/* * Copyright (c) 2008 Jakub Jermar * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * - The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /** @addtogroup fs * @{ */ /** * @file vfs_ops.c * @brief Operations that VFS offers to its clients. */ #include "vfs.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include FIBRIL_MUTEX_INITIALIZE(mtab_list_lock); LIST_INITIALIZE(mtab_list); static size_t mtab_size = 0; /* Forward declarations of static functions. */ static int vfs_truncate_internal(fs_handle_t, service_id_t, fs_index_t, aoff64_t); /** * This rwlock prevents the race between a triplet-to-VFS-node resolution and a * concurrent VFS operation which modifies the file system namespace. */ FIBRIL_RWLOCK_INITIALIZE(namespace_rwlock); vfs_pair_t rootfs = { .fs_handle = 0, .service_id = 0 }; static int vfs_mount_internal(ipc_callid_t rid, service_id_t service_id, fs_handle_t fs_handle, char *mp, char *opts) { vfs_lookup_res_t mp_res; vfs_lookup_res_t mr_res; vfs_node_t *mp_node = NULL; vfs_node_t *mr_node; fs_index_t rindex; aoff64_t rsize; unsigned rlnkcnt; async_exch_t *exch; sysarg_t rc; aid_t msg; ipc_call_t answer; /* Resolve the path to the mountpoint. */ fibril_rwlock_write_lock(&namespace_rwlock); if (rootfs.fs_handle) { /* We already have the root FS. */ if (str_cmp(mp, "/") == 0) { /* Trying to mount root FS over root FS */ fibril_rwlock_write_unlock(&namespace_rwlock); async_answer_0(rid, EBUSY); return EBUSY; } rc = vfs_lookup_internal(mp, L_MP, &mp_res, NULL); if (rc != EOK) { /* The lookup failed for some reason. */ fibril_rwlock_write_unlock(&namespace_rwlock); async_answer_0(rid, rc); return rc; } mp_node = vfs_node_get(&mp_res); if (!mp_node) { fibril_rwlock_write_unlock(&namespace_rwlock); async_answer_0(rid, ENOMEM); return ENOMEM; } /* * Now we hold a reference to mp_node. * It will be dropped upon the corresponding VFS_IN_UNMOUNT. * This prevents the mount point from being deleted. */ } else { /* We still don't have the root file system mounted. */ if (str_cmp(mp, "/") == 0) { /* * For this simple, but important case, * we are almost done. */ /* Tell the mountee that it is being mounted. */ exch = vfs_exchange_grab(fs_handle); msg = async_send_1(exch, VFS_OUT_MOUNTED, (sysarg_t) service_id, &answer); /* Send the mount options */ rc = async_data_write_start(exch, (void *)opts, str_size(opts)); vfs_exchange_release(exch); if (rc != EOK) { async_forget(msg); fibril_rwlock_write_unlock(&namespace_rwlock); async_answer_0(rid, rc); return rc; } async_wait_for(msg, &rc); if (rc != EOK) { fibril_rwlock_write_unlock(&namespace_rwlock); async_answer_0(rid, rc); return rc; } rindex = (fs_index_t) IPC_GET_ARG1(answer); rsize = (aoff64_t) MERGE_LOUP32(IPC_GET_ARG2(answer), IPC_GET_ARG3(answer)); rlnkcnt = (unsigned) IPC_GET_ARG4(answer); mr_res.triplet.fs_handle = fs_handle; mr_res.triplet.service_id = service_id; mr_res.triplet.index = rindex; mr_res.size = rsize; mr_res.lnkcnt = rlnkcnt; mr_res.type = VFS_NODE_DIRECTORY; rootfs.fs_handle = fs_handle; rootfs.service_id = service_id; /* Add reference to the mounted root. */ mr_node = vfs_node_get(&mr_res); assert(mr_node); fibril_rwlock_write_unlock(&namespace_rwlock); async_answer_0(rid, rc); return rc; } else { /* * We can't resolve this without the root filesystem * being mounted first. */ fibril_rwlock_write_unlock(&namespace_rwlock); async_answer_0(rid, ENOENT); return ENOENT; } } /* * At this point, we have all necessary pieces: file system handle * and service ID, and we know the mount point VFS node. */ async_exch_t *mountee_exch = vfs_exchange_grab(fs_handle); assert(mountee_exch); exch = vfs_exchange_grab(mp_res.triplet.fs_handle); msg = async_send_4(exch, VFS_OUT_MOUNT, (sysarg_t) mp_res.triplet.service_id, (sysarg_t) mp_res.triplet.index, (sysarg_t) fs_handle, (sysarg_t) service_id, &answer); /* Send connection */ rc = async_exchange_clone(exch, mountee_exch); vfs_exchange_release(mountee_exch); if (rc != EOK) { vfs_exchange_release(exch); async_forget(msg); /* Mount failed, drop reference to mp_node. */ if (mp_node) vfs_node_put(mp_node); async_answer_0(rid, rc); fibril_rwlock_write_unlock(&namespace_rwlock); return