/* * Copyright (c) 2009 Lukas Mejdrech * Copyright (c) 2011 Martin Decky * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * - The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * This code is based upon the NE2000 driver for MINIX, * distributed according to a BSD-style license. * * Copyright (c) 1987, 1997, 2006 Vrije Universiteit * Copyright (c) 1992, 1994 Philip Homburg * Copyright (c) 1996 G. Falzoni * */ /** @addtogroup ne2000 * @{ */ /** @file * * NE2000 (based on DP8390) network interface core implementation. * Only the basic NE2000 PIO (ISA) interface is supported, remote * DMA is completely absent from this code for simplicity. * */ #include #include #include #include #include #include #include #include "dp8390.h" /** Page size */ #define DP_PAGE 256 /** 6 * DP_PAGE >= 1514 bytes */ #define SQ_PAGES 6 /* NE2000 implementation. */ /** NE2000 Data Register */ #define NE2K_DATA 0x0010 /** NE2000 Reset register */ #define NE2K_RESET 0x001f /** NE2000 data start */ #define NE2K_START 0x4000 /** NE2000 data size */ #define NE2K_SIZE 0x4000 /** NE2000 retry count */ #define NE2K_RETRY 0x1000 /** NE2000 error messages rate limiting */ #define NE2K_ERL 10 /** Minimum Ethernet packet size in bytes */ #define ETH_MIN_PACK_SIZE 60 /** Maximum Ethernet packet size in bytes */ #define ETH_MAX_PACK_SIZE_TAGGED 1518 /** Type definition of the receive header * */ typedef struct { /** Copy of RSR */ uint8_t status; /** Pointer to next packet */ uint8_t next; /** Receive Byte Count Low */ uint8_t rbcl; /** Receive Byte Count High */ uint8_t rbch; } recv_header_t; /** Read a memory block word by word. * * @param[in] port Source address. * @param[out] buf Destination buffer. * @param[in] size Memory block size in bytes. * */ static void pio_read_buf_16(void *port, void *buf, size_t size) { size_t i; for (i = 0; (i << 1) < size; i++) *((uint16_t *) buf + i) = pio_read_16((ioport16_t *) (port)); } /** Write a memory block word by word. * * @param[in] port Destination address. * @param[in] buf Source buffer. * @param[in] size Memory block size in bytes. * */ static void pio_write_buf_16(void *port, void *buf, size_t size) { size_t i; for (i = 0; (i << 1) < size; i++) pio_write_16((ioport16_t *) port, *((uint16_t *) buf + i)); } static void ne2k_download(ne2k_t *ne2k, void *buf, size_t addr, size_t size) { size_t esize = size & ~1; pio_write_8(ne2k->port + DP_RBCR0, esize & 0xff); pio_write_8(ne2k->port + DP_RBCR1, (esize >> 8) & 0xff); pio_write_8(ne2k->port + DP_RSAR0, addr & 0xff); pio_write_8(ne2k->port + DP_RSAR1, (addr >> 8) & 0xff); pio_write_8(ne2k->port + DP_CR, CR_DM_RR | CR_PS_P0 | CR_STA); if (esize != 0) { pio_read_buf_16(ne2k->data_port, buf, esize); size -= esize; buf += esize; } if (size) { assert(size == 1); uint16_t word = pio_read_16(ne2k->data_port); memcpy(buf, &word, 1); } } static void ne2k_upload(ne2k_t *ne2k, void *buf, size_t addr, size_t size) { size_t esize = size & ~1; pio_write_8(ne2k->port + DP_RBCR0, esize & 0xff); pio_write_8(ne2k->port + DP_RBCR1, (esize >> 8) & 0xff); pio_write_8(ne2k->port + DP_RSAR0, addr & 0xff); pio_write_8(ne2k->port + DP_RSAR1, (addr >> 8) & 0xff); pio_write_8(ne2k->port + DP_CR, CR_DM_RW | CR_PS_P0 | CR_STA); if (esize != 0) { pio_write_buf_16(ne2k->data_port, buf, esize); size -= esize; buf += esize; } if (size) { assert(size == 1); uint16_t word = 0; memcpy(&word, buf, 1); pio_write_16(ne2k->data_port, word); } } static void ne2k_init(ne2k_t *ne2k) { unsigned int i; /* Reset the ethernet card */ uint8_t val = pio_read_8(ne2k->port + NE2K_RESET); usleep(2000); pio_write_8(ne2k->port + NE2K_RESET, val); usleep(2000); /* Reset the DP8390 */ pio_write_8(ne2k->port + DP_CR, CR_STP | CR_DM_ABORT); for (i = 0; i < NE2K_RETRY; i++) { if (pio_read_8(ne2k->port + DP_ISR) != 0) break; } } /** Probe and initialize the network interface. * * @param[in,out] ne2k Network interface structure. * @param[in] port Device address. * @param[in] irq Device interrupt vector. * * @return EOK on success. * @return EXDEV if the network interface was not recognized. * */ int ne2k_probe(ne2k_t *ne2k, void *port, int irq) { unsigned int i; /* General initialization */ ne2k->port = port; ne2k->data_port = ne2k->port + NE2K_DATA; ne2k->irq = irq; ne2k->probed = false; ne2k->up = false; ne2k_init(ne2k); /* Check if the DP8390 is really there */ uint8_t val = pio_read_8(ne2k->port + DP_CR); if ((val & (CR_STP | CR_DM_ABORT)) != (CR_STP | CR_DM_ABORT)) return EXDEV; /* Disable the receiver and init TCR and DCR */ pio_write_8(ne2k->port + DP_RCR, RCR_MON); pio_write_8(ne2k->port + DP_TCR, TCR_NORMAL); pio_write_8(ne2k->port + DP_DCR, DCR_WORDWIDE | DCR_8BYTES | DCR_BMS); /* Setup a transfer to get the MAC address */ pio_write_8(ne2k->port + DP_RBCR0, ETH_ADDR << 1); pio_write_8(ne2k->port + DP_RBCR1, 0); pio_write_8(ne2k->port + DP_RSAR0, 0); pio_write_8(ne2k->port + DP_RSAR1, 0); pio_write_8(ne2k->port + DP_CR, CR_DM_RR | CR_PS_P0 | CR_STA); for (i = 0; i < ETH_ADDR; i++) ne2k->mac[i] = pio_read_16(ne2k->data_port); ne2k->probed = true; return EOK; } /** Start the network interface. * * @param[in,out] ne2k Network interface structure. * * @return EOK on success. * @return EXDEV if the network interface is disabled. * */ int ne2k_up(ne2k_t *ne2k) { if (!ne2k->probed) return EXDEV; ne2k_init(ne2k); /* * Setup send queue. Use the first * SQ_PAGES of NE2000 memory for the send * buffer. */ ne2k->sq.dirty = false; ne2k->sq.page = NE2K_START / DP_PAGE; fibril_mutex_initialize(&ne2k->sq_mutex); fibril_condvar_initialize(&ne2k->sq_cv); /* * Setup receive ring buffer. Use all the rest * of the NE2000 memory (except the first SQ_PAGES * reserved for the send buffer) for the receive * ring buffer. */ ne2k->start_page = ne2k->sq.page + SQ_PAGES; ne2k->stop_page = ne2k->sq.page + NE2K_SIZE / DP_PAGE; /* * Initialization of the DP8390 following the mandatory procedure * in reference manual ("DP8390D/NS32490D NIC Network Interface * Controller", National Semiconductor, July 1995, Page 29). */ /* Step 1: */ pio_write_8(ne2k->port + DP_CR, CR_PS_P0 | CR_STP | CR_DM_ABORT); /* Step 2: */ pio_write_8(ne2k->port + DP_DCR, DCR_WORDWIDE | DCR_8BYTES | DCR_BMS); /* Step 3: */ pio_write_8(ne2k->port + DP_RBCR0, 0); pio_write_8(ne2k->port + DP_RBCR1, 0); /* Step 4: */ pio_write_8(ne2k->port + DP_RCR, RCR_AB); /* Step 5: */ pio_write_8(ne2k->port + DP_TCR, TCR_INTERNAL); /* Step 6: */ pio_write_8(ne2k->port + DP_BNRY, ne2k->start_page); pio_write_8(ne2k->port + DP_PSTART, ne2k->start_page); pio_write_8(ne2k->port + DP_PSTOP, ne2k->stop_page); /* Step 7: */ pio_write_8(ne2k->port + DP_ISR, 0xff); /* Step 8: */ pio_write_8(ne2k->port + DP_IMR, IMR_PRXE | IMR_PTXE | IMR_RXEE | IMR_TXEE | IMR_OVWE | IMR_CNTE); /* Step 9: */ pio_write_8(ne2k->port + DP_CR, CR_PS_P1 | CR_DM_ABORT | CR_STP); pio_write_8(ne2k->port + DP_PAR0, ne2k->mac[0]); pio_write_8(ne2k->port + DP_PAR1, ne2k->mac[1]); pio_write_8(ne2k->port + DP_PAR2, ne2k->mac[2]); pio_write_8(ne2k->port + DP_PAR3, ne2k->mac[3]); pio_write_8(ne2k->port + DP_PAR4, ne2k->mac[4]); pio_write_8(ne2k->port + DP_PAR5, ne2k->mac[5]); pio_write_8(ne2k->port + DP_MAR0, 0xff); pio_write_8(ne2k->port + DP_MAR1, 0xff); pio_write_8(ne2k->port + DP_MAR2, 0xff); pio_write_8(ne2k->port + DP_MAR3, 0xff); pio_write_8(ne2k->port + DP_MAR4, 0xff); pio_write_8(ne2k->port + DP_MAR5, 0xff); pio_write_8(ne2k->port + DP_MAR6, 0xff); pio_write_8(ne2k->port + DP_MAR7, 0xff); pio_write_8(ne2k->port + DP_CURR, ne2k->start_page + 1); /* Step 10: */ pio_write_8(ne2k->port + DP_CR, CR_PS_P0 | CR_DM_ABORT | CR_STA); /* Step 11: */ pio_write_8(ne2k->port + DP_TCR, TCR_NORMAL); /* Reset counters by reading */ pio_read_8(ne2k->port + DP_CNTR0); pio_read_8(ne2k->port + DP_CNTR1); pio_read_8(ne2k->port + DP_CNTR2); /* Finish the initialization */ ne2k->up = true; return EOK; } /** Stop the network interface. * * @param[in,out] ne2k Network interface structure. * */ void ne2k_down(ne2k_t *ne2k) { if ((ne2k->probed) && (ne2k->up)) { pio_write_8(ne2k->port + DP_CR, CR_STP | CR_DM_ABORT); ne2k_init(ne2k); ne2k->up = false; } } /** Send a frame. * * @param[in,out] ne2k Network interface structure. * @param[in] packet Frame to be sent. * */ void ne2k_send(ne2k_t *ne2k, packet_t *packet) { assert(ne2k->probed); assert(ne2k->up); fibril_mutex_lock(&ne2k->sq_mutex); while (ne2k->sq.dirty) fibril_condvar_wait(&ne2k->sq_cv, &ne2k->sq_mutex); void *buf = packet_get_data(packet); size_t size = packet_get_data_length(packet); if ((size < ETH_MIN_PACK_SIZE) || (size > ETH_MAX_PACK_SIZE_TAGGED)) { fibril_mutex_unlock(&ne2k->sq_mutex); fprintf(stderr, "%s: Frame dropped (invalid size %zu bytes)\n", NAME, size); return; } /* Upload the frame to the ethernet card */ ne2k_upload(ne2k, buf, ne2k->sq.page * DP_PAGE, size); ne2k->sq.dirty = true; ne2k->sq.size = size; /* Initialize the transfer */ pio_write_8(ne2k->port + DP_TPSR, ne2k->sq.page); pio_write_8(ne2k->port + DP_TBCR0, size & 0xff); pio_write_8(ne2k->port + DP_TBCR1, (size >> 8) & 0xff); pio_write_8(ne2k->port + DP_CR, CR_TXP | CR_STA); fibril_mutex_unlock(&ne2k->sq_mutex); } static void ne2k_reset(ne2k_t *ne2k) { unsigned int i; /* Stop the chip */ pio_write_8(ne2k->port + DP_CR, CR_STP | CR_DM_ABORT); pio_write_8(ne2k->port + DP_RBCR0, 0); pio_write_8(ne2k->port + DP_RBCR1, 0); for (i = 0; i < NE2K_RETRY; i++) { if ((pio_read_8(ne2k->port + DP_ISR) & ISR_RST) != 0) break; } pio_write_8(ne2k->port + DP_TCR, TCR_1EXTERNAL | TCR_OFST); pio_write_8(ne2k->port + DP_CR, CR_STA | CR_DM_ABORT); pio_write_8(ne2k->port + DP_TCR, TCR_NORMAL); /* Acknowledge the ISR_RDC (remote DMA) interrupt */ for (i = 0; i < NE2K_RETRY; i++) { if ((pio_read_8(ne2k->port + DP_ISR) & ISR_RDC) != 0) break; } uint8_t val = pio_read_8(ne2k->port + DP_ISR); pio_write_8(ne2k->port + DP_ISR, val & ~ISR_RDC); /* * Reset the transmit ring. If we were transmitting a frame, * we pretend that the packet is processed. Higher layers will * retransmit if the packet wasn't actually sent. */ fibril_mutex_lock(&ne2k->sq_mutex); ne2k->sq.dirty = false; fibril_mutex_unlock(&ne2k->sq_mutex); } static frame_t *ne2k_receive_frame(ne2k_t *ne2k, uint8_t page, size_t length) { frame_t *frame = (frame_t *) malloc(sizeof(frame_t)); if (frame == NULL) return NULL; link_initialize(&frame->link); frame->packet = netif_packet_get_1(length); if (frame->packet == NULL) { free(frame); return NULL; } void *buf = packet_suffix(frame->packet, length); bzero(buf, length); uint8_t last = page + length / DP_PAGE; if (last >= ne2k->stop_page) { size_t left = (ne2k->stop_page - page) * DP_PAGE - sizeof(recv_header_t); ne2k_download(ne2k, buf, page * DP_PAGE + sizeof(recv_header_t), left); ne2k_download(ne2k, buf + left, ne2k->start_page * DP_PAGE, length - left); } else ne2k_download(ne2k, buf, page * DP_PAGE + sizeof(recv_header_t), length); ne2k->stats.receive_packets++; return frame; } static link_t *ne2k_receive(ne2k_t *ne2k) { /* * Allocate memory for the list of received frames. * If the allocation fails here we still receive the * frames from the network, but they will be lost. */ link_t *frames = (link_t *) malloc(sizeof(link_t)); if (frames != NULL) list_initialize(frames); while (true) { uint8_t boundary = pio_read_8(ne2k->port + DP_BNRY) + 1; if (boundary == ne2k->stop_page) boundary = ne2k->start_page; pio_write_8(ne2k->port + DP_CR, CR_PS_P1 | CR_STA); uint8_t current = pio_read_8(ne2k->port + DP_CURR); pio_write_8(ne2k->port + DP_CR, CR_PS_P0 | CR_STA); if (current == boundary) /* No more frames to process */ break; recv_header_t header; size_t size = sizeof(header); size_t offset = boundary * DP_PAGE; /* Get the frame header */ pio_write_8(ne2k->port + DP_RBCR0, size & 0xff); pio_write_8(ne2k->port + DP_RBCR1, (size >> 8) & 0xff); pio_write_8(ne2k->port + DP_RSAR0, offset & 0xff); pio_write_8(ne2k->port + DP_RSAR1, (offset >> 8) & 0xff); pio_write_8(ne2k->port + DP_CR, CR_DM_RR | CR_PS_P0 | CR_STA); pio_read_buf_16(ne2k->data_port, (void *) &header, size); size_t length = (((size_t) header.rbcl) | (((size_t) header.rbch) << 8)) - size; uint8_t next = header.next; if ((length < ETH_MIN_PACK_SIZE) || (length > ETH_MAX_PACK_SIZE_TAGGED)) { fprintf(stderr, "%s: Rant frame (%zu bytes)\n", NAME, length); next = current; } else if ((header.next < ne2k->start_page) || (header.next > ne2k->stop_page)) { fprintf(stderr, "%s: Malformed next frame %u\n", NAME, header.next); next = current; } else if (header.status & RSR_FO) { /* * This is very serious, so we issue a warning and * reset the buffers. */ fprintf(stderr, "%s: FIFO overrun\n", NAME); ne2k->overruns++; next = current; } else if ((header.status & RSR_PRX) && (ne2k->up)) { if (frames != NULL) { frame_t *frame = ne2k_receive_frame(ne2k, boundary, length); if (frame != NULL) list_append(&frame->link, frames); } } /* * Update the boundary pointer * to the value of the page * prior to the next packet to * be processed. */ if (next == ne2k->start_page) next = ne2k->stop_page - 1; else next--; pio_write_8(ne2k->port + DP_BNRY, next); } return frames; } link_t *ne2k_interrupt(ne2k_t *ne2k, uint8_t isr, uint8_t tsr) { /* List of received frames */ link_t *frames = NULL; if (isr & (ISR_PTX | ISR_TXE)) { if (isr & ISR_TXE) ne2k->stats.send_errors++; else { if (tsr & TSR_PTX) ne2k->stats.send_packets++; if (tsr & TSR_COL) ne2k->stats.collisions++; if (tsr & TSR_ABT) ne2k->stats.send_aborted_errors++; if (tsr & TSR_CRS) ne2k->stats.send_carrier_errors++; if (tsr & TSR_FU) { ne2k->underruns++; if (ne2k->underruns < NE2K_ERL) fprintf(stderr, "%s: FIFO underrun\n", NAME); } if (tsr & TSR_CDH) { ne2k->stats.send_heartbeat_errors++; if (ne2k->stats.send_heartbeat_errors < NE2K_ERL) fprintf(stderr, "%s: CD heartbeat failure\n", NAME); } if (tsr & TSR_OWC) ne2k->stats.send_window_errors++; } fibril_mutex_lock(&ne2k->sq_mutex); if (ne2k->sq.dirty) { /* Prepare the buffer for next packet */ ne2k->sq.dirty = false; ne2k->sq.size = 0; /* Signal a next frame to be sent */ fibril_condvar_broadcast(&ne2k->sq_cv); } else { ne2k->misses++; if (ne2k->misses < NE2K_ERL) fprintf(stderr, "%s: Spurious PTX interrupt\n", NAME); } fibril_mutex_unlock(&ne2k->sq_mutex); } if (isr & ISR_RXE) ne2k->stats.receive_errors++; if (isr & ISR_CNT) { ne2k->stats.receive_crc_errors += pio_read_8(ne2k->port + DP_CNTR0); ne2k->stats.receive_frame_errors += pio_read_8(ne2k->port + DP_CNTR1); ne2k->stats.receive_missed_errors += pio_read_8(ne2k->port + DP_CNTR2); } if (isr & ISR_PRX) frames = ne2k_receive(ne2k); if (isr & ISR_RST) { /* * The chip is stopped, and all arrived * frames are delivered. */ ne2k_reset(ne2k); } /* Unmask interrupts to be processed in the next round */ pio_write_8(ne2k->port + DP_IMR, IMR_PRXE | IMR_PTXE | IMR_RXEE | IMR_TXEE | IMR_OVWE | IMR_CNTE); return frames; } /** @} */