/* * Copyright (c) 2009 Lukas Mejdrech * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * - The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /** @addtogroup arp * @{ */ /** @file * ARP module implementation. * @see arp.h */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "arp.h" #include "arp_header.h" #include "arp_oc.h" #include "arp_module.h" /** ARP module name. */ #define NAME "arp" /** ARP global data. */ arp_globals_t arp_globals; /** Clears the device specific data. * @param[in] device The device specific data. */ void arp_clear_device(arp_device_ref device); /** Creates new protocol specific data. * Allocates and returns the needed memory block as the proto parameter. * @param[out] proto The allocated protocol specific data. * @param[in] service The protocol module service. * @param[in] address The actual protocol device address. * @returns EOK on success. * @returns ENOMEM if there is not enough memory left. */ int arp_proto_create(arp_proto_ref * proto, services_t service, measured_string_ref address); /** @name Message processing functions */ /*@{*/ /** Registers the device. * Creates new device entry in the cache or updates the protocol address if the device with the device identifier and the driver service exists. * @param[in] device_id The device identifier. * @param[in] service The device driver service. * @param[in] protocol The protocol service. * @param[in] address The actual device protocol address. * @returns EOK on success. * @returns EEXIST if another device with the same device identifier and different driver service exists. * @returns ENOMEM if there is not enough memory left. * @returns Other error codes as defined for the measured_strings_return() function. */ int arp_device_message(device_id_t device_id, services_t service, services_t protocol, measured_string_ref address); /** Updates the device content length according to the new MTU value. * @param[in] device_id The device identifier. * @param[in] mtu The new mtu value. * @returns ENOENT if device is not found. * @returns EOK on success. */ int arp_mtu_changed_message(device_id_t device_id, size_t mtu); /** Processes the received ARP packet. * Updates the source hardware address if the source entry exists or the packet is targeted to my protocol address. * Responses to the ARP request if the packet is the ARP request and is targeted to my address. * @param[in] device_id The source device identifier. * @param[in,out] packet The received packet. * @returns EOK on success and the packet is no longer needed. * @returns 1 on success and the packet has been reused. * @returns EINVAL if the packet is too small to carry an ARP packet. * @returns EINVAL if the received address lengths differs from the registered values. * @returns ENOENT if the device is not found in the cache. * @returns ENOENT if the protocol for the device is not found in the cache. * @returns ENOMEM if there is not enough memory left. */ int arp_receive_message(device_id_t device_id, packet_t packet); /** Returns the hardware address for the given protocol address. * Sends the ARP request packet if the hardware address is not found in the cache. * @param[in] device_id The device identifier. * @param[in] protocol The protocol service. * @param[in] target The target protocol address. * @returns The hardware address of the target. * @returns NULL if the target parameter is NULL. * @returns NULL if the device is not found. * @returns NULL if the device packet is too small to send a request. * @returns NULL if the hardware address is not found in the cache. */ measured_string_ref arp_translate_message(device_id_t device_id, services_t protocol, measured_string_ref target); /*@}*/ DEVICE_MAP_IMPLEMENT(arp_cache, arp_device_t) INT_MAP_IMPLEMENT(arp_protos, arp_proto_t) GENERIC_CHAR_MAP_IMPLEMENT(arp_addr, measured_string_t) int