET_ARG1(answer);
746
747 if (file->node->type == VFS_NODE_DIRECTORY)
748 fibril_rwlock_read_unlock(&namespace_rwlock);
749
750 /* Unlock the VFS node. */
751 if ((read) ||
752 ((fs_info->concurrent_read_write) && (fs_info->write_retains_size)))
753 fibril_rwlock_read_unlock(&file->node->contents_rwlock);
754 else {
755 /* Update the cached version of node's size. */
756 if (rc == EOK)
757 file->node->size = MERGE_LOUP32(IPC_GET_ARG2(answer),
758 IPC_GET_ARG3(answer));
759 fibril_rwlock_write_unlock(&file->node->contents_rwlock);
760 }
761
762 /* Update the position pointer and unlock the open file. */
763 if (rc == EOK)
764 file->pos += bytes;
765 fibril_mutex_unlock(&file->lock);
766 vfs_file_put(file);
767
768 /*
769 * FS server's reply is the final result of the whole operation we
770 * return to the client.
771 */
772 async_answer_1(rid, rc, bytes);
773}
774
775void vfs_read(ipc_callid_t rid, ipc_call_t *request)
776{
777 vfs_rdwr(rid, request, true);
778}
779
780void vfs_write(ipc_callid_t rid, ipc_call_t *request)
781{
782 vfs_rdwr(rid, request, false);
783}
784
785void vfs_seek(ipc_callid_t rid, ipc_call_t *request)
786{
787 int fd = (int) IPC_GET_ARG1(*request);
788 off64_t off = (off64_t) MERGE_LOUP32(IPC_GET_ARG2(*request),
789 IPC_GET_ARG3(*request));
790 int whence = (int) IPC_GET_ARG4(*request);
791
792 /* Lookup the file structure corresponding to the file descriptor. */
793 vfs_file_t *file = vfs_file_get(fd);
794 if (!file) {
795 async_answer_0(rid, ENOENT);
796 return;
797 }
798
799 fibril_mutex_lock(&file->lock);
800
801 off64_t newoff;
802 switch (whence) {
803 case SEEK_SET:
804 if (off >= 0) {
805 file->pos = (aoff64_t) off;
806 fibril_mutex_unlock(&file->lock);
807 vfs_file_put(file);
808 async_answer_1(rid, EOK, off);
809 return;
810 }
811 break;
812 case SEEK_CUR:
813 if ((off >= 0) && (file->pos + off < file->pos)) {
814 fibril_mutex_unlock(&file->lock);
815 vfs_file_put(file);
816 async_answer_0(rid, EOVERFLOW);
817 return;
818 }
819
820 if ((off < 0) && (file->pos < (aoff64_t) -off)) {
821 fibril_mutex_unlock(&file->lock);
822 vfs_file_put(file);
823 async_answer_0(rid, EOVERFLOW);
824 return;
825 }
826
827 file->pos += off;
828 newoff = (file->pos > OFF64_MAX) ? OFF64_MAX : file->pos;
829
830 fibril_mutex_unlock(&file->lock);
831 vfs_file_put(file);
832 async_answer_2(rid, EOK, LOWER32(newoff),
833 UPPER32(newoff));
834 return;
835 case SEEK_END:
836 fibril_rwlock_read_lock(&file->node->contents_rwlock);
837 aoff64_t size = file->node->size;
838
839 if ((off >= 0) && (size + off < size)) {
840 fibril_rwlock_read_unlock(&file->node->contents_rwlock);
841 fibril_mutex_unlock(&file->lock);
842 vfs_file_put(file);
843 async_answer_0(rid, EOVERFLOW);
844 return;
