source: mainline/uspace/srv/net/il/ip/ip.c@ c7315dd

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since c7315dd was 91478aa, checked in by Lukas Mejdrech <lukasmejdrech@…>, 16 years ago
  • unify packet dimension interfaces
  • Property mode set to 100644
File size: 56.5 KB
Line 
1/*
2 * Copyright (c) 2009 Lukas Mejdrech
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/** @addtogroup ip
30 * @{
31 */
32
33/** @file
34 * IP module implementation.
35 * @see arp.h
36 */
37
38#include <async.h>
39#include <errno.h>
40#include <fibril_synch.h>
41#include <stdio.h>
42#include <string.h>
43
44#include <ipc/ipc.h>
45#include <ipc/services.h>
46
47#include <sys/types.h>
48
49#include "../../err.h"
50#include "../../messages.h"
51#include "../../modules.h"
52
53#include "../../include/arp_interface.h"
54#include "../../include/byteorder.h"
55#include "../../include/checksum.h"
56#include "../../include/device.h"
57#include "../../include/icmp_client.h"
58#include "../../include/icmp_codes.h"
59#include "../../include/icmp_interface.h"
60#include "../../include/il_interface.h"
61#include "../../include/in.h"
62#include "../../include/in6.h"
63#include "../../include/inet.h"
64#include "../../include/ip_client.h"
65#include "../../include/ip_interface.h"
66#include "../../include/net_interface.h"
67#include "../../include/nil_interface.h"
68#include "../../include/tl_interface.h"
69#include "../../include/socket_codes.h"
70#include "../../include/socket_errno.h"
71#include "../../structures/measured_strings.h"
72#include "../../structures/module_map.h"
73#include "../../structures/packet/packet_client.h"
74
75#include "../../nil/nil_messages.h"
76
77#include "../il_messages.h"
78
79#include "ip.h"
80#include "ip_header.h"
81#include "ip_messages.h"
82#include "ip_module.h"
83
84/** IP version 4.
85 */
86#define IPV4 4
87
88/** Default network interface IP version.
89 */
90#define NET_DEFAULT_IPV IPV4
91
92/** Default network interface IP routing.
93 */
94#define NET_DEFAULT_IP_ROUTING false
95
96/** Minimum IP packet content.
97 */
98#define IP_MIN_CONTENT 576
99
100/** ARP module name.
101 */
102#define ARP_NAME "arp"
103
104/** ARP module filename.
105 */
106#define ARP_FILENAME "/srv/arp"
107
108/** IP packet address length.
109 */
110#define IP_ADDR sizeof( struct sockaddr_in6 )
111
112/** IP packet prefix length.
113 */
114#define IP_PREFIX sizeof( ip_header_t )
115
116/** IP packet suffix length.
117 */
118#define IP_SUFFIX 0
119
120/** IP packet maximum content length.
121 */
122#define IP_MAX_CONTENT 65535
123
124/** The IP localhost address.
125 */
126#define IPV4_LOCALHOST_ADDRESS htonl(( 127 << 24 ) + 1 )
127
128/** IP global data.
129 */
130ip_globals_t ip_globals;
131
132DEVICE_MAP_IMPLEMENT( ip_netifs, ip_netif_t )
133
134INT_MAP_IMPLEMENT( ip_protos, ip_proto_t )
135
136GENERIC_FIELD_IMPLEMENT( ip_routes, ip_route_t )
137
138/** Updates the device content length according to the new MTU value.
139 * @param[in] device_id The device identifier.
140 * @param[in] mtu The new mtu value.
141 * @returns EOK on success.
142 * @returns ENOENT if device is not found.
143 */
144int ip_mtu_changed_message( device_id_t device_id, size_t mtu );
145
146/** Updates the device state.
147 * @param[in] device_id The device identifier.
148 * @param[in] state The new state value.
149 * @returns EOK on success.
150 * @returns ENOENT if device is not found.
151 */
152int ip_device_state_message( device_id_t device_id, device_state_t state );
153
154/** Returns the device packet dimensions for sending.
155 * @param[in] phone The service module phone.
156 * @param[in] message The service specific message.
157 * @param[in] device_id The device identifier.
158 * @param[out] addr_len The minimum reserved address length.
159 * @param[out] prefix The minimum reserved prefix size.
160 * @param[out] content The maximum content size.
161 * @param[out] suffix The minimum reserved suffix size.
162 * @returns EOK on success.
163 */
164int ip_packet_size_message( device_id_t device_id, size_t * addr_len, size_t * prefix, size_t * content, size_t * suffix );
165
166/** Registers the transport layer protocol.
167 * The traffic of this protocol will be supplied using either the receive function or IPC message.
168 * @param[in] protocol The transport layer module protocol.
169 * @param[in] service The transport layer module service.
170 * @param[in] phone The transport layer module phone.
171 * @param[in] tl_received_msg The receiving function.
172 * @returns EOK on success.
173 * @returns EINVAL if the protocol parameter and/or the service parameter is zero (0).
174 * @returns EINVAL if the phone parameter is not a positive number and the tl_receive_msg is NULL.
175 * @returns ENOMEM if there is not enough memory left.
176 */
177int ip_register( int protocol, services_t service, int phone, tl_received_msg_t tl_received_msg );
178
179/** Initializes a new network interface specific data.
180 * Connects to the network interface layer module, reads the netif configuration, starts an ARP module if needed and sets the netif routing table.
181 * The device identifier and the nil service has to be set.
182 * @param[in,out] ip_netif Network interface specific data.
183 * @returns EOK on success.
184 * @returns ENOTSUP if DHCP is configured.
185 * @returns ENOTSUP if IPv6 is configured.
186 * @returns EINVAL if any of the addresses is invalid.
187 * @returns EINVAL if the used ARP module is not known.
188 * @returns ENOMEM if there is not enough memory left.
189 * @returns Other error codes as defined for the net_get_device_conf_req() function.
190 * @returns Other error codes as defined for the bind_service() function.
191 * @returns Other error codes as defined for the specific arp_device_req() function.
192 * @returns Other error codes as defined for the nil_packet_size_req() function.
193 */
194int ip_netif_initialize( ip_netif_ref ip_netif );
195
196/** Sends the packet or the packet queue via the specified route.
197 * The ICMP_HOST_UNREACH error notification may be sent if route hardware destination address is found.
198 * @param[in,out] packet The packet to be sent.
199 * @param[in] netif The target network interface.
200 * @param[in] route The target route.
201 * @param[in] src The source address.
202 * @param[in] dest The destination address.
203 * @param[in] error The error module service.
204 * @returns EOK on success.
205 * @returns Other error codes as defined for the arp_translate_req() function.
206 * @returns Other error codes as defined for the ip_prepare_packet() function.
207 */
208int ip_send_route( packet_t packet, ip_netif_ref netif, ip_route_ref route, in_addr_t * src, in_addr_t dest, services_t error );
209
210/** Prepares the outgoing packet or the packet queue.
211 * The packet queue is a fragmented packet
212 * Updates the first packet's IP header.
213 * Prefixes the additional packets with fragment headers.
214 * @param[in] source The source address.
215 * @param[in] dest The destination address.
216 * @param[in,out] packet The packet to be sent.
217 * @param[in] destination The destination hardware address.
218 * @returns EOK on success.
219 * @returns EINVAL if the packet is too small to contain the IP header.
220 * @returns EINVAL if the packet is too long than the IP allows.
221 * @returns ENOMEM if there is not enough memory left.
222 * @returns Other error codes as defined for the packet_set_addr() function.
223 */
224int ip_prepare_packet( in_addr_t * source, in_addr_t dest, packet_t packet, measured_string_ref destination );
225
226/** Checks the packet queue lengths and fragments the packets if needed.
227 * The ICMP_FRAG_NEEDED error notification may be sent if the packet needs to be fragmented and the fragmentation is not allowed.
228 * @param[in,out] packet The packet or the packet queue to be checked.
229 * @param[in] prefix The minimum prefix size.
230 * @param[in] content The maximum content size.
231 * @param[in] suffix The minimum suffix size.
232 * @param[in] addr_len The minimum address length.
233 * @param[in] error The error module service.
234 * @returns The packet or the packet queue of the allowed length.
235 * @returns NULL if there are no packets left.
236 */
237packet_t ip_split_packet( packet_t packet, size_t prefix, size_t content, size_t suffix, socklen_t addr_len, services_t error );
238
239/** Checks the packet length and fragments it if needed.
240 * The new fragments are queued before the original packet.
241 * @param[in,out] packet The packet to be checked.
242 * @param[in] length The maximum packet length.
243 * @param[in] prefix The minimum prefix size.
244 * @param[in] suffix The minimum suffix size.
245 * @param[in] addr_len The minimum address length.
246 * @returns EOK on success.
247 * @returns EINVAL if the packet_get_addr() function fails.
248 * @returns EINVAL if the packet does not contain the IP header.