arp_clean_cache_req(int arp_phone){ int count; arp_device_ref device; fibril_rwlock_write_lock(&arp_globals.lock); for(count = arp_cache_count(&arp_globals.cache) - 1; count >= 0; -- count){ device = arp_cache_get_index(&arp_globals.cache, count); if(device){ arp_clear_device(device); if(device->addr_data){ free(device->addr_data); } if(device->broadcast_data){ free(device->broadcast_data); } } } arp_cache_clear(&arp_globals.cache); fibril_rwlock_write_unlock(&arp_globals.lock); printf("Cache cleaned\n"); return EOK; } int arp_clear_address_req(int arp_phone, device_id_t device_id, services_t protocol, measured_string_ref address){ arp_device_ref device; arp_proto_ref proto; fibril_rwlock_write_lock(&arp_globals.lock); device = arp_cache_find(&arp_globals.cache, device_id); if(! device){ fibril_rwlock_write_unlock(&arp_globals.lock); return ENOENT; } proto = arp_protos_find(&device->protos, protocol); if(! proto){ fibril_rwlock_write_unlock(&arp_globals.lock); return ENOENT; } arp_addr_exclude(&proto->addresses, address->value, address->length); fibril_rwlock_write_unlock(&arp_globals.lock); return EOK; } void arp_clear_device(arp_device_ref device){ int count; arp_proto_ref proto; for(count = arp_protos_count(&device->protos) - 1; count >= 0; -- count){ proto = arp_protos_get_index(&device->protos, count); if(proto){ if(proto->addr){ free(proto->addr); } if(proto->addr_data){ free(proto->addr_data); } arp_addr_destroy(&proto->addresses); } } arp_protos_clear(&device->protos); } int arp_clear_device_req(int arp_phone, device_id_t device_id){ arp_device_ref device; fibril_rwlock_write_lock(&arp_globals.lock); device = arp_cache_find(&arp_globals.cache, device_id); if(! device){ fibril_rwlock_write_unlock(&arp_globals.lock); return ENOENT; } arp_clear_device(device); printf("Device %d cleared\n", device_id); fibril_rwlock_write_unlock(&arp_globals.lock); return EOK; } int arp_connect_module(services_t service){ if(service != SERVICE_ARP){ return EINVAL; } return EOK; } int arp_device_message(device_id_t device_id, services_t service, services_t protocol, measured_string_ref address){ ERROR_DECLARE; arp_device_ref device; arp_proto_ref proto; int index; hw_type_t hardware; fibril_rwlock_write_lock(&arp_globals.lock); // an existing device? device = arp_cache_find(&arp_globals.cache, device_id); if(device){ if(device->service != service){ printf("Device %d already exists\n", device->device_id); fibril_rwlock_write_unlock(&arp_globals.lock); return EEXIST; } proto = arp_protos_find(&device->protos, protocol); if(proto){ free(proto->addr); free(proto->addr_data); proto->addr = address; proto->addr_data = address->value; }else{ if(ERROR_OCCURRED(arp_proto_create(&proto, protocol, address))){ fibril_rwlock_write_unlock(&arp_globals.lock); return ERROR_CODE; } index = arp_protos_add(&device->protos, proto->service, proto); if(index < 0){ fibril_rwlock_write_unlock(&arp_globals.lock); free(proto); return index; } printf("New protocol added:\n\tdevice id\t= %d\n\tproto\t= %d", device_id, protocol); } }else{ hardware = hardware_map(service); if(! hardware){ return ENOENT; } // create a new device device = (arp_device_ref) malloc(sizeof(arp_device_t)); if(! device){ fibril_rwlock_write_unlock(&arp_globals.lock); return ENOMEM; } device->hardware = hardware; device->device_id = device_id; if(ERROR_OCCURRED(arp_protos_initialize(&device->protos)) || ERROR_OCCURRED(arp_proto_create(&proto, protocol, address))){ fibril_rwlock_write_unlock(&arp_globals.lock); free(device); return ERROR_CODE; } index = arp_protos_add(&device->protos, proto->service, proto); if(index < 0){ fibril_rwlock_write_unlock(&arp_globals.lock); arp_protos_destroy(&device->protos); free(device); return index; } device->service = service; // bind the new one device->phone = nil_bind_service(device->service, (ipcarg_t) device->device_id, SERVICE_ARP, arp_globals.client_connection); if(device->phone < 0){ fibril_rwlock_write_unlock(&arp_globals.lock); arp_protos_destroy(&device->protos); free(device); return EREFUSED; } // get packet dimensions if(ERROR_OCCURRED(nil_packet_size_req(device->phone, device_id, &device->packet_dimension))){ fibril_rwlock_write_unlock(&arp_globals.lock); arp_protos_destroy(&device->protos); free(device); return ERROR_CODE; } // get hardware address if(ERROR_OCCURRED(nil_get_addr_req(device->phone, device_id, &device->addr, &device->addr_data))){ fibril_rwlock_write_unlock(&arp_globals.lock); arp_protos_destroy(&device->protos); free(device); return ERROR_CODE; } // get broadcast address if(ERROR_OCCURRED(nil_get_broadcast_addr_req(device->phone, device_id, &device->broadcast_addr, &device->broadcast_data))){ fibril_rwlock_write_unlock(&arp_globals.lock); free(device->addr); free(device->addr_data); arp_protos_destroy(&device->protos); free(device); return ERROR_CODE; } if(ERROR_OCCURRED(arp_cache_add(&arp_globals.cache, device->device_id, device))){ fibril_rwlock_write_unlock(&arp_globals.lock); free(device->addr); free(device->addr_data); free(device->broadcast_addr); free(device->broadcast_data); arp_protos_destroy(&device->protos); free(device); return ERROR_CODE; } printf("%s: Device registered (id: %d, type: 0x%x, service: %d, proto: %d)\n", NAME, device->device_id, device->hardware, device->service, protocol); } fibril_rwlock_write_unlock(&arp_globals.lock); return EOK; } int arp_device_req(int arp_phone, device_id_t device_id, services_t protocol, services_t netif, measured_string_ref address){ ERROR_DECLARE; measured_string_ref tmp; // copy the given address for exclusive use tmp = measured_string_copy(address); if(ERROR_OCCURRED(arp_device_message(device_id, netif, protocol, tmp))){ free(tmp->value); free(tmp); } return ERROR_CODE; } int arp_initialize(async_client_conn_t client_connection){ ERROR_DECLARE; fibril_rwlock_initialize(&arp_globals.lock); fibril_rwlock_write_lock(&arp_globals.lock); arp_globals.client_connection = client_connection; ERROR_PROPAGATE(arp_cache_initialize(&arp_globals.cache)); fibril_rwlock_write_unlock(&arp_globals.lock); return EOK; } int arp_message_standalone(ipc_callid_t callid, ipc_call_t *call, ipc_call_t *answer, int *answer_count) { ERROR_DECLARE; measured_string_ref address; measured_string_ref translation; char * data; packet_t packet; packet_t next; *answer_count = 0; switch (IPC_GET_METHOD(*call)) { case IPC_M_PHONE_HUNGUP: return EOK; case NET_ARP_DEVICE: ERROR_PROPAGATE(measured_strings_receive(&address, &data, 1)); if(ERROR_OCCURRED(arp_device_message(IPC_GET_DEVICE(call), IPC_GET_SERVICE(call), ARP_GET_NETIF(call), address))){ free(address); free(data); } return ERROR_CODE; case NET_ARP_TRANSLATE: ERROR_PROPAGATE(measured_strings_receive(&address, &data, 1)); fibril_rwlock_read_lock(&arp_globals.lock); translation = arp_translate_message(IPC_GET_DEVICE(call), IPC_GET_SERVICE(call), address); free(address); free(data); if(! translation){ fibril_rwlock_read_unlock(&arp_globals.lock); return ENOENT; } ERROR_CODE = measured_strings_reply(translation, 1); fibril_rwlock_read_unlock(&arp_globals.lock); return ERROR_CODE; case NET_ARP_CLEAR_DEVICE: return arp_clear_device_req(0, IPC_GET_DEVICE(call)); case NET_ARP_CLEAR_ADDRESS: ERROR_PROPAGATE(measured_strings_receive(&address, &data, 1)); arp_clear_address_req(0, IPC_GET_DEVICE(call), IPC_GET_SERVICE(call), address); free(address); free(data); return EOK; case NET_ARP_CLEAN_CACHE: return arp_clean_cache_req(0); case NET_IL_DEVICE_STATE: // do nothing - keep the cache return EOK; case NET_IL_RECEIVED: if(! ERROR_OCCURRED(packet_translate_remote(arp_globals.net_phone, &packet, IPC_GET_PACKET(call)))){ fibril_rwlock_read_lock(&arp_globals.lock); do{ next = pq_detach(packet); ERROR_CODE = arp_receive_message(IPC_GET_DEVICE(call), packet); if(ERROR_CODE != 1){ pq_release_remote(arp_globals.net_phone, packet_get_id(packet)); } packet = next; }while(packet); fibril_rwlock_read_unlock(&arp_globals.lock); } return ERROR_CODE; case NET_IL_MTU_CHANGED: return arp_mtu_changed_message(IPC_GET_DEVICE(call), IPC_GET_MTU(call)); } return ENOTSUP; } int arp_mtu_changed_message(device_id_t device_id, size_t mtu){ arp_device_ref device; fibril_rwlock_write_lock(&arp_globals.lock); device = arp_cache_find(&arp_globals.cache, device_id); if(! device){ fibril_rwlock_write_unlock(&arp_globals.lock); return ENOENT; } device->packet_dimension.content = mtu; printf("arp - device %d changed mtu to %d\n\n", device_id, mtu); fibril_rwlock_write_unlock(&arp_globals.lock); return EOK; } int arp_proto_create(arp_proto_ref * proto, services_t service, measured_string_ref address){ ERROR_DECLARE; *proto = (arp_proto_ref) malloc(sizeof(arp_proto_t)); if(!(*proto)){ return ENOMEM; } (** proto).service = service; (** proto).addr = address; (** proto).addr_data = address->value; if(ERROR_OCCURRED(arp_addr_initialize(&(** proto).addresses))){ free(*proto); return ERROR_CODE; } return EOK; } int arp_receive_message(device_id_t device_id, packet_t packet){ ERROR_DECLARE; size_t length; arp_header_ref header; arp_device_ref device; arp_proto_ref proto; measured_string_ref hw_source; uint8_t * src_hw; uint8_t * src_proto; uint8_t * des_hw; uint8_t * des_proto; length = packet_get_data_length(packet); if(length <= sizeof(arp_header_t)){ return EINVAL; } device = arp_cache_find(&arp_globals.cache, device_id); if(! device){ return ENOENT; } header = (arp_header_ref) packet_get_data(packet); if((ntohs(header->hardware) != device->hardware) || (length < sizeof(arp_header_t) + header->hardware_length * 2u + header->protocol_length * 2u)){ return EINVAL; } proto = arp_protos_find(&device->protos, protocol_unmap(device->service, ntohs(header->protocol))); if(! proto){ return ENOENT; } src_hw = ((uint8_t *) header) + sizeof(arp_header_t); src_proto = src_hw + header->hardware_length; des_hw = src_proto + header->protocol_length; des_proto = des_hw + header->hardware_length; hw_source = arp_addr_find(&proto->addresses, (char *) src_proto, CONVERT_SIZE(uint8_t, char, header->protocol_length)); // exists? if(hw_source){ if(hw_source->length != CONVERT_SIZE(uint8_t, char, header->hardware_length)){ return EINVAL; } memcpy(hw_source->value, src_hw, hw_source->length); } // is my protocol address? if(proto->addr->length != CONVERT_SIZE(uint8_t, char, header->protocol_length)){ return EINVAL; } if(! str_lcmp(proto->addr->value, (char *) des_proto, proto->addr->length)){ // not already upadted? if(! hw_source){ hw_source = measured_string_create_bulk((char *) src_hw, CONVERT_SIZE(uint8_t, char, header->hardware_length)); if(! hw_source){ return ENOMEM; } ERROR_PROPAGATE(arp_addr_add(&proto->addresses, (char *) src_proto, CONVERT_SIZE(uint8_t, char, header->protocol_length), hw_source)); } if(ntohs(header->operation) == ARPOP_REQUEST){ header->operation = htons(ARPOP_REPLY); memcpy(des_proto, src_proto, header->protocol_length); memcpy(src_proto, proto->addr->value, header->protocol_length); memcpy(src_hw, device->addr->value, device->packet_dimension.addr_len); memcpy(des_hw, hw_source->value, header->hardware_length); ERROR_PROPAGATE(packet_set_addr(packet, src_hw, des_hw, header->hardware_length)); nil_send_msg(device->phone, device_id, packet, SERVICE_ARP); return 1; } } return EOK; } task_id_t arp_task_get_id(void){ return task_get_id(); } measured_string_ref arp_translate_message(device_id_t device_id, services_t protocol, measured_string_ref target){ arp_device_ref device; arp_proto_ref proto; measured_string_ref addr; size_t length; packet_t