845 }
846
847 if ((off < 0) && (size < (aoff64_t) -off)) {
848 fibril_rwlock_read_unlock(&file->node->contents_rwlock);
849 fibril_mutex_unlock(&file->lock);
850 vfs_file_put(file);
851 async_answer_0(rid, EOVERFLOW);
852 return;
853 }
854
855 file->pos = size + off;
856 newoff = (file->pos > OFF64_MAX) ? OFF64_MAX : file->pos;
857
858 fibril_rwlock_read_unlock(&file->node->contents_rwlock);
859 fibril_mutex_unlock(&file->lock);
860 vfs_file_put(file);
861 async_answer_2(rid, EOK, LOWER32(newoff), UPPER32(newoff));
862 return;
863 }
864
865 fibril_mutex_unlock(&file->lock);
866 vfs_file_put(file);
867 async_answer_0(rid, EINVAL);
868}
869
870int vfs_truncate_internal(fs_handle_t fs_handle, service_id_t service_id,
871 fs_index_t index, aoff64_t size)
872{
873 async_exch_t *exch = vfs_exchange_grab(fs_handle);
874 sysarg_t rc = async_req_4_0(exch, VFS_OUT_TRUNCATE,
875 (sysarg_t) service_id, (sysarg_t) index, LOWER32(size),
876 UPPER32(size));
877 vfs_exchange_release(exch);
878
879 return (int) rc;
880}
881
882void vfs_truncate(ipc_callid_t rid, ipc_call_t *request)
883{
884 int fd = IPC_GET_ARG1(*request);
885 aoff64_t size = (aoff64_t) MERGE_LOUP32(IPC_GET_ARG2(*request),
886 IPC_GET_ARG3(*request));
887 int rc;
888
889 vfs_file_t *file = vfs_file_get(fd);
890 if (!file) {
891 async_answer_0(rid, ENOENT);
892 return;
893 }
894 fibril_mutex_lock(&file->lock);
895
896 fibril_rwlock_write_lock(&file->node->contents_rwlock);
897 rc = vfs_truncate_internal(file->node->fs_handle,
898 file->node->service_id, file->node->index, size);
899 if (rc == EOK)
900 file->node->size = size;
901 fibril_rwlock_write_unlock(&file->node->contents_rwlock);
902
903 fibril_mutex_unlock(&file->lock);
904 vfs_file_put(file);
905 async_answer_0(rid, (sysarg_t)rc);
906}
907
908void vfs_fstat(ipc_callid_t rid, ipc_call_t *request)
909{
910 int fd = IPC_GET_ARG1(*request);
911 sysarg_t rc;
912
913 vfs_file_t *file = vfs_file_get(fd);
914 if (!file) {
915 async_answer_0(rid, ENOENT);
916 return;
917 }
918
919 ipc_callid_t callid;
920 if (!async_data_read_receive(&callid, NULL)) {
921 vfs_file_put(file);
922 async_answer_0(callid, EINVAL);
923 async_answer_0(rid, EINVAL);
924 return;
925 }
926
927 fibril_mutex_lock(&file->lock);
928
929 async_exch_t *exch = vfs_exchange_grab(file->node->fs_handle);
930
931 aid_t msg;
932 msg = async_send_3(exch, VFS_OUT_STAT, file->node->service_id,
933 file->node->index, true, NULL);
934 async_forward_fast(callid, exch, 0, 0, 0, IPC_FF_ROUTE_FROM_ME);
935
936 vfs_exchange_release(exch);
937
938 async_wait_for(msg, &rc);
939
940 fibril_mutex_unlock(&file->lock);
941 vfs_file_put(file);
942 async_answer_0(rid, rc);
943}
944
945void vfs_stat(ipc_callid_t rid, ipc_call_t *request)