249 * @returns EPERM if the packet needs to be fragmented and the fragmentation is not allowed.
250 * @returns ENOMEM if there is not enough memory left.
251 * @returns ENOMEM if there is no packet available.
252 * @returns ENOMEM if the packet is too small to contain the IP header.
253 * @returns Other error codes as defined for the packet_trim() function.
254 * @returns Other error codes as defined for the ip_create_middle_header() function.
255 * @returns Other error codes as defined for the ip_fragment_packet_data() function.
256 */
257int ip_fragment_packet( packet_t packet, size_t length, size_t prefix, size_t suffix, socklen_t addr_len );
258
259/** Fragments the packet from the end.
260 * @param[in] packet The packet to be fragmented.
261 * @param[in,out] new_packet The new packet fragment.
262 * @param[in,out] header The original packet header.
263 * @param[in,out] new_header The new packet fragment header.
264 * @param[in] length The new fragment length.
265 * @param[in] src The source address.
266 * @param[in] dest The destiantion address.
267 * @param[in] addrlen The address length.
268 * @returns EOK on success.
269 * @returns ENOMEM if the target packet is too small.
270 * @returns Other error codes as defined for the packet_set_addr() function.
271 * @returns Other error codes as defined for the pq_insert_after() function.
272 */
273int ip_fragment_packet_data( packet_t packet, packet_t new_packet, ip_header_ref header, ip_header_ref new_header, size_t length, const struct sockaddr * src, const struct sockaddr * dest, socklen_t addrlen );
274
275/** Prefixes a middle fragment header based on the last fragment header to the packet.
276 * @param[in] packet The packet to be prefixed.
277 * @param[in] last The last header to be copied.
278 * @returns The prefixed middle header.
279 * @returns NULL on error.
280 */
281ip_header_ref ip_create_middle_header( packet_t packet, ip_header_ref last );
282
283/** Copies the fragment header.
284 * Copies only the header itself and relevant IP options.
285 * @param[out] last The created header.
286 * @param[in] first The original header to be copied.
287 */
288void ip_create_last_header( ip_header_ref last, ip_header_ref first );
289
290/** Returns the network interface's IP address.
291 * @param[in] netif The network interface.
292 * @returns The IP address.
293 * @returns NULL if no IP address was found.
294 */
295in_addr_t * ip_netif_address( ip_netif_ref netif );
296
297/** Searches all network interfaces if there is a suitable route.
298 * @param[in] destination The destination address.
299 * @returns The found route.
300 * @returns NULL if no route was found.
301 */
302ip_route_ref ip_find_route( in_addr_t destination );
303
304/** Searches the network interfaces if there is a suitable route.
305 * @param[in] netif The network interface to be searched for routes. May be NULL.
306 * @param[in] destination The destination address.
307 * @returns The found route.
308 * @returns NULL if no route was found.
309 */
310ip_route_ref ip_netif_find_route( ip_netif_ref netif, in_addr_t destination );
311
312/** Processes the received IP packet or the packet queue one by one.
313 * The packet is either passed to another module or released on error.
314 * @param[in] device_id The source device identifier.
315 * @param[in,out] packet The received packet.
316 * @returns EOK on success and the packet is no longer needed.
317 * @returns EINVAL if the packet is too small to carry the IP packet.
318 * @returns EINVAL if the received address lengths differs from the registered values.
319 * @returns ENOENT if the device is not found in the cache.
320 * @returns ENOENT if the protocol for the device is not found in the cache.
321 * @returns ENOMEM if there is not enough memory left.
322 */
323int ip_receive_message( device_id_t device_id, packet_t packet );
324
325/** Processes the received packet.
326 * The packet is either passed to another module or released on error.
327 * The ICMP_PARAM_POINTER error notification may be sent if the checksum is invalid.
328 * The ICMP_EXC_TTL error notification may be sent if the TTL is less than two (2).
329 * The ICMP_HOST_UNREACH error notification may be sent if no route was found.
330 * The ICMP_HOST_UNREACH error notification may be sent if the packet is for another host and the routing is disabled.
331 * @param[in] device_id The source device identifier.
332 * @param[in] packet The received packet to be processed.
333 * @returns EOK on success.
334 * @returns EINVAL if the TTL is less than two (2).
335 * @returns EINVAL if the checksum is invalid.
336 * @returns EAFNOSUPPORT if the address family is not supported.
337 * @returns ENOENT if no route was found.
338 * @returns ENOENT if the packet is for another host and the routing is disabled.
339 */
340int ip_process_packet( device_id_t device_id, packet_t packet );
341
342/** Returns the packet destination address from the IP header.
343 * @param[in] header The packet IP header to be read.
344 * @returns The packet destination address.
345 */
346in_addr_t ip_get_destination( ip_header_ref header );
347
348/** Delivers the packet to the local host.
349 * The packet is either passed to another module or released on error.
350 * The ICMP_PROT_UNREACH error notification may be sent if the protocol is not found.
351 * @param[in] device_id The source device identifier.
352 * @param[in] packet The packet to be delivered.
353 * @param[in] header The first packet IP header. May be NULL.
354 * @param[in] error The packet error service.
355 * @returns EOK on success.
356 * @returns ENOTSUP if the packet is a fragment.
357 * @returns EAFNOSUPPORT if the address family is not supported.
358 * @returns ENOENT if the target protocol is not found.
359 * @returns Other error codes as defined for the packet_set_addr() function.
360 * @returns Other error codes as defined for the packet_trim() function.
361 * @returns Other error codes as defined for the protocol specific tl_received_msg function.
362 */
363int ip_deliver_local( device_id_t device_id, packet_t packet, ip_header_ref header, services_t error );
364
365/** Prepares the ICMP notification packet.
366 * Releases additional packets and keeps only the first one.
367 * All packets is released on error.
368 * @param[in] error The packet error service.
369 * @param[in] packet The packet or the packet queue to be reported as faulty.
370 * @param[in] header The first packet IP header. May be NULL.
371 * @returns The found ICMP phone.
372 * @returns EINVAL if the error parameter is set.
373 * @returns EINVAL if the ICMP phone is not found.
374 * @returns EINVAL if the ip_prepare_icmp() fails.
375 */
376int ip_prepare_icmp_and_get_phone( services_t error, packet_t packet, ip_header_ref header );
377
378/** Returns the ICMP phone.
379 * Searches the registered protocols.
380 * @returns The found ICMP phone.
381 * @returns ENOENT if the ICMP is not registered.
382 */
383int ip_get_icmp_phone( void );
384
385/** Prepares the ICMP notification packet.
386 * Releases additional packets and keeps only the first one.
387 * @param[in] packet The packet or the packet queue to be reported as faulty.
388 * @param[in] header The first packet IP header. May be NULL.
389 * @returns EOK on success.
390 * @returns EINVAL if there are no data in the packet.
391 * @returns EINVAL if the packet is a fragment.
392 * @returns ENOMEM if the packet is too short to contain the IP header.
393 * @returns EAFNOSUPPORT if the address family is not supported.
394 * @returns EPERM if the protocol is not allowed to send ICMP notifications. The ICMP protocol itself.
395 * @returns Other error codes as defined for the packet_set_addr().
396 */
397int ip_prepare_icmp( packet_t packet, ip_header_ref header );
398
399/** Releases the packet and returns the result.
400 * @param[in] packet The packet queue to be released.
401 * @param[in] result The result to be returned.
402 * @return The result parameter.