packet; arp_header_ref header; if(! target){ return NULL; } device = arp_cache_find(&arp_globals.cache, device_id); if(! device){ return NULL; } proto = arp_protos_find(&device->protos, protocol); if((! proto) || (proto->addr->length != target->length)){ return NULL; } addr = arp_addr_find(&proto->addresses, target->value, target->length); if(addr){ return addr; } // ARP packet content size = header + (address + translation) * 2 length = 8 + (CONVERT_SIZE(char, uint8_t, proto->addr->length) + CONVERT_SIZE(char, uint8_t, device->addr->length)) * 2; if(length > device->packet_dimension.content){ return NULL; } packet = packet_get_4_remote(arp_globals.net_phone, device->packet_dimension.addr_len, device->packet_dimension.prefix, length, device->packet_dimension.suffix); if(! packet){ return NULL; } header = (arp_header_ref) packet_suffix(packet, length); if(! header){ pq_release_remote(arp_globals.net_phone, packet_get_id(packet)); return NULL; } header->hardware = htons(device->hardware); header->hardware_length = (uint8_t) device->addr->length; header->protocol = htons(protocol_map(device->service, protocol)); header->protocol_length = (uint8_t) proto->addr->length; header->operation = htons(ARPOP_REQUEST); length = sizeof(arp_header_t); memcpy(((uint8_t *) header) + length, device->addr->value, device->addr->length); length += device->addr->length; memcpy(((uint8_t *) header) + length, proto->addr->value, proto->addr->length); length += proto->addr->length; bzero(((uint8_t *) header) + length, device->addr->length); length += device->addr->length; memcpy(((uint8_t *) header) + length, target->value, target->length); if(packet_set_addr(packet, (uint8_t *) device->addr->value, (uint8_t *) device->broadcast_addr->value, CONVERT_SIZE(char, uint8_t, device->addr->length)) != EOK){ pq_release_remote(arp_globals.net_phone, packet_get_id(packet)); return NULL; } nil_send_msg(device->phone, device_id, packet, SERVICE_ARP); return NULL; } int arp_translate_req(int arp_phone, device_id_t device_id, services_t protocol, measured_string_ref address, measured_string_ref * translation, char ** data){ measured_string_ref tmp; fibril_rwlock_read_lock(&arp_globals.lock); tmp = arp_translate_message(device_id, protocol, address); if(tmp){ *translation = measured_string_copy(tmp); fibril_rwlock_read_unlock(&arp_globals.lock); if(*translation){ *data = (** translation).value; return EOK; }else{ return ENOMEM; } }else{ fibril_rwlock_read_unlock(&arp_globals.lock); return ENOENT; } } /** Default thread for new connections. * * @param[in] iid The initial message identifier. * @param[in] icall The initial message call structure. * */ static void il_client_connection(ipc_callid_t iid, ipc_call_t * icall) { /* * Accept the connection * - Answer the first IPC_M_CONNECT_ME_TO call. */ ipc_answer_0(iid, EOK); while(true) { ipc_call_t answer; int answer_count; /* Clear the answer structure */ refresh_answer(&answer, &answer_count); /* Fetch the next message */ ipc_call_t call; ipc_callid_t callid = async_get_call(&call); /* Process the message */ int res = il_module_message_standalone(callid, &call, &answer, &answer_count); /* End if said to either by the message or the processing result */ if ((IPC_GET_METHOD(call) == IPC_M_PHONE_HUNGUP) || (res == EHANGUP)) return; /* Answer the message */ answer_call(callid, res, &answer, answer_count); } } /** Starts the module. * * @param argc The count of the command line arguments. Ignored parameter. * @param argv The command line parameters. Ignored parameter. * * @returns EOK on success. * @returns Other error codes as defined for each specific module start function. * */ int main(int argc, char *argv[]) { ERROR_DECLARE; /* Start the module */ if (ERROR_OCCURRED(il_module_start_standalone(il_client_connection))) return ERROR_CODE; return EOK; } /** @} */