946{
947 char *path;
948 int rc = async_data_write_accept((void **) &path, true, 0, 0, 0, NULL);
949 if (rc != EOK) {
950 async_answer_0(rid, rc);
951 return;
952 }
953
954 ipc_callid_t callid;
955 if (!async_data_read_receive(&callid, NULL)) {
956 free(path);
957 async_answer_0(callid, EINVAL);
958 async_answer_0(rid, EINVAL);
959 return;
960 }
961
962 vfs_lookup_res_t lr;
963 fibril_rwlock_read_lock(&namespace_rwlock);
964 rc = vfs_lookup_internal(path, L_NONE, &lr, NULL);
965 free(path);
966 if (rc != EOK) {
967 fibril_rwlock_read_unlock(&namespace_rwlock);
968 async_answer_0(callid, rc);
969 async_answer_0(rid, rc);
970 return;
971 }
972 vfs_node_t *node = vfs_node_get(&lr);
973 if (!node) {
974 fibril_rwlock_read_unlock(&namespace_rwlock);
975 async_answer_0(callid, ENOMEM);
976 async_answer_0(rid, ENOMEM);
977 return;
978 }
979
980 fibril_rwlock_read_unlock(&namespace_rwlock);
981
982 async_exch_t *exch = vfs_exchange_grab(node->fs_handle);
983
984 aid_t msg;
985 msg = async_send_3(exch, VFS_OUT_STAT, node->service_id,
986 node->index, false, NULL);
987 async_forward_fast(callid, exch, 0, 0, 0, IPC_FF_ROUTE_FROM_ME);
988
989 vfs_exchange_release(exch);
990
991 sysarg_t rv;
992 async_wait_for(msg, &rv);
993
994 async_answer_0(rid, rv);
995
996 vfs_node_put(node);
997}
998
999void vfs_mkdir(ipc_callid_t rid, ipc_call_t *request)
1000{
1001 int mode = IPC_GET_ARG1(*request);
1002
1003 char *path;
1004 int rc = async_data_write_accept((void **) &path, true, 0, 0, 0, NULL);
1005 if (rc != EOK) {
1006 async_answer_0(rid, rc);
1007 return;
1008 }
1009
1010 /* Ignore mode for now. */
1011 (void) mode;
1012
1013 fibril_rwlock_write_lock(&namespace_rwlock);
1014 int lflag = L_DIRECTORY | L_CREATE | L_EXCLUSIVE;
1015 rc = vfs_lookup_internal(path, lflag, NULL, NULL);
1016 fibril_rwlock_write_unlock(&namespace_rwlock);
1017 free(path);
1018 async_answer_0(rid, rc);
1019}
1020
1021void vfs_unlink(ipc_callid_t rid, ipc_call_t *request)
1022{
1023 int lflag = IPC_GET_ARG1(*request);
1024
1025 char *path;
1026 int rc = async_data_write_accept((void **) &path, true, 0, 0, 0, NULL);
1027 if (rc != EOK) {
1028 async_answer_0(rid, rc);
1029 return;
1030 }
1031
1032 fibril_rwlock_write_lock(&namespace_rwlock);
1033 lflag &= L_DIRECTORY; /* sanitize lflag */
1034 vfs_lookup_res_t lr;
1035 rc = vfs_lookup_internal(path, lflag | L_UNLINK, &lr, NULL);
1036 free(path);
1037 if (rc != EOK) {
1038 fibril_rwlock_write_unlock(&namespace_rwlock);
1039 async_answer_0(rid, rc);
1040 return;
1041 }
1042
1043 /*
1044 * The name has already been unlinked by vfs_lookup_internal().
1045 * We have to get and put the VFS node to ensure that it is
1046 * VFS_OUT_DESTROY'ed after the last reference to it is dropped.