403 */
404int ip_release_and_return( packet_t packet, int result );
405
406int ip_initialize( async_client_conn_t client_connection ){
407 ERROR_DECLARE;
408
409 fibril_rwlock_initialize( & ip_globals.lock );
410 fibril_rwlock_write_lock( & ip_globals.lock );
411 fibril_rwlock_initialize( & ip_globals.protos_lock );
412 fibril_rwlock_initialize( & ip_globals.netifs_lock );
413 ip_globals.packet_counter = 0;
414 ip_globals.gateway.address.s_addr = 0;
415 ip_globals.gateway.netmask.s_addr = 0;
416 ip_globals.gateway.gateway.s_addr = 0;
417 ip_globals.gateway.netif = NULL;
418 ERROR_PROPAGATE( ip_netifs_initialize( & ip_globals.netifs ));
419 ERROR_PROPAGATE( ip_protos_initialize( & ip_globals.protos ));
420 ip_globals.client_connection = client_connection;
421 ERROR_PROPAGATE( modules_initialize( & ip_globals.modules ));
422 ERROR_PROPAGATE( add_module( NULL, & ip_globals.modules, ARP_NAME, ARP_FILENAME, SERVICE_ARP, arp_task_get_id(), arp_connect_module ));
423 fibril_rwlock_write_unlock( & ip_globals.lock );
424 return EOK;
425}
426
427int ip_device_req( int il_phone, device_id_t device_id, services_t netif ){
428 ERROR_DECLARE;
429
430 ip_netif_ref ip_netif;
431 ip_route_ref route;
432 int index;
433 char * data;
434
435 ip_netif = ( ip_netif_ref ) malloc( sizeof( ip_netif_t ));
436 if( ! ip_netif ) return ENOMEM;
437 if( ERROR_OCCURRED( ip_routes_initialize( & ip_netif->routes ))){
438 free( ip_netif );
439 return ERROR_CODE;
440 }
441 ip_netif->device_id = device_id;
442 ip_netif->service = netif;
443 ip_netif->state = NETIF_STOPPED;
444 fibril_rwlock_write_lock( & ip_globals.netifs_lock );
445 if( ERROR_OCCURRED( ip_netif_initialize( ip_netif ))){
446 fibril_rwlock_write_unlock( & ip_globals.netifs_lock );
447 ip_routes_destroy( & ip_netif->routes );
448 free( ip_netif );
449 return ERROR_CODE;
450 }
451 if( ip_netif->arp ) ++ ip_netif->arp->usage;
452 // print the settings
453 printf( "New device registered:\n\tid\t= %d\n\tphone\t= %d\n\tIPV\t= %d\n", ip_netif->device_id, ip_netif->phone, ip_netif->ipv );
454 printf( "\tconfiguration\t= %s\n", ip_netif->dhcp ? "dhcp" : "static" );
455 // TODO ipv6 addresses
456 data = ( char * ) malloc( INET_ADDRSTRLEN );
457 if( data ){
458 for( index = 0; index < ip_routes_count( & ip_netif->routes ); ++ index ){
459 route = ip_routes_get_index( & ip_netif->routes, index );
460 if( route ){
461 printf( "\tRouting %d:\n", index );
462 inet_ntop( AF_INET, ( uint8_t * ) & route->address.s_addr, data, INET_ADDRSTRLEN );
463 printf( "\t\taddress\t= %s\n", data );
464 inet_ntop( AF_INET, ( uint8_t * ) & route->netmask.s_addr, data, INET_ADDRSTRLEN );
465 printf( "\t\tnetmask\t= %s\n", data );
466 inet_ntop( AF_INET, ( uint8_t * ) & route->gateway.s_addr, data, INET_ADDRSTRLEN );
467 printf( "\t\tgateway\t= %s\n", data );
468 }
469 }
470 inet_ntop( AF_INET, ( uint8_t * ) & ip_netif->broadcast.s_addr, data, INET_ADDRSTRLEN );
471 printf( "\t\tbroadcast\t= %s\n", data );
472 free( data );
473 }
474 fibril_rwlock_write_unlock( & ip_globals.netifs_lock );
475 return EOK;
476}
477
478int ip_netif_initialize( ip_netif_ref ip_netif ){
479 ERROR_DECLARE;
480
481 measured_string_t names[] = {{ "IPV", 3 }, { "IP_CONFIG", 9 }, { "IP_ADDR", 7 }, { "IP_NETMASK", 10 }, { "IP_GATEWAY", 10 }, { "IP_BROADCAST", 12 }, { "ARP", 3 }, { "IP_ROUTING", 10 }};
482 measured_string_ref configuration;
483 size_t count = sizeof( names ) / sizeof( measured_string_t );
484 char * data;
485 measured_string_t address;
486 int index;
487 ip_route_ref route;
488 in_addr_t gateway;
489
490 ip_netif->arp = NULL;
491 route = NULL;
492 ip_netif->ipv = NET_DEFAULT_IPV;
493 ip_netif->dhcp = false;
494 ip_netif->routing = NET_DEFAULT_IP_ROUTING;
495 configuration = & names[ 0 ];
496 // get configuration
497 ERROR_PROPAGATE( net_get_device_conf_req( ip_globals.net_phone, ip_netif->device_id, & configuration, count, & data ));
498 if( configuration ){
499 if( configuration[ 0 ].value ){
500 ip_netif->ipv = strtol( configuration[ 0 ].value, NULL, 0 );
501 }
502 ip_netif->dhcp = ! str_lcmp( configuration[ 1 ].value, "dhcp", configuration[ 1 ].length );
503 if( ip_netif->dhcp ){
504 // TODO dhcp
505 net_free_settings( configuration, data );
506 return ENOTSUP;
507 }else if( ip_netif->ipv == IPV4 ){
508 route = ( ip_route_ref ) malloc( sizeof( ip_route_t ));
509 if( ! route ){
510 net_free_settings( configuration, data );
511 return ENOMEM;
512 }
513 route->address.s_addr = 0;
514 route->netmask.s_addr = 0;
515 route->gateway.s_addr = 0;
516 route->netif = ip_netif;
517 index = ip_routes_add( & ip_netif->routes, route );
518 if( index < 0 ){
519 net_free_settings( configuration, data );
520 free( route );
521 return index;
522 }
523 if( ERROR_OCCURRED( inet_pton( AF_INET, configuration[ 2 ].value, ( uint8_t * ) & route->address.s_addr ))
524 || ERROR_OCCURRED( inet_pton( AF_INET, configuration[ 3 ].value, ( uint8_t * ) & route->netmask.s_addr ))
525 || ( inet_pton( AF_INET, configuration[ 4 ].value, ( uint8_t * ) & gateway.s_addr ) == EINVAL )
526 || ( inet_pton( AF_INET, configuration[ 5 ].value, ( uint8_t * ) & ip_netif->broadcast.s_addr ) == EINVAL )){
527 net_free_settings( configuration, data );
528 return EINVAL;
529 }
530 }else{
531 // TODO ipv6 in separate module
532 net_free_settings( configuration, data );
533 return ENOTSUP;
534 }
535 if( configuration[ 6 ].value ){
536 ip_netif->arp = get_running_module( & ip_globals.modules, configuration[ 6 ].value );
537 if( ! ip_netif->arp ){
538 printf( "Failed to start the arp %s\n", configuration[ 6 ].value );
539 net_free_settings( configuration, data );
540 return EINVAL;
541 }
542 }
543 if( configuration[ 7 ].value ){
544 ip_netif->routing = ( configuration[ 7 ].value[ 0 ] == 'y' );
545 }
546 net_free_settings( configuration, data );
547 }
548 // binds the netif service which also initializes the device
549 ip_netif->phone = nil_bind_service( ip_netif->service, ( ipcarg_t ) ip_netif->device_id, SERVICE_IP, ip_globals.client_connection );
550 if( ip_netif->phone < 0 ){
551 printf( "Failed to contact the nil service %d\n", ip_netif->service );
552 return ip_netif->phone;
553 }
554 // has to be after the device netif module initialization
555 if( ip_netif->arp ){
556 if( route ){
557 address.value = ( char * ) & route->address.s_addr;
558 address.length = CONVERT_SIZE( in_addr_t, char, 1 );
559 ERROR_PROPAGATE( arp_device_req( ip_netif->arp->phone, ip_netif->device_id, SERVICE_IP, ip_netif->service, & address ));
560 }else{
561 ip_netif->arp = 0;
562 }
563 }
564 // get packet dimensions
565 ERROR_PROPAGATE( nil_packet_size_req( ip_netif->phone, ip_netif->device_id, & ip_netif->packet_dimension ));
566 if( ip_netif->packet_dimension.content < IP_MIN_CONTENT ){
567 printf( "Maximum transmission unit %d bytes is too small, at least %d bytes are needed\n", ip_netif->packet_dimension.content, IP_MIN_CONTENT );
568 ip_netif->packet_dimension.content = IP_MIN_CONTENT;