rc; } /* send the mount options */ rc = async_data_write_start(exch, (void *) opts, str_size(opts)); if (rc != EOK) { vfs_exchange_release(exch); async_forget(msg); /* Mount failed, drop reference to mp_node. */ if (mp_node) vfs_node_put(mp_node); fibril_rwlock_write_unlock(&namespace_rwlock); async_answer_0(rid, rc); return rc; } /* * Wait for the answer before releasing the exchange to avoid deadlock * in case the answer depends on further calls to the same file system. * Think of a case when mounting a FS on a file_bd backed by a file on * the same FS. */ async_wait_for(msg, &rc); vfs_exchange_release(exch); if (rc == EOK) { rindex = (fs_index_t) IPC_GET_ARG1(answer); rsize = (aoff64_t) MERGE_LOUP32(IPC_GET_ARG2(answer), IPC_GET_ARG3(answer)); rlnkcnt = (unsigned) IPC_GET_ARG4(answer); mr_res.triplet.fs_handle = fs_handle; mr_res.triplet.service_id = service_id; mr_res.triplet.index = rindex; mr_res.size = rsize; mr_res.lnkcnt = rlnkcnt; mr_res.type = VFS_NODE_DIRECTORY; /* Add reference to the mounted root. */ mr_node = vfs_node_get(&mr_res); assert(mr_node); } else { /* Mount failed, drop reference to mp_node. */ if (mp_node) vfs_node_put(mp_node); } async_answer_0(rid, rc); fibril_rwlock_write_unlock(&namespace_rwlock); return rc; } void vfs_mount(ipc_callid_t rid, ipc_call_t *request) { service_id_t service_id; /* * We expect the library to do the device-name to device-handle * translation for us, thus the device handle will arrive as ARG1 * in the request. */ service_id = (service_id_t) IPC_GET_ARG1(*request); /* * Mount flags are passed as ARG2. */ unsigned int flags = (unsigned int) IPC_GET_ARG2(*request); /* * Instance number is passed as ARG3. */ unsigned int instance = IPC_GET_ARG3(*request); /* We want the client to send us the mount point. */ char *mp; int rc = async_data_write_accept((void **) &mp, true, 0, MAX_PATH_LEN, 0, NULL); if (rc != EOK) { async_answer_0(rid, rc); return; } /* Now we expect to receive the mount options. */ char *opts; rc = async_data_write_accept((void **) &opts, true, 0, MAX_MNTOPTS_LEN, 0, NULL); if (rc != EOK) { free(mp); async_answer_0(rid, rc); return; } /* * Now, we expect the client to send us data with the name of the file * system. */ char *fs_name; rc = async_data_write_accept((void **) &fs_name, true, 0, FS_NAME_MAXLEN, 0, NULL); if (rc != EOK) { free(mp); free(opts); async_answer_0(rid, rc); return; } /* * Wait for VFS_IN_PING so that we can return an error if we don't know * fs_name. */ ipc_call_t data; ipc_callid_t callid = async_get_call(&data); if (IPC_GET_IMETHOD(data) != VFS_IN_PING) { async_answer_0(callid, ENOTSUP); async_answer_0(rid, ENOTSUP); free(mp); free(opts); free(fs_name); return; } /* * Check if we know a file system with the same name as is in fs_name. * This will also give us its file system handle. */ fibril_mutex_lock(&fs_list_lock); fs_handle_t fs_handle; recheck: fs_handle = fs_name_to_handle(instance, fs_name, false); if (!fs_handle) { if (flags & IPC_FLAG_BLOCKING) { fibril_condvar_wait(&fs_list_cv, &fs_list_lock); goto recheck; } fibril_mutex_unlock(&fs_list_lock); async_answer_0(callid, ENOENT); async_answer_0(rid, ENOENT); free(mp); free(fs_name); free(opts); return; } fibril_mutex_unlock(&fs_list_lock); /* Add the filesystem info to the list of mounted filesystems */ mtab_ent_t *mtab_ent = malloc(sizeof(mtab_ent_t)); if (!mtab_ent) { async_answer_0(callid, ENOMEM); async_answer_0(rid, ENOMEM); free(mp); free(fs_name); free(opts); return; } /* Do the mount */ rc = vfs_mount_internal(rid, service_id, fs_handle, mp, opts); if (rc != EOK) { async_answer_0(callid, ENOTSUP); async_answer_0(rid, ENOTSUP); free(mtab_ent); free(mp); free(opts); free(fs_name); return; } /* Add the filesystem info to the list of mounted filesystems */ str_cpy(mtab_ent->mp, MAX_PATH_LEN, mp); str_cpy(mtab_ent->fs_name, FS_NAME_MAXLEN, fs_name); str_cpy(mtab_ent->opts, MAX_MNTOPTS_LEN, opts); mtab_ent->instance = instance; mtab_ent->service_id = service_id; link_initialize(&mtab_ent->link); fibril_mutex_lock(&mtab_list_lock); list_append(&mtab_ent->link, &mtab_list); mtab_size++; fibril_mutex_unlock(&mtab_list_lock); free(mp); free(fs_name); free(opts); /* Acknowledge that we know fs_name. */ async_answer_0(callid, EOK); } void vfs_unmount(ipc_callid_t rid, ipc_call_t *request) { int rc; char *mp; vfs_lookup_res_t mp_res; vfs_lookup_res_t mr_res; vfs_node_t *mr_node; async_exch_t *exch; /* * Receive the mount point path. */ rc = async_data_write_accept((void **) &mp, true, 0, MAX_PATH_LEN, 0, NULL); if (rc != EOK) async_answer_0(rid, rc); /* * Taking the namespace lock will do two things for us. First, it will * prevent races with other lookup operations. Second, it will stop new * references to already existing VFS nodes and creation of new VFS * nodes. This is because new references are added as a result of some * lookup operation or at least of some operation which is protected by * the namespace lock. */ fibril_rwlock_write_lock(&namespace_rwlock); /* * Lookup the mounted root and instantiate it. */ rc = vfs_lookup_internal(mp, L_ROOT, &mr_res, NULL); if (rc != EOK) { fibril_rwlock_write_unlock(&namespace_rwlock); free(mp); async_answer_0(rid, rc); return; } mr_node = vfs_node_get(&mr_res); if (!mr_node) { fibril_rwlock_write_unlock(&namespace_rwlock); free(mp); async_answer_0(rid, ENOMEM); return; } /* * Count the total number of references for the mounted file system. We * are expecting at least two. One which we got above and one which we * got when the file system was mounted. If we find more, it means that * the file system cannot be gracefully unmounted at the moment because * someone is working with it. */ if (vfs_nodes_refcount_sum_get(mr_node->fs_handle, mr_node->service_id) != 2) { fibril_rwlock_write_unlock(&namespace_rwlock); vfs_node_put(mr_node); free(mp); async_answer_0(rid, EBUSY); return; } if (str_cmp(mp, "/") == 0) { /* * Unmounting the root file system. * * In this case, there is no mount point node and we send * VFS_OUT_UNMOUNTED directly to the mounted file system. */ exch = vfs_exchange_grab(mr_node->fs_handle); rc = async_req_1_0(exch, VFS_OUT_UNMOUNTED, mr_node->service_id); vfs_exchange_release(exch); if (rc != EOK) { fibril_rwlock_write_unlock(&namespace_rwlock); free(mp); vfs_node_put(mr_node); async_answer_0(rid, rc); return; } rootfs.fs_handle = 0; rootfs.service_id = 0; } else { /* * Unmounting a non-root file system. * * We have a regular mount point node representing the parent * file system, so we delegate the operation to it. */ rc = vfs_lookup_internal(mp, L_MP, &mp_res, NULL); if (rc != EOK) { fibril_rwlock_write_unlock(&namespace_rwlock); free(mp); vfs_node_put(mr_node); async_answer_0(rid, rc); return; } vfs_node_t *mp_node = vfs_node_get(&mp_res); if (!mp_node) { fibril_rwlock_write_unlock(&namespace_rwlock); free(mp); vfs_node_put(mr_node); async_answer_0(rid, ENOMEM); return; } exch = vfs_exchange_grab(mp_node->fs_handle); rc = async_req_2_0(exch, VFS_OUT_UNMOUNT, mp_node->service_id, mp_node->index); vfs_exchange_release(exch); if (rc != EOK) { fibril_rwlock_write_unlock(&namespace_rwlock); free(mp); vfs_node_put(mp_node); vfs_node_put(mr_node); async_answer_0(rid, rc); return; } /* Drop the reference we got above. */ vfs_node_put(mp_node); /* Drop the reference from when the file system was mounted. */ vfs_node_put(mp_node); } /* * All went well, the mounted file system was successfully unmounted. * The only thing left is to forget the unmounted root VFS node. */ vfs_node_forget(mr_node); fibril_rwlock_write_unlock(&namespace_rwlock); fibril_mutex_lock(&mtab_list_lock); int found = 0; list_foreach(mtab_list, cur) { mtab_ent_t *mtab_ent = list_get_instance(cur, mtab_ent_t, link); if (str_cmp(mtab_ent->mp, mp) == 0) { list_remove(&mtab_ent->link); mtab_size--; free(mtab_ent); found = 1; break; } } assert(found); fibril_mutex_unlock(&mtab_list_lock); free(mp); async_answer_0(rid, EOK); } void vfs_open(ipc_callid_t rid, ipc_call_t *request) { /* * The POSIX interface is open(path, oflag, mode). * We can receive oflags and mode along with the VFS_IN_OPEN call; * the path will need to arrive in another call. * * We also receive one private, non-POSIX