1047 */
1048 vfs_node_t *node = vfs_node_get(&lr);
1049 fibril_mutex_lock(&nodes_mutex);
1050 node->lnkcnt--;
1051 fibril_mutex_unlock(&nodes_mutex);
1052 fibril_rwlock_write_unlock(&namespace_rwlock);
1053 vfs_node_put(node);
1054 async_answer_0(rid, EOK);
1055}
1056
1057void vfs_rename(ipc_callid_t rid, ipc_call_t *request)
1058{
1059 /* Retrieve the old path. */
1060 char *old;
1061 int rc = async_data_write_accept((void **) &old, true, 0, 0, 0, NULL);
1062 if (rc != EOK) {
1063 async_answer_0(rid, rc);
1064 return;
1065 }
1066
1067 /* Retrieve the new path. */
1068 char *new;
1069 rc = async_data_write_accept((void **) &new, true, 0, 0, 0, NULL);
1070 if (rc != EOK) {
1071 free(old);
1072 async_answer_0(rid, rc);
1073 return;
1074 }
1075
1076 size_t olen;
1077 size_t nlen;
1078 char *oldc = canonify(old, &olen);
1079 char *newc = canonify(new, &nlen);
1080
1081 if ((!oldc) || (!newc)) {
1082 async_answer_0(rid, EINVAL);
1083 free(old);
1084 free(new);
1085 return;
1086 }
1087
1088 oldc[olen] = '\0';
1089 newc[nlen] = '\0';
1090
1091 if ((!str_lcmp(newc, oldc, str_length(oldc))) &&
1092 ((newc[str_length(oldc)] == '/') ||
1093 (str_length(oldc) == 1) ||
1094 (str_length(oldc) == str_length(newc)))) {
1095 /*
1096 * oldc is a prefix of newc and either
1097 * - newc continues with a / where oldc ends, or
1098 * - oldc was / itself, or
1099 * - oldc and newc are equal.
1100 */
1101 async_answer_0(rid, EINVAL);
1102 free(old);
1103 free(new);
1104 return;
1105 }
1106
1107 vfs_lookup_res_t old_lr;
1108 vfs_lookup_res_t new_lr;
1109 vfs_lookup_res_t new_par_lr;
1110 fibril_rwlock_write_lock(&namespace_rwlock);
1111
1112 /* Lookup the node belonging to the old file name. */
1113 rc = vfs_lookup_internal(oldc, L_NONE, &old_lr, NULL);
1114 if (rc != EOK) {
1115 fibril_rwlock_write_unlock(&namespace_rwlock);
1116 async_answer_0(rid, rc);
1117 free(old);
1118 free(new);
1119 return;
1120 }
1121
1122 vfs_node_t *old_node = vfs_node_get(&old_lr);
1123 if (!old_node) {
1124 fibril_rwlock_write_unlock(&namespace_rwlock);
1125 async_answer_0(rid, ENOMEM);
1126 free(old);
1127 free(new);
1128 return;
1129 }
1130
1131 /* Determine the path to the parent of the node with the new name. */
1132 char *parentc = str_dup(newc);
1133 if (!parentc) {
1134 fibril_rwlock_write_unlock(&namespace_rwlock);
1135 vfs_node_put(old_node);
1136 async_answer_0(rid, rc);
1137 free(old);
1138 free(new);
1139 return;
1140 }
1141
1142 char *lastsl = str_rchr(parentc + 1, '/');
1143 if (lastsl)
1144 *lastsl = '\0';
1145 else
1146 parentc[1] = '\0';
1147
1148 /* Lookup parent of the new file name. */
1149 rc = vfs_lookup_internal(parentc, L_NONE, &new_par_lr, NULL);
1150 free(parentc); /* not needed anymore */
1151 if (rc != EOK) {
1152 fibril_rwlock_write_unlock(&namespace_rwlock);
1153 vfs_node_put(old_node);
1154 async_answer_0(rid, rc);
1155 free(old);
1156 free(new);
1157 return;
1158 }
1159
1160 /* Check whether linking to the same file system instance. */
1161 if ((old_node->fs_handle != new_par_lr.triplet.fs_handle) ||
1162 (old_node->service_id != new_par_lr.triplet.service_id)) {
1163 fibril_rwlock_write_unlock(&namespace_rwlock);
1164 vfs_node_put(old_node);
1165 async_answer_0(rid, EXDEV); /* different file systems */