569 }
570 index = ip_netifs_add( & ip_globals.netifs, ip_netif->device_id, ip_netif );
571 if( index < 0 ) return index;
572 if( gateway.s_addr ){
573 // the default gateway
574 ip_globals.gateway.address.s_addr = 0;
575 ip_globals.gateway.netmask.s_addr = 0;
576 ip_globals.gateway.gateway.s_addr = gateway.s_addr;
577 ip_globals.gateway.netif = ip_netif;
578 }
579 return EOK;
580}
581
582int ip_mtu_changed_message( device_id_t device_id, size_t mtu ){
583 ip_netif_ref netif;
584
585 fibril_rwlock_write_lock( & ip_globals.netifs_lock );
586 netif = ip_netifs_find( & ip_globals.netifs, device_id );
587 if( ! netif ){
588 fibril_rwlock_write_unlock( & ip_globals.netifs_lock );
589 return ENOENT;
590 }
591 netif->packet_dimension.content = mtu;
592 printf( "ip - device %d changed mtu to %d\n\n", device_id, mtu );
593 fibril_rwlock_write_unlock( & ip_globals.netifs_lock );
594 return EOK;
595}
596
597int ip_device_state_message( device_id_t device_id, device_state_t state ){
598 ip_netif_ref netif;
599
600 fibril_rwlock_write_lock( & ip_globals.netifs_lock );
601 // find the device
602 netif = ip_netifs_find( & ip_globals.netifs, device_id );
603 if( ! netif ){
604 fibril_rwlock_write_unlock( & ip_globals.netifs_lock );
605 return ENOENT;
606 }
607 netif->state = state;
608 printf( "ip - device %d changed state to %d\n\n", device_id, state );
609 fibril_rwlock_write_unlock( & ip_globals.netifs_lock );
610 return EOK;
611}
612
613int ip_connect_module( services_t service ){
614 return EOK;
615}
616
617int ip_bind_service( services_t service, int protocol, services_t me, async_client_conn_t receiver, tl_received_msg_t received_msg ){
618 return ip_register( protocol, me, 0, received_msg );
619}
620
621int ip_register( int protocol, services_t service, int phone, tl_received_msg_t received_msg ){
622 ip_proto_ref proto;
623 int index;
624
625 if( !( protocol && service && (( phone > 0 ) || ( received_msg )))) return EINVAL;
626 proto = ( ip_proto_ref ) malloc( sizeof( ip_protos_t ));
627 if( ! proto ) return ENOMEM;
628 proto->protocol = protocol;
629 proto->service = service;
630 proto->phone = phone;
631 proto->received_msg = received_msg;
632 fibril_rwlock_write_lock( & ip_globals.protos_lock );
633 index = ip_protos_add( & ip_globals.protos, proto->protocol, proto );
634 if( index < 0 ){
635 fibril_rwlock_write_unlock( & ip_globals.protos_lock );
636 free( proto );
637 return index;
638 }
639 printf( "New protocol registered:\n\tprotocol\t= %d\n\tphone\t= %d\n", proto->protocol, proto->phone );
640 fibril_rwlock_write_unlock( & ip_globals.protos_lock );
641 return EOK;
642}
643
644int ip_send_msg( int il_phone, device_id_t device_id, packet_t packet, services_t sender, services_t error ){
645 ERROR_DECLARE;
646
647 int addrlen;
648 ip_netif_ref netif;
649 ip_route_ref route;
650 struct sockaddr * addr;
651 struct sockaddr_in * address_in;
652// struct sockaddr_in6 * address_in6;
653 in_addr_t * dest;
654 in_addr_t * src;
655 int phone;
656
657 // addresses in the host byte order
658 // should be the next hop address or the target destination address
659 addrlen = packet_get_addr( packet, NULL, ( uint8_t ** ) & addr );
660 if( addrlen < 0 ){
661 return ip_release_and_return( packet, addrlen );
662 }
663 if(( size_t ) addrlen < sizeof( struct sockaddr )){
664 return ip_release_and_return( packet, EINVAL );
665 }
666 switch( addr->sa_family ){
667 case AF_INET:
668 if( addrlen != sizeof( struct sockaddr_in )){
669 return ip_release_and_return( packet, EINVAL );
670 }
671 address_in = ( struct sockaddr_in * ) addr;
672 dest = & address_in->sin_addr;
673 if( ! dest->s_addr ){
674 dest->s_addr = IPV4_LOCALHOST_ADDRESS;
675 }
676 break;
677 // TODO IPv6
678/* case AF_INET6:
679 if( addrlen != sizeof( struct sockaddr_in6 )) return EINVAL;
680 address_in6 = ( struct sockaddr_in6 * ) dest;
681 address_in6.sin6_addr.s6_addr;
682 IPV6_LOCALHOST_ADDRESS;
683*/ default:
684 return ip_release_and_return( packet, EAFNOSUPPORT );
685 }
686 fibril_rwlock_read_lock( & ip_globals.netifs_lock );
687 // device specified?
688 if( device_id > 0 ){
689 netif = ip_netifs_find( & ip_globals.netifs, device_id );
690 route = ip_netif_find_route( netif, * dest );
691 if( netif && ( ! route ) && ( ip_globals.gateway.netif == netif )){
692 route = & ip_globals.gateway;
693 }
694 }else{
695 route = ip_find_route( * dest );
696 netif = route ? route->netif : NULL;
697 }
698 if( !( netif && route )){
699 fibril_rwlock_read_unlock( & ip_globals.netifs_lock );
700 phone = ip_prepare_icmp_and_get_phone( error, packet, NULL );
701 if( phone >= 0 ){
702 // unreachable ICMP if no routing
703 icmp_destination_unreachable_msg( phone, ICMP_NET_UNREACH, 0, packet );
704 }
705 return ENOENT;
706 }
707 if( error ){
708 // do not send for broadcast, anycast packets or network broadcast
709 if(( ! dest->s_addr )
710 || ( !( ~ dest->s_addr ))
711 || ( !( ~(( dest->s_addr & ( ~ route->netmask.s_addr )) | route->netmask.s_addr )))
712 || ( !( dest->s_addr & ( ~ route->netmask.s_addr )))){
713 return ip_release_and_return( packet, EINVAL );
714 }
715 }
716 if( route->address.s_addr == dest->s_addr ){
717 // find the loopback device to deliver
718 dest->s_addr = IPV4_LOCALHOST_ADDRESS;
719 route = ip_find_route( * dest );
720 netif = route ? route->netif : NULL;
721 if( !( netif && route )){
722 fibril_rwlock_read_unlock( & ip_globals.netifs_lock );
723 phone = ip_prepare_icmp_and_get_phone( error, packet, NULL );
724 if( phone >= 0 ){
725 // unreachable ICMP if no routing
726 icmp_destination_unreachable_msg( phone, ICMP_HOST_UNREACH, 0, packet );
727 }
728 return ENOENT;
729 }
730 }
731 src = ip_netif_address( netif );
732 if( ! src ){
733 fibril_rwlock_read_unlock( & ip_globals.netifs_lock );
734 return ip_release_and_return( packet, ENOENT );
735 }
736 ERROR_CODE = ip_send_route( packet, netif, route, src, * dest, error );
737 fibril_rwlock_read_unlock( & ip_globals.netifs_lock );
738 return ERROR_CODE;
739}
740
741in_addr_t * ip_netif_address( ip_netif_ref netif ){
742 ip_route_ref route;
743
744 route = ip_routes_get_index( & netif->routes, 0 );
745 return route ? & route->address : NULL;
746}
747
748int ip_send_route( packet_t packet, ip_netif_ref netif, ip_route_ref route, in_addr_t * src, in_addr_t dest, services_t error ){
749 ERROR_DECLARE;
750
751 measured_string_t destination;
752 measured_string_ref translation;
753 char * data;
754 int phone;
755
756 // get destination hardware address
757 if( netif->arp && ( route->address.s_addr != dest.s_addr )){
758 destination.value = route->gateway.s_addr ? ( char * ) & route->gateway.s_addr : ( char * ) & dest.s_addr;
759 destination.length = CONVERT_SIZE( dest.s_addr, char, 1 );
760 if( ERROR_OCCURRED( arp_translate_req( netif->arp->phone, netif->device_id, SERVICE_IP, & destination, & translation, & data ))){
761// sleep( 1 );
762// ERROR_PROPAGATE( arp_translate_req( netif->arp->phone, netif->device_id, SERVICE_IP, & destination, & translation, & data ));