set of flags called lflag * used to pass information to vfs_lookup_internal(). */ int lflag = IPC_GET_ARG1(*request); int oflag = IPC_GET_ARG2(*request); int mode = IPC_GET_ARG3(*request); /* Ignore mode for now. */ (void) mode; /* * Make sure that we are called with exactly one of L_FILE and * L_DIRECTORY. Make sure that the user does not pass L_OPEN, * L_ROOT or L_MP. */ if (((lflag & (L_FILE | L_DIRECTORY)) == 0) || ((lflag & (L_FILE | L_DIRECTORY)) == (L_FILE | L_DIRECTORY)) || (lflag & (L_OPEN | L_ROOT | L_MP))) { async_answer_0(rid, EINVAL); return; } if (oflag & O_CREAT) lflag |= L_CREATE; if (oflag & O_EXCL) lflag |= L_EXCLUSIVE; char *path; int rc = async_data_write_accept((void **) &path, true, 0, 0, 0, NULL); if (rc != EOK) { async_answer_0(rid, rc); return; } /* * Avoid the race condition in which the file can be deleted before we * find/create-and-lock the VFS node corresponding to the looked-up * triplet. */ if (lflag & L_CREATE) fibril_rwlock_write_lock(&namespace_rwlock); else fibril_rwlock_read_lock(&namespace_rwlock); /* The path is now populated and we can call vfs_lookup_internal(). */ vfs_lookup_res_t lr; rc = vfs_lookup_internal(path, lflag | L_OPEN, &lr, NULL); if (rc != EOK) { if (lflag & L_CREATE) fibril_rwlock_write_unlock(&namespace_rwlock); else fibril_rwlock_read_unlock(&namespace_rwlock); async_answer_0(rid, rc); free(path); return; } /* Path is no longer needed. */ free(path); vfs_node_t *node = vfs_node_get(&lr); if (lflag & L_CREATE) fibril_rwlock_write_unlock(&namespace_rwlock); else fibril_rwlock_read_unlock(&namespace_rwlock); /* Truncate the file if requested and if necessary. */ if (oflag & O_TRUNC) { fibril_rwlock_write_lock(&node->contents_rwlock); if (node->size) { rc = vfs_truncate_internal(node->fs_handle, node->service_id, node->index, 0); if (rc) { fibril_rwlock_write_unlock(&node->contents_rwlock); vfs_node_put(node); async_answer_0(rid, rc); return; } node->size = 0; } fibril_rwlock_write_unlock(&node->contents_rwlock); } /* * Get ourselves a file descriptor and the corresponding vfs_file_t * structure. */ int fd = vfs_fd_alloc((oflag & O_DESC) != 0); if (fd < 0) { vfs_node_put(node); async_answer_0(rid, fd); return; } vfs_file_t *file = vfs_file_get(fd); assert(file); file->node = node; if (oflag & O_APPEND) file->append = true; /* * The following increase in reference count is for the fact that the * file is being opened and that a file structure is pointing to it. * It is necessary so that the file will not disappear when * vfs_node_put() is called. The reference will be dropped by the * respective VFS_IN_CLOSE. */ vfs_node_addref(node); vfs_node_put(node); vfs_file_put(file); /* Success! Return the new file descriptor to the client. */ async_answer_1(rid, EOK, fd); } void vfs_sync(ipc_callid_t rid, ipc_call_t *request) { int fd = IPC_GET_ARG1(*request); /* Lookup the file structure corresponding to the file descriptor. */ vfs_file_t *file = vfs_file_get(fd); if (!file) { async_answer_0(rid, ENOENT); return; } /* * Lock the open file structure so that no other thread can manipulate * the same open file at a time. */ fibril_mutex_lock(&file->lock); async_exch_t *fs_exch = vfs_exchange_grab(file->node->fs_handle); /* Make a VFS_OUT_SYMC request at the destination FS server. */ aid_t msg; ipc_call_t answer; msg = async_send_2(fs_exch, VFS_OUT_SYNC, file->node->service_id, file->node->index, &answer); vfs_exchange_release(fs_exch); /* Wait for reply from the FS server. */ sysarg_t rc; async_wait_for(msg, &rc); fibril_mutex_unlock(&file->lock); vfs_file_put(file); async_answer_0(rid, rc); } void vfs_close(ipc_callid_t rid, ipc_call_t *request) { int fd = IPC_GET_ARG1(*request); int ret = vfs_fd_free(fd); async_answer_0(rid, ret); } static void vfs_rdwr(ipc_callid_t rid, ipc_call_t *request, bool read) { /* * The following code strongly depends on the fact that the files data * structure can be only accessed by a single fibril and all file * operations are serialized (i.e. the reads and writes cannot * interleave and a file cannot be closed while it is being read). * * Additional synchronization