1166 free(old);
1167 free(new);
1168 return;
1169 }
1170
1171 /* Destroy the old link for the new name. */
1172 vfs_node_t *new_node = NULL;
1173 rc = vfs_lookup_internal(newc, L_UNLINK, &new_lr, NULL);
1174
1175 switch (rc) {
1176 case ENOENT:
1177 /* simply not in our way */
1178 break;
1179 case EOK:
1180 new_node = vfs_node_get(&new_lr);
1181 if (!new_node) {
1182 fibril_rwlock_write_unlock(&namespace_rwlock);
1183 vfs_node_put(old_node);
1184 async_answer_0(rid, ENOMEM);
1185 free(old);
1186 free(new);
1187 return;
1188 }
1189 fibril_mutex_lock(&nodes_mutex);
1190 new_node->lnkcnt--;
1191 fibril_mutex_unlock(&nodes_mutex);
1192 break;
1193 default:
1194 fibril_rwlock_write_unlock(&namespace_rwlock);
1195 vfs_node_put(old_node);
1196 async_answer_0(rid, ENOTEMPTY);
1197 free(old);
1198 free(new);
1199 return;
1200 }
1201
1202 /* Create the new link for the new name. */
1203 rc = vfs_lookup_internal(newc, L_LINK, NULL, NULL, old_node->index);
1204 if (rc != EOK) {
1205 fibril_rwlock_write_unlock(&namespace_rwlock);
1206 vfs_node_put(old_node);
1207 if (new_node)
1208 vfs_node_put(new_node);
1209 async_answer_0(rid, rc);
1210 free(old);
1211 free(new);
1212 return;
1213 }
1214
1215 fibril_mutex_lock(&nodes_mutex);
1216 old_node->lnkcnt++;
1217 fibril_mutex_unlock(&nodes_mutex);
1218
1219 /* Destroy the link for the old name. */
1220 rc = vfs_lookup_internal(oldc, L_UNLINK, NULL, NULL);
1221 if (rc != EOK) {
1222 fibril_rwlock_write_unlock(&namespace_rwlock);
1223 vfs_node_put(old_node);
1224 if (new_node)
1225 vfs_node_put(new_node);
1226 async_answer_0(rid, rc);
1227 free(old);
1228 free(new);
1229 return;
1230 }
1231
1232 fibril_mutex_lock(&nodes_mutex);
1233 old_node->lnkcnt--;
1234 fibril_mutex_unlock(&nodes_mutex);
1235 fibril_rwlock_write_unlock(&namespace_rwlock);
1236 vfs_node_put(old_node);
1237
1238 if (new_node)
1239 vfs_node_put(new_node);
1240
1241 free(old);
1242 free(new);
1243 async_answer_0(rid, EOK);
1244}
1245
1246void vfs_dup(ipc_callid_t rid, ipc_call_t *request)
1247{
1248 int oldfd = IPC_GET_ARG1(*request);
1249 int newfd = IPC_GET_ARG2(*request);
1250
1251 /* If the file descriptors are the same, do nothing. */
1252 if (oldfd == newfd) {
1253 async_answer_1(rid, EOK, newfd);
1254 return;
1255 }
1256
1257 /* Lookup the file structure corresponding to oldfd. */
1258 vfs_file_t *oldfile = vfs_file_get(oldfd);
1259 if (!oldfile) {
1260 async_answer_0(rid, EBADF);
1261 return;
1262 }
1263
1264 /*
1265 * Lock the open file structure so that no other thread can manipulate
1266 * the same open file at a time.
1267 */
1268 fibril_mutex_lock(&oldfile->lock);
1269
1270 /* Make sure newfd is closed. */
1271 (void) vfs_fd_free(newfd);
1272
1273 /* Assign the old file to newfd. */
1274 int ret = vfs_fd_assign(oldfile, newfd);
1275 fibril_mutex_unlock(&oldfile->lock);
1276 vfs_file_put(oldfile);
1277
1278 if (ret != EOK)
1279 async_answer_0(rid, ret);
1280 else
1281 async_answer_1(rid, EOK, newfd);
1282}
1283
1284void vfs_wait_handle(ipc_callid_t rid, ipc_call_t *request)
1285{
1286 int fd = vfs_wait_handle_internal();
1287 async_answer_1(rid, EOK, fd);
1288}
1289
1290/**
1291 * @}
1292 */
Note: See TracBrowser for help on using the repository browser.