763 pq_release( ip_globals.net_phone, packet_get_id( packet ));
764 return ERROR_CODE;
765 }
766 if( !( translation && translation->value )){
767 if( translation ){
768 free( translation );
769 free( data );
770 }
771 phone = ip_prepare_icmp_and_get_phone( error, packet, NULL );
772 if( phone >= 0 ){
773 // unreachable ICMP if no routing
774 icmp_destination_unreachable_msg( phone, ICMP_HOST_UNREACH, 0, packet );
775 }
776 return EINVAL;
777 }
778 }else translation = NULL;
779 if( ERROR_OCCURRED( ip_prepare_packet( src, dest, packet, translation ))){
780 pq_release( ip_globals.net_phone, packet_get_id( packet ));
781 }else{
782 packet = ip_split_packet( packet, netif->packet_dimension.prefix, netif->packet_dimension.content, netif->packet_dimension.suffix, netif->packet_dimension.addr_len, error );
783 if( packet ){
784 nil_send_msg( netif->phone, netif->device_id, packet, SERVICE_IP );
785 }
786 }
787 if( translation ){
788 free( translation );
789 free( data );
790 }
791 return ERROR_CODE;
792}
793
794int ip_prepare_packet( in_addr_t * source, in_addr_t dest, packet_t packet, measured_string_ref destination ){
795 ERROR_DECLARE;
796
797 size_t length;
798 ip_header_ref header;
799 ip_header_ref last_header;
800 ip_header_ref middle_header;
801 packet_t next;
802
803 length = packet_get_data_length( packet );
804 if(( length < sizeof( ip_header_t )) || ( length > IP_MAX_CONTENT )) return EINVAL;
805 header = ( ip_header_ref ) packet_get_data( packet );
806 if( destination ){
807 ERROR_PROPAGATE( packet_set_addr( packet, NULL, ( uint8_t * ) destination->value, CONVERT_SIZE( char, uint8_t, destination->length )));
808 }else{
809 ERROR_PROPAGATE( packet_set_addr( packet, NULL, NULL, 0 ));
810 }
811 header->version = IPV4;
812 header->fragment_offset_high = 0;
813 header->fragment_offset_low = 0;
814 header->header_checksum = 0;
815 if( source ) header->source_address = source->s_addr;
816 header->destination_address = dest.s_addr;
817 fibril_rwlock_write_lock( & ip_globals.lock );
818 ++ ip_globals.packet_counter;
819 header->identification = htons( ip_globals.packet_counter );
820 fibril_rwlock_write_unlock( & ip_globals.lock );
821// length = packet_get_data_length( packet );
822 if( pq_next( packet )){
823 last_header = ( ip_header_ref ) malloc( IP_HEADER_LENGTH( header ));
824 if( ! last_header ) return ENOMEM;
825 ip_create_last_header( last_header, header );
826 next = pq_next( packet );
827 while( pq_next( next )){
828 middle_header = ( ip_header_ref ) packet_prefix( next, IP_HEADER_LENGTH( last_header ));
829 if( ! middle_header ) return ENOMEM;
830 memcpy( middle_header, last_header, IP_HEADER_LENGTH( last_header ));
831 header->flags |= IPFLAG_MORE_FRAGMENTS;
832 middle_header->total_length = htons( packet_get_data_length( next ));
833 middle_header->fragment_offset_high = IP_COMPUTE_FRAGMENT_OFFSET_HIGH( length );
834 middle_header->fragment_offset_low = IP_COMPUTE_FRAGMENT_OFFSET_LOW( length );
835 middle_header->header_checksum = IP_HEADER_CHECKSUM( middle_header );
836 if( destination ){
837 ERROR_PROPAGATE( packet_set_addr( next, NULL, ( uint8_t * ) destination->value, CONVERT_SIZE( char, uint8_t, destination->length )));
838 }
839 length += packet_get_data_length( next );
840 next = pq_next( next );
841 }
842 middle_header = ( ip_header_ref ) packet_prefix( next, IP_HEADER_LENGTH( last_header ));
843 if( ! middle_header ) return ENOMEM;
844 memcpy( middle_header, last_header, IP_HEADER_LENGTH( last_header ));
845 middle_header->total_length = htons( packet_get_data_length( next ));
846 middle_header->fragment_offset_high = IP_COMPUTE_FRAGMENT_OFFSET_HIGH( length );
847 middle_header->fragment_offset_low = IP_COMPUTE_FRAGMENT_OFFSET_LOW( length );
848 middle_header->header_checksum = IP_HEADER_CHECKSUM( middle_header );
849 if( destination ){
850 ERROR_PROPAGATE( packet_set_addr( next, NULL, ( uint8_t * ) destination->value, CONVERT_SIZE( char, uint8_t, destination->length )));
851 }
852 length += packet_get_data_length( next );
853 free( last_header );
854 header->flags |= IPFLAG_MORE_FRAGMENTS;
855 }
856 header->total_length = htons( length );
857 // unnecessary for all protocols
858 header->header_checksum = IP_HEADER_CHECKSUM( header );
859 return EOK;
860}
861
862int ip_message( ipc_callid_t callid, ipc_call_t * call, ipc_call_t * answer, int * answer_count ){
863 ERROR_DECLARE;
864
865 packet_t packet;
866 struct sockaddr * addr;
867 size_t addrlen;
868 ip_pseudo_header_ref header;
869 size_t headerlen;
870
871 * answer_count = 0;
872 switch( IPC_GET_METHOD( * call )){
873 case IPC_M_PHONE_HUNGUP:
874 return EOK;
875 case NET_IL_DEVICE:
876 return ip_device_req( 0, IPC_GET_DEVICE( call ), IPC_GET_SERVICE( call ));
877 case IPC_M_CONNECT_TO_ME:
878 return ip_register( IL_GET_PROTO( call ), IL_GET_SERVICE( call ), IPC_GET_PHONE( call ), NULL );
879 case NET_IL_SEND:
880 ERROR_PROPAGATE( packet_translate( ip_globals.net_phone, & packet, IPC_GET_PACKET( call )));
881 return ip_send_msg( 0, IPC_GET_DEVICE( call ), packet, 0, IPC_GET_ERROR( call ));
882 case NET_IL_DEVICE_STATE:
883 return ip_device_state_message( IPC_GET_DEVICE( call ), IPC_GET_STATE( call ));
884 case NET_IL_RECEIVED:
885 ERROR_PROPAGATE( packet_translate( ip_globals.net_phone, & packet, IPC_GET_PACKET( call )));
886 return ip_receive_message( IPC_GET_DEVICE( call ), packet );
887 case NET_IP_RECEIVED_ERROR:
888 ERROR_PROPAGATE( packet_translate( ip_globals.net_phone, & packet, IPC_GET_PACKET( call )));
889 return ip_received_error_msg( 0, IPC_GET_DEVICE( call ), packet, IPC_GET_TARGET( call ), IPC_GET_ERROR( call ));
890 case NET_IP_ADD_ROUTE:
891 return ip_add_route_req( 0, IPC_GET_DEVICE( call ), IP_GET_ADDRESS( call ), IP_GET_NETMASK( call ), IP_GET_GATEWAY( call ));
892 case NET_IP_SET_GATEWAY:
893 return ip_set_gateway_req( 0, IPC_GET_DEVICE( call ), IP_GET_GATEWAY( call ));
894 case NET_IP_GET_ROUTE:
895 ERROR_PROPAGATE( data_receive(( void ** ) & addr, & addrlen ));
896 ERROR_PROPAGATE( ip_get_route_req( 0, IP_GET_PROTOCOL( call ), addr, ( socklen_t ) addrlen, IPC_SET_DEVICE( answer ), & header, & headerlen ));
897 * IP_SET_HEADERLEN( answer ) = headerlen;
898 * answer_count = 2;
899 if( ! ERROR_OCCURRED( data_reply( & headerlen, sizeof( headerlen )))){
900 ERROR_CODE = data_reply( header, headerlen );
901 }
902 free( header );
903 return ERROR_CODE;
904 case NET_IL_PACKET_SPACE:
905 ERROR_PROPAGATE( ip_packet_size_message( IPC_GET_DEVICE( call ), IPC_SET_ADDR( answer ), IPC_SET_PREFIX( answer ), IPC_SET_CONTENT( answer ), IPC_SET_SUFFIX( answer )));
906 * answer_count = 3;
907 return EOK;
908 case NET_IL_MTU_CHANGED:
909 return ip_mtu_changed_message( IPC_GET_DEVICE( call ), IPC_GET_MTU( call ));
910 }
911 return ENOTSUP;
912}
913
914int ip_packet_size_req( int ip_phone, device_id_t device_id, packet_dimension_ref packet_dimension ){