needs to be added once the table of * open files supports parallel access! */ int fd = IPC_GET_ARG1(*request); /* Lookup the file structure corresponding to the file descriptor. */ vfs_file_t *file = vfs_file_get(fd); if (!file) { async_answer_0(rid, ENOENT); return; } /* * Lock the open file structure so that no other thread can manipulate * the same open file at a time. */ fibril_mutex_lock(&file->lock); vfs_info_t *fs_info = fs_handle_to_info(file->node->fs_handle); assert(fs_info); /* * Lock the file's node so that no other client can read/write to it at * the same time unless the FS supports concurrent reads/writes and its * write implementation does not modify the file size. */ if ((read) || ((fs_info->concurrent_read_write) && (fs_info->write_retains_size))) fibril_rwlock_read_lock(&file->node->contents_rwlock); else fibril_rwlock_write_lock(&file->node->contents_rwlock); if (file->node->type == VFS_NODE_DIRECTORY) { /* * Make sure that no one is modifying the namespace * while we are in readdir(). */ assert(read); fibril_rwlock_read_lock(&namespace_rwlock); } async_exch_t *fs_exch = vfs_exchange_grab(file->node->fs_handle); /* * Make a VFS_READ/VFS_WRITE request at the destination FS server * and forward the IPC_M_DATA_READ/IPC_M_DATA_WRITE request to the * destination FS server. The call will be routed as if sent by * ourselves. Note that call arguments are immutable in this case so we * don't have to bother. */ sysarg_t rc; ipc_call_t answer; if (read) { rc = async_data_read_forward_4_1(fs_exch, VFS_OUT_READ, file->node->service_id, file->node->index, LOWER32(file->pos), UPPER32(file->pos), &answer); } else { if (file->append) file->pos = file->node->size; rc = async_data_write_forward_4_1(fs_exch, VFS_OUT_WRITE, file->node->service_id, file->node->index, LOWER32(file->pos), UPPER32(file->pos), &answer); } vfs_exchange_release(fs_exch); size_t bytes = IPC_GET_ARG1(answer); if (file->node->type == VFS_NODE_DIRECTORY) fibril_rwlock_read_unlock(&namespace_rwlock); /* Unlock the VFS node. */ if ((read) || ((fs_info->concurrent_read_write) && (fs_info->write_retains_size))) fibril_rwlock_read_unlock(&file->node->contents_rwlock); else { /* Update the cached version of node's size. */ if (rc == EOK) file->node->size = MERGE_LOUP32(IPC_GET_ARG2(answer), IPC_GET_ARG3(answer)); fibril_rwlock_write_unlock(&file->node->contents_rwlock); } /* Update the position pointer and unlock the open file. */ if (rc == EOK) file->pos += bytes; fibril_mutex_unlock(&file->lock); vfs_file_put(file); /* * FS server's reply is the final result of the whole operation we * return to the client. */ async_answer_1(rid, rc, bytes); } void vfs_read(ipc_callid_t rid, ipc_call_t *request) { vfs_rdwr(rid, request, true); } void vfs_write(ipc_callid_t rid, ipc_call_t *request) { vfs_rdwr(rid, request, false); } void vfs_seek(ipc_callid_t rid, ipc_call_t *request) { int fd = (int) IPC_GET_ARG1(*request); off64_t off = (off64_t) MERGE_LOUP32(IPC_GET_ARG2(*request), IPC_GET_ARG3(*request)); int whence = (int) IPC_GET_ARG4(*request); /* Lookup the file structure corresponding to the file descriptor. */ vfs_file_t *file = vfs_file_get(fd); if (!file) { async_answer_0(rid, ENOENT); return; } fibril_mutex_lock(&file->lock); off64_t newoff; switch (whence) { case SEEK_SET: if (off >= 0) { file->pos = (aoff64_t) off; fibril_mutex_unlock(&file->lock); vfs_file_put(file); async_answer_1(rid, EOK, off); return; } break; case SEEK_CUR: if ((off >= 0) && (file->pos + off < file->pos)) { fibril_mutex_unlock(&file->lock); vfs_file_put(file); async_answer_0(rid, EOVERFLOW); return; } if ((off < 0) && (file->pos < (aoff64_t) -off)) { fibril_mutex_unlock(&file->lock); vfs_file_put(file); async_answer_0(rid, EOVERFLOW); return; } file->pos += off; newoff = (file->pos > OFF64_MAX) ? OFF64_MAX : file->pos; fibril_mutex_unlock(&file->lock); vfs_file_put(file); async_answer_2(rid, EOK, LOWER32(newoff), UPPER32(newoff)); return; case SEEK_END: fibril_rwlock_read_lock(&file->node->contents_rwlock); aoff64_t size = file->node->size; if ((off >= 0) && (size + off < size)) { fibril_rwlock_read_unlock(&file->node->contents_rwlock); fibril_mutex_unlock(&file->lock); vfs_file_put(file); async_answer_0(rid, EOVERFLOW); return; } if ((off < 0) && (size < (aoff64_t) -off)) { fibril_rwlock_read_unlock(&file->node->contents_rwlock); fibril_mutex_unlock(&file->lock); vfs_file_put(file); async_answer_0(rid, EOVERFLOW); return; } file->pos = size + off; newoff = (file->pos > OFF64_MAX) ? OFF64_MAX : file->pos; fibril_rwlock_read_unlock(&file->node->contents_rwlock); fibril_mutex_unlock(&file->lock); vfs_file_put(file); async_answer_2(rid, EOK, LOWER32(newoff), UPPER32(newoff)); return; } fibril_mutex_unlock(&file->lock); vfs_file_put(file); async_answer_0(rid, EINVAL); } int vfs_truncate_internal(fs_handle_t fs_handle, service_id_t service_id, fs_index_t index, aoff64_t size) { async_exch_t *exch = vfs_exchange_grab(fs_handle); sysarg_t rc = async_req_4_0(exch, VFS_OUT_TRUNCATE, (sysarg_t) service_id, (sysarg_t) index, LOWER32(size), UPPER32(size)); vfs_exchange_release(exch); return (int) rc; } void vfs_truncate(ipc_callid_t rid, ipc_call_t *request) { int fd = IPC_GET_ARG1(*request); aoff64_t size = (aoff64_t) MERGE_LOUP32(IPC_GET_ARG2(*request), IPC_GET_ARG3(*request)); int rc; vfs_file_t *file = vfs_file_get(fd); if (!file) { async_answer_0(rid, ENOENT); return; } fibril_mutex_lock(&file->lock); fibril_rwlock_write_lock(&file->node->contents_rwlock); rc = vfs_truncate_internal(file->node->fs_handle, file->node->service_id, file->node->index, size); if (rc == EOK) file->node->size = size; fibril_rwlock_write_unlock(&file->node->contents_rwlock); fibril_mutex_unlock(&file->lock); vfs_file_put(file); async_answer_0(rid, (sysarg_t)rc); } void vfs_fstat(ipc_callid_t rid, ipc_call_t *request) { int fd = IPC_GET_ARG1(*request); sysarg_t rc; vfs_file_t *file = vfs_file_get(fd); if (!file) { async_answer_0(rid, ENOENT); return; } ipc_callid_t callid; if (!async_data_read_receive(&callid, NULL)) { vfs_file_put(file); async_answer_0(callid, EINVAL); async_answer_0(rid, EINVAL); return; } fibril_mutex_lock(&file->lock); async_exch_t *exch = vfs_exchange_grab(file->node->fs_handle); aid_t msg; msg = async_send_3(exch, VFS_OUT_STAT, file->node->service_id, file->node->index, true, NULL); async_forward_fast(callid, exch, 0, 0, 0, IPC_FF_ROUTE_FROM_ME); vfs_exchange_release(exch); async_wait_for(msg, &rc); fibril_mutex_unlock(&file->lock); vfs_file_put(file); async_answer_0(rid, rc); } void vfs_stat(ipc_callid_t rid, ipc_call_t *request) { char *path; int rc = async_data_write_accept((void **) &path, true, 0, 0, 0, NULL); if (rc != EOK) { async_answer_0(rid, rc); return; } ipc_callid_t callid; if (!async_data_read_receive(&callid, NULL)) { free(path); async_answer_0(callid, EINVAL); async_answer_0(rid, EINVAL); return; } vfs_lookup_res_t lr; fibril_rwlock_read_lock(&namespace_rwlock); rc = vfs_lookup_internal(path, L_NONE, &lr, NULL); free(path); if (rc != EOK) { fibril_rwlock_read_unlock(&namespace_rwlock); async_answer_0(callid, rc); async_answer_0(rid, rc); return; } vfs_node_t *node = vfs_node_get(&lr); if (!node) { fibril_rwlock_read_unlock(&namespace_rwlock); async_answer_0(callid, ENOMEM); async_answer_0(rid, ENOMEM); return; } fibril_rwlock_read_unlock(&namespace_rwlock); async_exch_t *exch = vfs_exchange_grab(node->fs_handle); aid_t msg; msg = async_send_3(exch, VFS_OUT_STAT, node->service_id, node->index, false, NULL); async_forward_fast(callid, exch, 0, 0, 0, IPC_FF_ROUTE_FROM_ME); vfs_exchange_release(exch); sysarg_t rv; async_wait_for(msg, &rv); async_answer_0(rid, rv); vfs_node_put(node); } void vfs_mkdir(ipc_callid_t rid, ipc_call_t *request) { int mode = IPC_GET_ARG1(*request); char *path; int rc = async_data_write_accept((void **) &path, true, 0, 0, 0, NULL); if (rc != EOK) { async_answer_0(rid, rc); return; } /* Ignore mode for now. */ (void) mode; fibril_rwlock_write_lock(&namespace_rwlock); int lflag = L_DIRECTORY | L_CREATE | L_EXCLUSIVE; rc = vfs_lookup_internal(path, lflag, NULL, NULL); fibril_rwlock_write_unlock(&namespace_rwlock); free(path); async_answer_0(rid, rc); } void vfs_unlink(ipc_callid_t rid, ipc_call_t *request) { int lflag = IPC_GET_ARG1(*request); char *path; int rc = async_data_write_accept((void **) &path, true, 0, 0, 0, NULL); if (rc != EOK) { async_answer_0(rid, rc); return; } fibril_rwlock_write_lock(&namespace_rwlock); lflag &= L_DIRECTORY; /* sanitize lflag */ vfs_lookup_res_t lr; rc = vfs_lookup_internal(path, lflag | L_UNLINK, &lr, NULL); free(path); if (rc != EOK) { fibril_rwlock_write_unlock(&namespace_rwlock); async_answer_0(rid, rc); return; } /* * The name has already been unlinked by vfs_lookup_internal(). * We have to get and put the VFS node to ensure that it is * VFS_OUT_DESTROY'ed after the last reference to it is dropped. */ vfs_node_t *node = vfs_node_get(&lr); fibril_mutex_lock(&nodes_mutex); node->lnkcnt--; fibril_mutex_unlock(&nodes_mutex); fibril_rwlock_write_unlock(&namespace_rwlock); vfs_node_put(node); async_answer_0(rid, EOK); } void vfs_rename(ipc_callid_t rid, ipc_call_t *request) { /* Retrieve the old path. */ char *old; int rc = async_data_write_accept((void **) &old, true, 0, 0, 0, NULL); if (rc != EOK) { async_answer_0(rid, rc); return; } /* Retrieve the new path. */ char *new; rc = async_data_write_accept((void **) &new, true, 0, 0, 0, NULL); if (rc != EOK) { free(old); async_answer_0(rid, rc); return; } size_t olen; size_t nlen; char *oldc = canonify(old, &olen); char *newc = canonify(new, &nlen); if ((!oldc) || (!newc)) { async_answer_0(rid, EINVAL); free(old); free(new); return; } oldc[olen] = '\0'; newc[nlen] = '\0'; if ((!str_lcmp(newc, oldc, str_length(oldc))) && ((newc[str_length(oldc)] == '/') || (str_length(oldc) == 1) || (str_length(oldc) == str_length(newc)))) { /* * oldc is a prefix of newc and either * - newc continues with a / where oldc ends, or * - oldc was / itself, or * - oldc and newc are equal. */ async_answer_0(rid, EINVAL); free(old); free(new); return; } vfs_lookup_res_t old_lr; vfs_lookup_res_t new_lr; vfs_lookup_res_t new_par_lr; fibril_rwlock_write_lock(&namespace_rwlock); /* Lookup the node belonging to the old file name. */ rc = vfs_lookup_internal(oldc, L_NONE, &old_lr, NULL); if (rc != EOK) { fibril_rwlock_write_unlock(&namespace_rwlock); async_answer_0(rid, rc); free(old); free(new); return; } vfs_node_t *old_node = vfs_node_get(&old_lr); if (!old_node) { fibril_rwlock_write_unlock(&namespace_rwlock); async_answer_0(rid, ENOMEM); free(old); free(new); return; } /* Determine the path to the parent of the node with the new name. */ char *parentc = str_dup(newc); if (!parentc) { fibril_rwlock_write_unlock(&namespace_rwlock); vfs_node_put(old_node); async_answer_0(rid, rc); free(old); free(new); return; } char *lastsl = str_rchr(parentc + 1, '/'); if (lastsl) *lastsl = '\0'; else parentc[1] = '\0'; /* Lookup parent of the new file name. */ rc = vfs_lookup_internal(parentc, L_NONE, &new_par_lr, NULL); free(parentc); /* not needed anymore */ if (rc != EOK) { fibril_rwlock_write_unlock(&namespace_rwlock); vfs_node_put(old_node); async_answer_0(rid, rc); free(old); free(new); return; } /* Check whether linking to the same file system instance. */ if ((old_node->fs_handle != new_par_lr.triplet.fs_handle) || (old_node->service_id != new_par_lr.triplet.service_id)) { fibril_rwlock_write_unlock(&namespace_rwlock); vfs_node_put(old_node); async_answer_0(rid, EXDEV); /* different file systems */ free(old); free(new); return; } /* Destroy the old link for the new name. */ vfs_node_t *new_node = NULL; rc = vfs_lookup_internal(newc, L_UNLINK, &new_lr, NULL); switch (rc) { case ENOENT: /* simply not in our way */ break; case EOK: new_node = vfs_node_get(&new_lr); if (!new_node) { fibril_rwlock_write_unlock(&namespace_rwlock); vfs_node_put(old_node); async_answer_0(rid, ENOMEM); free(old); free(new); return; } fibril_mutex_lock(&nodes_mutex); new_node->lnkcnt--; fibril_mutex_unlock(&nodes_mutex); break; default: fibril_rwlock_write_unlock(&namespace_rwlock); vfs_node_put(old_node); async_answer_0(rid, ENOTEMPTY); free(old); free(new); return; } /* Create the new link for the new name. */ rc = vfs_lookup_internal(newc, L_LINK, NULL, NULL, old_node->index); if (rc != EOK) { fibril_rwlock_write_unlock(&namespace_rwlock); vfs_node_put(old_node); if (new_node) vfs_node_put(new_node); async_answer_0(rid, rc); free(old); free(new); return; } fibril_mutex_lock(&nodes_mutex); old_node->lnkcnt++; fibril_mutex_unlock(&nodes_mutex); /* Destroy the link for the old name. */ rc = vfs_lookup_internal(oldc, L_UNLINK, NULL, NULL); if (rc != EOK) { fibril_rwlock_write_unlock(&namespace_rwlock); vfs_node_put(old_node); if (new_node) vfs_node_put(new_node); async_answer_0(rid, rc); free(old); free(new); return; } fibril_mutex_lock(&nodes_mutex); old_node->lnkcnt--; fibril_mutex_unlock(&nodes_mutex); fibril_rwlock_write_unlock(&namespace_rwlock); vfs_node_put(old_node); if (new_node) vfs_node_put(new_node); free(old); free(new); async_answer_0(rid, EOK); } void vfs_dup(ipc_callid_t rid, ipc_call_t *request) { int oldfd = IPC_GET_ARG1(*request); int newfd = IPC_GET_ARG2(*request); /* If the file descriptors are the same, do nothing. */ if (oldfd == newfd) { async_answer_1(rid, EOK, newfd); return; } /* Lookup the file structure corresponding to oldfd. */ vfs_file_t *oldfile = vfs_file_get(oldfd); if (!oldfile) { async_answer_0(rid, EBADF); return; } /* * Lock the open file structure so that no other thread can manipulate * the same open file at a time. */ fibril_mutex_lock(&oldfile->lock); /* Make sure newfd is closed. */ (void) vfs_fd_free(newfd); /* Assign the old file to newfd. */ int ret = vfs_fd_assign(oldfile, newfd); fibril_mutex_unlock(&oldfile->lock); vfs_file_put(oldfile); if (ret != EOK) async_answer_0(rid, ret); else async_answer_1(rid, EOK, newfd); } void vfs_wait_handle(ipc_callid_t rid, ipc_call_t *request) { int fd = vfs_wait_handle_internal(); async_answer_1(rid, EOK, fd); } void vfs_get_mtab(ipc_callid_t rid, ipc_call_t *request) { ipc_callid_t callid; ipc_call_t data; sysarg_t rc = EOK; size_t len; fibril_mutex_lock(&mtab_list_lock); /* Send to the caller the number of mounted filesystems */ callid = async_get_call(&data); if (IPC_GET_IMETHOD(data) != VFS_IN_PING) { rc = ENOTSUP; async_answer_0(callid, rc); goto exit; } async_answer_1(callid, EOK, mtab_size); list_foreach(mtab_list, cur) { mtab_ent_t *mtab_ent = list_get_instance(cur, mtab_ent_t, link); rc = ENOTSUP; if (!async_data_read_receive(&callid, &len)) { async_answer_0(callid, rc); goto exit; } (void) async_data_read_finalize(callid, mtab_ent->mp, str_size(mtab_ent->mp)); if (!async_data_read_receive(&callid, &len)) { async_answer_0(callid, rc); goto exit; } (void) async_data_read_finalize(callid, mtab_ent->opts, str_size(mtab_ent->opts)); if (!async_data_read_receive(&callid, &len)) { async_answer_0(callid, rc); goto exit; } (void) async_data_read_finalize(callid, mtab_ent->fs_name, str_size(mtab_ent->fs_name)); callid = async_get_call(&data); if (IPC_GET_IMETHOD(data) != VFS_IN_PING) { async_answer_0(callid, rc); goto exit; } rc = EOK; async_answer_2(callid, rc, mtab_ent->instance, mtab_ent->service_id); } exit: fibril_mutex_unlock(&mtab_list_lock); async_answer_0(rid, rc); } void vfs_statfs(ipc_callid_t rid, ipc_call_t *request) { char *path; int rc = async_data_write_accept((void **) &path, true, 0, 0, 0, NULL); if (rc != EOK) { async_answer_0(rid, rc); return; } ipc_callid_t callid; if (!async_data_read_receive(&callid, NULL)) { free(path); async_answer_0(callid, EINVAL); async_answer_0(rid, EINVAL); return; } vfs_lookup_res_t lr; fibril_rwlock_read_lock(&namespace_rwlock); rc = vfs_lookup_internal(path, L_NONE, &lr, NULL); free(path); if (rc != EOK) { fibril_rwlock_read_unlock(&namespace_rwlock); async_answer_0(callid, rc); async_answer_0(rid, rc); return; } vfs_node_t *node = vfs_node_get(&lr); if (!node) { fibril_rwlock_read_unlock(&namespace_rwlock); async_answer_0(callid, ENOMEM); async_answer_0(rid, ENOMEM); return; } fibril_rwlock_read_unlock(&namespace_rwlock); async_exch_t *exch = vfs_exchange_grab(node->fs_handle); aid_t msg; msg = async_send_3(exch, VFS_OUT_STATFS, node->service_id, node->index, false, NULL); async_forward_fast(callid, exch, 0, 0, 0, IPC_FF_ROUTE_FROM_ME); vfs_exchange_release(exch); sysarg_t rv; async_wait_for(msg, &rv); async_answer_0(rid, rv); vfs_node_put(node); } /** * @} */