915 if( ! packet_dimension ) return EBADMEM;
916 return ip_packet_size_message( device_id, & packet_dimension->addr_len, & packet_dimension->prefix, & packet_dimension->content, & packet_dimension->suffix );
917}
918
919int ip_packet_size_message( device_id_t device_id, size_t * addr_len, size_t * prefix, size_t * content, size_t * suffix ){
920 ip_netif_ref netif;
921 int index;
922
923 if( !( addr_len && prefix && content && suffix )) return EBADMEM;
924 * content = IP_MAX_CONTENT - IP_PREFIX;
925 fibril_rwlock_read_lock( & ip_globals.netifs_lock );
926 if( device_id < 0 ){
927 * addr_len = IP_ADDR;
928 * prefix = 0;
929 * suffix = 0;
930 for( index = ip_netifs_count( & ip_globals.netifs ) - 1; index >= 0; -- index ){
931 netif = ip_netifs_get_index( & ip_globals.netifs, index );
932 if( netif ){
933 if( netif->packet_dimension.addr_len > * addr_len ) * addr_len = netif->packet_dimension.addr_len;
934 if( netif->packet_dimension.prefix > * prefix ) * prefix = netif->packet_dimension.prefix;
935 if( netif->packet_dimension.suffix > * suffix ) * suffix = netif->packet_dimension.suffix;
936 }
937 }
938 * prefix = * prefix + IP_PREFIX;
939 * suffix = * suffix + IP_SUFFIX;
940 }else{
941 netif = ip_netifs_find( & ip_globals.netifs, device_id );
942 if( ! netif ){
943 fibril_rwlock_read_unlock( & ip_globals.netifs_lock );
944 return ENOENT;
945 }
946 * addr_len = ( netif->packet_dimension.addr_len > IP_ADDR ) ? netif->packet_dimension.addr_len : IP_ADDR;
947 * prefix = netif->packet_dimension.prefix + IP_PREFIX;
948 * suffix = netif->packet_dimension.suffix + IP_SUFFIX;
949 }
950 fibril_rwlock_read_unlock( & ip_globals.netifs_lock );
951 return EOK;
952}
953
954int ip_add_route_req( int ip_phone, device_id_t device_id, in_addr_t address, in_addr_t netmask, in_addr_t gateway ){
955 ip_route_ref route;
956 ip_netif_ref netif;
957 int index;
958
959 fibril_rwlock_write_lock( & ip_globals.netifs_lock );
960 netif = ip_netifs_find( & ip_globals.netifs, device_id );
961 if( ! netif ){
962 fibril_rwlock_write_unlock( & ip_globals.netifs_lock );
963 return ENOENT;
964 }
965 route = ( ip_route_ref ) malloc( sizeof( ip_route_t ));
966 if( ! route ){
967 fibril_rwlock_write_unlock( & ip_globals.netifs_lock );
968 return ENOMEM;
969 }
970 route->address.s_addr = address.s_addr;
971 route->netmask.s_addr = netmask.s_addr;
972 route->gateway.s_addr = gateway.s_addr;
973 route->netif = netif;
974 index = ip_routes_add( & netif->routes, route );
975 if( index < 0 ) free( route );
976 fibril_rwlock_write_unlock( & ip_globals.netifs_lock );
977 return index;
978}
979
980ip_route_ref ip_find_route( in_addr_t destination ){
981 int index;
982 ip_route_ref route;
983 ip_netif_ref netif;
984
985 // start with the last netif - the newest one
986 index = ip_netifs_count( & ip_globals.netifs ) - 1;
987 while( index >= 0 ){
988 netif = ip_netifs_get_index( & ip_globals.netifs, index );
989 if( netif && ( netif->state == NETIF_ACTIVE )){
990 route = ip_netif_find_route( netif, destination );
991 if( route ) return route;
992 }
993 -- index;
994 }
995 return & ip_globals.gateway;
996}
997
998ip_route_ref ip_netif_find_route( ip_netif_ref netif, in_addr_t destination ){
999 int index;
1000 ip_route_ref route;
1001
1002 if( netif ){
1003 // start with the first one - the direct route
1004 for( index = 0; index < ip_routes_count( & netif->routes ); ++ index ){
1005 route = ip_routes_get_index( & netif->routes, index );
1006 if( route && (( route->address.s_addr & route->netmask.s_addr ) == ( destination.s_addr & route->netmask.s_addr ))){
1007 return route;
1008 }
1009 }
1010 }
1011 return NULL;
1012}
1013
1014int ip_set_gateway_req( int ip_phone, device_id_t device_id, in_addr_t gateway ){
1015 ip_netif_ref netif;
1016
1017 fibril_rwlock_write_lock( & ip_globals.netifs_lock );
1018 netif = ip_netifs_find( & ip_globals.netifs, device_id );
1019 if( ! netif ){
1020 fibril_rwlock_write_unlock( & ip_globals.netifs_lock );
1021 return ENOENT;
1022 }
1023 ip_globals.gateway.address.s_addr = 0;
1024 ip_globals.gateway.netmask.s_addr = 0;
1025 ip_globals.gateway.gateway.s_addr = gateway.s_addr;
1026 ip_globals.gateway.netif = netif;
1027 fibril_rwlock_write_unlock( & ip_globals.netifs_lock );
1028 return EOK;
1029}
1030
1031packet_t ip_split_packet( packet_t packet, size_t prefix, size_t content, size_t suffix, socklen_t addr_len, services_t error ){
1032 size_t length;
1033 packet_t next;
1034 packet_t new_packet;
1035 int result;
1036 int phone;
1037
1038 next = packet;
1039 // check all packets
1040 while( next ){
1041 length = packet_get_data_length( next );
1042 // too long?
1043 if( length > content ){
1044 result = ip_fragment_packet( next, content, prefix, suffix, addr_len );
1045 if( result != EOK ){
1046 new_packet = pq_detach( next );
1047 if( next == packet ){
1048 // the new first packet of the queue
1049 packet = new_packet;
1050 }
1051 // fragmentation needed?
1052 if( result == EPERM ){
1053 phone = ip_prepare_icmp_and_get_phone( error, next, NULL );
1054 if( phone >= 0 ){
1055 // fragmentation necessary ICMP
1056 icmp_destination_unreachable_msg( phone, ICMP_FRAG_NEEDED, content, next );
1057 }
1058 }else{
1059 pq_release( ip_globals.net_phone, packet_get_id( next ));
1060 }
1061 next = new_packet;
1062 continue;
1063 }
1064 }
1065 next = pq_next( next );
1066 }
1067 return packet;
1068}
1069
1070int ip_fragment_packet( packet_t packet, size_t length, size_t prefix, size_t suffix, socklen_t addr_len ){
1071 ERROR_DECLARE;
1072
1073 packet_t new_packet;
1074 ip_header_ref header;
1075 ip_header_ref middle_header;
1076 ip_header_ref last_header;
1077 struct sockaddr * src;
1078 struct sockaddr * dest;
1079 socklen_t addrlen;
1080 int result;
1081
1082 result = packet_get_addr( packet, ( uint8_t ** ) & src, ( uint8_t ** ) & dest );
1083 if( result <= 0 ) return EINVAL;
1084 addrlen = ( socklen_t ) result;
1085 if( packet_get_data_length( packet ) <= sizeof( ip_header_t )) return ENOMEM;
1086 // get header
1087 header = ( ip_header_ref ) packet_get_data( packet );
1088 if( ! header ) return EINVAL;
1089 // fragmentation forbidden?
1090 if( header->flags & IPFLAG_DONT_FRAGMENT ){
1091 return EPERM;
1092 }
1093 // create the last fragment
1094 new_packet = packet_get_4( ip_globals.net_phone, prefix, length, suffix, (( addrlen > addr_len ) ? addrlen : addr_len ));
1095 if( ! new_packet ) return ENOMEM;
1096 // allocate as much as originally
1097 last_header = ( ip_header_ref ) packet_suffix( new_packet, IP_HEADER_LENGTH( header ));
1098 if( ! last_header ){
1099 return ip_release_and_return( packet, ENOMEM );
1100 }
1101 ip_create_last_header( last_header, header );
1102 // trim the unused space
1103 if( ERROR_OCCURRED( packet_trim( new_packet, 0, IP_HEADER_LENGTH( header ) - IP_HEADER_LENGTH( last_header )))){
1104 return ip_release_and_return( packet, ERROR_CODE );
1105 }
1106 // biggest multiple of 8 lower than content
1107 // TODO even fragmentation?
1108 length = length & ( ~ 0x7 );// ( content / 8 ) * 8
1109 if( ERROR_OCCURRED( ip_fragment_packet_data( packet, new_packet, header, last_header, (( IP_HEADER_DATA_LENGTH( header ) - (( length - IP_HEADER_LENGTH( header )) & ( ~ 0x7 ))) % (( length - IP_HEADER_LENGTH( last_header )) & ( ~ 0x7 ))), src, dest, addrlen ))){
1110 return ip_release_and_return( packet, ERROR_CODE );
1111 }
1112 // mark the first as fragmented
1113 header->flags |= IPFLAG_MORE_FRAGMENTS;
1114 // create middle framgents
1115 while( IP_TOTAL_LENGTH( header ) > length ){
1116 new_packet = packet_get_4( ip_globals.net_phone, prefix, length, suffix, (( addrlen >= addr_len ) ? addrlen : addr_len ));
1117 if( ! new_packet ) return ENOMEM;
1118 middle_header = ip_create_middle_header( new_packet, last_header );
1119 if( ! middle_header ){
1120 return ip_release_and_return( packet, ENOMEM );
1121 }
1122 if( ERROR_OCCURRED( ip_fragment_packet_data( packet, new_packet, header, middle_header, ( length - IP_HEADER_LENGTH( middle_header )) & ( ~ 0x7 ), src, dest, addrlen ))){
1123 return ip_release_and_return( packet, ERROR_CODE );
1124 }
1125 }
1126 // finish the first fragment
1127 header->header_checksum = IP_HEADER_CHECKSUM( header );
1128 return EOK;
1129}
1130
1131int ip_fragment_packet_data( packet_t packet, packet_t new_packet, ip_header_ref header, ip_header_ref new_header, size_t length, const struct sockaddr * src, const struct sockaddr * dest, socklen_t addrlen ){
1132 ERROR_DECLARE;
1133
1134 void * data;
1135 size_t offset;
1136
1137 data = packet_suffix( new_packet, length );
1138 if( ! data ) return ENOMEM;
1139 memcpy( data, (( void * ) header ) + IP_TOTAL_LENGTH( header ) - length, length );
1140 ERROR_PROPAGATE( packet_trim( packet, 0, length ));
1141 header->total_length = htons( IP_TOTAL_LENGTH( header ) - length );
1142 new_header->total_length = htons( IP_HEADER_LENGTH( new_header ) + length );
1143 offset = IP_FRAGMENT_OFFSET( header ) + IP_HEADER_DATA_LENGTH( header );
1144 new_header->fragment_offset_high = IP_COMPUTE_FRAGMENT_OFFSET_HIGH( offset );
1145 new_header->fragment_offset_low = IP_COMPUTE_FRAGMENT_OFFSET_LOW( offset );
1146 new_header->header_checksum = IP_HEADER_CHECKSUM( new_header );
1147 ERROR_PROPAGATE( packet_set_addr( new_packet, ( const uint8_t * ) src, ( const uint8_t * ) dest, addrlen ));
1148 return pq_insert_after( packet, new_packet );
1149}
1150
1151ip_header_ref ip_create_middle_header( packet_t packet, ip_header_ref last ){
1152 ip_header_ref middle;
1153
1154 middle = ( ip_header_ref ) packet_suffix( packet, IP_HEADER_LENGTH( last ));
1155 if( ! middle ) return NULL;
1156 memcpy( middle, last, IP_HEADER_LENGTH( last ));
1157 middle->flags |= IPFLAG_MORE_FRAGMENTS;
1158 return middle;
1159}
1160
1161void ip_create_last_header( ip_header_ref last, ip_header_ref first ){
1162 ip_option_ref option;
1163 size_t next;
1164 size_t length;
1165
1166 // copy first itself
1167 memcpy( last, first, sizeof( ip_header_t ));
1168 length = sizeof( ip_header_t );
1169 next = sizeof( ip_header_t );
1170 // process all ip options
1171 while( next < first->header_length ){
1172 option = ( ip_option_ref ) ((( uint8_t * ) first ) + next );
1173 // skip end or noop
1174 if(( option->type == IPOPT_END ) || ( option->type == IPOPT_NOOP )){
1175 ++ next;
1176 }else{
1177 // copy if said so or skip
1178 if( IPOPT_COPIED( option->type )){
1179 memcpy((( uint8_t * ) last ) + length, (( uint8_t * ) first ) + next, option->length );
1180 length += option->length;
1181 }
1182 // next option
1183 next += option->length;
1184 }
1185 }
1186 // align 4 byte boundary
1187 if( length % 4 ){
1188 bzero((( uint8_t * ) last ) + length, 4 - ( length % 4 ));
1189 last->header_length = length / 4 + 1;
1190 }else{
1191 last->header_length = length / 4;
1192 }
1193 last->header_checksum = 0;
1194}
1195
1196int ip_receive_message( device_id_t device_id, packet_t packet ){
1197 packet_t next;
1198
1199 do{
1200 next = pq_detach( packet );
1201 ip_process_packet( device_id, packet );
1202 packet = next;
1203 }while( packet );
1204 return EOK;
1205}
1206
1207int ip_process_packet( device_id_t device_id, packet_t packet ){
1208 ERROR_DECLARE;
1209
1210 ip_header_ref header;
1211 in_addr_t dest;
1212 ip_route_ref route;
1213 int phone;
1214 struct sockaddr * addr;
1215 struct sockaddr_in addr_in;
1216// struct sockaddr_in addr_in6;
1217 socklen_t addrlen;
1218
1219 header = ( ip_header_ref ) packet_get_data( packet );
1220 if( ! header ){
1221 return ip_release_and_return( packet, ENOMEM );
1222 }
1223 // checksum
1224 if(( header->header_checksum ) && ( IP_HEADER_CHECKSUM( header ) != IP_CHECKSUM_ZERO )){
1225 phone = ip_prepare_icmp_and_get_phone( 0, packet, header );
1226 if( phone >= 0 ){
1227 // checksum error ICMP
1228 icmp_parameter_problem_msg( phone, ICMP_PARAM_POINTER, (( size_t ) (( void * ) & header->header_checksum )) - (( size_t ) (( void * ) header )), packet );
1229 }
1230 return EINVAL;
1231 }
1232 if( header->ttl <= 1 ){
1233 phone = ip_prepare_icmp_and_get_phone( 0, packet, header );
1234 if( phone >= 0 ){
1235 // ttl oxceeded ICMP
1236 icmp_time_exceeded_msg( phone, ICMP_EXC_TTL, packet );
1237 }
1238 return EINVAL;
1239 }
1240 // process ipopt and get destination
1241 dest = ip_get_destination( header );
1242 // set the addrination address
1243 switch( header->version ){
1244 case IPVERSION:
1245 addrlen = sizeof( addr_in );
1246 bzero( & addr_in, addrlen );
1247 addr_in.sin_family = AF_INET;
1248 memcpy( & addr_in.sin_addr.s_addr, & dest, sizeof( dest ));
1249 addr = ( struct sockaddr * ) & addr_in;
1250 break;
1251/* case IPv6VERSION:
1252 addrlen = sizeof( dest_in6 );
1253 bzero( & dest_in6, addrlen );
1254 dest_in6.sin6_family = AF_INET6;
1255 memcpy( & dest_in6.sin6_addr.s6_addr, );
1256 dest = ( struct sockaddr * ) & dest_in;
1257 break;
1258*/ default:
1259 return ip_release_and_return( packet, EAFNOSUPPORT );
1260 }
1261 ERROR_PROPAGATE( packet_set_addr( packet, NULL, ( uint8_t * ) & addr, addrlen ));
1262 route = ip_find_route( dest );
1263 if( ! route ){
1264 phone = ip_prepare_icmp_and_get_phone( 0, packet, header );
1265 if( phone >= 0 ){
1266 // unreachable ICMP
1267 icmp_destination_unreachable_msg( phone, ICMP_HOST_UNREACH, 0, packet );
1268 }
1269 return ENOENT;
1270 }
1271 if( route->address.s_addr == dest.s_addr ){
1272 // local delivery
1273 return ip_deliver_local( device_id, packet, header, 0 );
1274 }else{
1275 // only if routing enabled
1276 if( route->netif->routing ){
1277 -- header->ttl;
1278 return ip_send_route( packet, route->netif, route, NULL, dest, 0 );
1279 }else{
1280 phone = ip_prepare_icmp_and_get_phone( 0, packet, header );
1281 if( phone >= 0 ){
1282 // unreachable ICMP if no routing
1283 icmp_destination_unreachable_msg( phone, ICMP_HOST_UNREACH, 0, packet );
1284 }
1285 return ENOENT;
1286 }
1287 }
1288}
1289
1290int ip_received_error_msg( int ip_phone, device_id_t device_id, packet_t packet, services_t target, services_t error ){
1291 uint8_t * data;
1292 int offset;
1293 icmp_type_t type;
1294 icmp_code_t code;
1295 ip_netif_ref netif;
1296 measured_string_t address;
1297 ip_route_ref route;
1298 ip_header_ref header;
1299
1300 switch( error ){
1301 case SERVICE_ICMP:
1302 offset = icmp_client_process_packet( packet, & type, & code, NULL, NULL );
1303 if( offset < 0 ){
1304 return ip_release_and_return( packet, ENOMEM );
1305 }
1306 data = packet_get_data( packet );
1307 header = ( ip_header_ref )( data + offset );
1308 // destination host unreachable?
1309 if(( type == ICMP_DEST_UNREACH ) && ( code == ICMP_HOST_UNREACH )){
1310 fibril_rwlock_read_lock( & ip_globals.netifs_lock );
1311 netif = ip_netifs_find( & ip_globals.netifs, device_id );
1312 if( netif && netif->arp ){
1313 route = ip_routes_get_index( & netif->routes, 0 );
1314 // from the same network?
1315 if( route && (( route->address.s_addr & route->netmask.s_addr ) == ( header->destination_address & route->netmask.s_addr ))){
1316 // clear the ARP mapping if any
1317 address.value = ( char * ) & header->destination_address;
1318 address.length = CONVERT_SIZE( uint8_t, char, sizeof( header->destination_address ));
1319 arp_clear_address_req( netif->arp->phone, netif->device_id, SERVICE_IP, & address );
1320 }
1321 }
1322 fibril_rwlock_read_unlock( & ip_globals.netifs_lock );
1323 }
1324 break;
1325 default:
1326 return ip_release_and_return( packet, ENOTSUP );
1327 }
1328 return ip_deliver_local( device_id, packet, header, error );
1329}
1330
1331int ip_deliver_local( device_id_t device_id, packet_t packet, ip_header_ref header, services_t error ){
1332 ERROR_DECLARE;
1333
1334 ip_proto_ref proto;
1335 int phone;
1336 services_t service;
1337 tl_received_msg_t received_msg;
1338 struct sockaddr * src;
1339 struct sockaddr * dest;
1340 struct sockaddr_in src_in;
1341 struct sockaddr_in dest_in;
1342// struct sockaddr_in src_in6;
1343// struct sockaddr_in dest_in6;
1344 socklen_t addrlen;
1345
1346 if(( header->flags & IPFLAG_MORE_FRAGMENTS ) || IP_FRAGMENT_OFFSET( header )){
1347 // TODO fragmented
1348 return ENOTSUP;
1349 }else{
1350 switch( header->version ){
1351 case IPVERSION:
1352 addrlen = sizeof( src_in );
1353 bzero( & src_in, addrlen );
1354 src_in.sin_family = AF_INET;
1355 memcpy( & dest_in, & src_in, addrlen );
1356 memcpy( & src_in.sin_addr.s_addr, & header->source_address, sizeof( header->source_address ));
1357 memcpy( & dest_in.sin_addr.s_addr, & header->destination_address, sizeof( header->destination_address ));
1358 src = ( struct sockaddr * ) & src_in;
1359 dest = ( struct sockaddr * ) & dest_in;
1360 break;
1361/* case IPv6VERSION:
1362 addrlen = sizeof( src_in6 );
1363 bzero( & src_in6, addrlen );
1364 src_in6.sin6_family = AF_INET6;
1365 memcpy( & dest_in6, & src_in6, addrlen );
1366 memcpy( & src_in6.sin6_addr.s6_addr, );
1367 memcpy( & dest_in6.sin6_addr.s6_addr, );
1368 src = ( struct sockaddr * ) & src_in;
1369 dest = ( struct sockaddr * ) & dest_in;
1370 break;
1371*/ default:
1372 return ip_release_and_return( packet, EAFNOSUPPORT );
1373 }
1374 if( ERROR_OCCURRED( packet_set_addr( packet, ( uint8_t * ) src, ( uint8_t * ) dest, addrlen ))){
1375 return ip_release_and_return( packet, ERROR_CODE );
1376 }
1377 // trim padding if present
1378 if(( ! error ) && ( IP_TOTAL_LENGTH( header ) < packet_get_data_length( packet ))){
1379 if( ERROR_OCCURRED( packet_trim( packet, 0, packet_get_data_length( packet ) - IP_TOTAL_LENGTH( header )))){
1380 return ip_release_and_return( packet, ERROR_CODE );
1381 }
1382 }
1383 fibril_rwlock_read_lock( & ip_globals.protos_lock );
1384 proto = ip_protos_find( & ip_globals.protos, header->protocol );
1385 if( ! proto ){
1386 fibril_rwlock_read_unlock( & ip_globals.protos_lock );
1387 phone = ip_prepare_icmp_and_get_phone( error, packet, header );
1388 if( phone >= 0 ){
1389 // unreachable ICMP
1390 icmp_destination_unreachable_msg( phone, ICMP_PROT_UNREACH, 0, packet );
1391 }
1392 return ENOENT;
1393 }
1394 if( proto->received_msg ){
1395 service = proto->service;
1396 received_msg = proto->received_msg;
1397 fibril_rwlock_read_unlock( & ip_globals.protos_lock );
1398 ERROR_CODE = received_msg( device_id, packet, service, error );
1399 }else{
1400 ERROR_CODE = tl_received_msg( proto->phone, device_id, packet, proto->service, error );
1401 fibril_rwlock_read_unlock( & ip_globals.protos_lock );
1402 }
1403 return ERROR_CODE;
1404 }
1405}
1406
1407in_addr_t ip_get_destination( ip_header_ref header ){
1408 in_addr_t destination;
1409
1410 // TODO search set ipopt route?
1411 destination.s_addr = header->destination_address;
1412 return destination;
1413}
1414
1415int ip_prepare_icmp( packet_t packet, ip_header_ref header ){
1416 packet_t next;
1417 struct sockaddr * dest;
1418 struct sockaddr_in dest_in;
1419// struct sockaddr_in dest_in6;
1420 socklen_t addrlen;
1421
1422 // detach the first packet and release the others
1423 next = pq_detach( packet );
1424 if( next ){
1425 pq_release( ip_globals.net_phone, packet_get_id( next ));
1426 }
1427 if( ! header ){
1428 if( packet_get_data_length( packet ) <= sizeof( ip_header_t )) return ENOMEM;
1429 // get header
1430 header = ( ip_header_ref ) packet_get_data( packet );
1431 if( ! header ) return EINVAL;
1432 }
1433 // only for the first fragment
1434 if( IP_FRAGMENT_OFFSET( header )) return EINVAL;
1435 // not for the ICMP protocol
1436 if( header->protocol == IPPROTO_ICMP ){
1437 return EPERM;
1438 }
1439 // set the destination address
1440 switch( header->version ){
1441 case IPVERSION:
1442 addrlen = sizeof( dest_in );
1443 bzero( & dest_in, addrlen );
1444 dest_in.sin_family = AF_INET;
1445 memcpy( & dest_in.sin_addr.s_addr, & header->source_address, sizeof( header->source_address ));
1446 dest = ( struct sockaddr * ) & dest_in;
1447 break;
1448/* case IPv6VERSION:
1449 addrlen = sizeof( dest_in6 );
1450 bzero( & dest_in6, addrlen );
1451 dest_in6.sin6_family = AF_INET6;
1452 memcpy( & dest_in6.sin6_addr.s6_addr, );
1453 dest = ( struct sockaddr * ) & dest_in;
1454 break;
1455*/ default:
1456 return EAFNOSUPPORT;
1457 }
1458 return packet_set_addr( packet, NULL, ( uint8_t * ) dest, addrlen );
1459}
1460
1461int ip_get_icmp_phone( void ){
1462 ip_proto_ref proto;
1463 int phone;
1464
1465 fibril_rwlock_read_lock( & ip_globals.protos_lock );
1466 proto = ip_protos_find( & ip_globals.protos, IPPROTO_ICMP );
1467 phone = proto ? proto->phone : ENOENT;
1468 fibril_rwlock_read_unlock( & ip_globals.protos_lock );
1469 return phone;
1470}
1471
1472int ip_prepare_icmp_and_get_phone( services_t error, packet_t packet, ip_header_ref header ){
1473 int phone;
1474
1475 phone = ip_get_icmp_phone();
1476 if( error || ( phone < 0 ) || ip_prepare_icmp( packet, header )){
1477 return ip_release_and_return( packet, EINVAL );
1478 }
1479 return phone;
1480}
1481
1482int ip_release_and_return( packet_t packet, int result ){
1483 pq_release( ip_globals.net_phone, packet_get_id( packet ));
1484 return result;
1485}
1486
1487int ip_get_route_req( int ip_phone, ip_protocol_t protocol, const struct sockaddr * destination, socklen_t addrlen, device_id_t * device_id, ip_pseudo_header_ref * header, size_t * headerlen ){
1488 struct sockaddr_in * address_in;
1489// struct sockaddr_in6 * address_in6;
1490 in_addr_t * dest;
1491 in_addr_t * src;
1492 ip_route_ref route;
1493 ipv4_pseudo_header_ref header_in;
1494
1495 if( !( destination && ( addrlen > 0 ))) return EINVAL;
1496 if( !( device_id && header && headerlen )) return EBADMEM;
1497 if(( size_t ) addrlen < sizeof( struct sockaddr )){
1498 return EINVAL;
1499 }
1500 switch( destination->sa_family ){
1501 case AF_INET:
1502 if( addrlen != sizeof( struct sockaddr_in )){
1503 return EINVAL;
1504 }
1505 address_in = ( struct sockaddr_in * ) destination;
1506 dest = & address_in->sin_addr;
1507 if( ! dest->s_addr ){
1508 dest->s_addr = IPV4_LOCALHOST_ADDRESS;
1509 }
1510 break;
1511 // TODO IPv6
1512/* case AF_INET6:
1513 if( addrlen != sizeof( struct sockaddr_in6 )) return EINVAL;
1514 address_in6 = ( struct sockaddr_in6 * ) dest;
1515 address_in6.sin6_addr.s6_addr;
1516*/ default:
1517 return EAFNOSUPPORT;
1518 }
1519 fibril_rwlock_read_lock( & ip_globals.lock );
1520 route = ip_find_route( * dest );
1521 if( !( route && route->netif )){
1522 fibril_rwlock_read_unlock( & ip_globals.lock );
1523 return ENOENT;
1524 }
1525 * device_id = route->netif->device_id;
1526 src = ip_netif_address( route->netif );
1527 fibril_rwlock_read_unlock( & ip_globals.lock );
1528 * headerlen = sizeof( * header_in );
1529 header_in = ( ipv4_pseudo_header_ref ) malloc( * headerlen );
1530 if( ! header_in ) return ENOMEM;
1531 bzero( header_in, * headerlen );
1532 header_in->destination_address = dest->s_addr;
1533 header_in->source_address = src->s_addr;
1534 header_in->protocol = protocol;
1535 header_in->data_length = 0;
1536 * header = ( ip_pseudo_header_ref ) header_in;
1537 return EOK;
1538}
1539
1540/** @}
1541 */
Note: See TracBrowser for help on using the repository browser.